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Abstract—The growth in cloud computing and network connec-
tivity brings the opportunity for cloud-based game systems where
players interact through a lightweight client that only displays
rendered frames and captures input, while the heavyweight game
processing happens on the cloud server. Compared to traditional
game systems, cloud-based game systems present challenges in
handling network latency and bitrate requirements. This work
uses Drizzle, a custom cloud-based game system, to evaluate: 1)
time warp to compensate for latency, and 2) graphics streaming to
reduce network bitrates. A 30-person user study shows time warp
mitigates the effects of latency on player performance, and system
experiments show graphics streaming provides bitrate reductions
compared to the video streaming typically used by commercial
cloud-based game systems.
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I. INTRODUCTION

Although still an emerging commercial market, cloud-
based games are growing rapidly with the increase in the num-
ber of gamers and the global penetration of the Internet and
smart phones. Established companies like Sony and NVidia
are already invested in cloud-based game services, but other
big players such as Google and Microsoft are investing heavily
and looking to capture market shares.

Cloud-based games differ from traditional games in that
game clients are relatively lightweight, only sending user
input (e.g., key presses and mouse actions) and receiving
game output (i.e., images and sounds). The heavyweight game
logic – applying physics to game objects, resolving collisions,
processing Artificial Intelligence, etc. – and rendering are
done at the server, with the game frames streamed to the
client to display. A cloud-based game system offers advan-
tages over traditional game systems including: modest client
hardware requirements, no required client game installation,
easier software piracy prevention, and fewer target platforms
for developers.

While promising, cloud-based games face two major chal-
lenges when compared to traditional games: 1) bitrates –
cloud-based games require significantly higher network bitrates
from the server to the client [1] than do traditional network
games; and 2) latency – cloud-based game clients cannot
immediately act on player input but must instead send the
input to the server, have it processed, the result rendered, and
frame data sent back to the client for display [2].

Approaches to reduce bitrates can leverage innovations in
image and video compression. However, the graphics-based
nature of games present an opportunity for additional bitrate
savings with only modest increases in client complexity by not
necessarily streaming rendered game images but instead send-
ing drawing information so the client can do the rendering [3].

Approaches to compensate for latency [4] have been widely
used in commercial games. However, there has been limited
scientific evaluation of their overall effectiveness and no spe-
cific evaluations covering the breadth of games and network
conditions. Moreover, latency compensation techniques have
not been studied with cloud-based game systems, which are
more restrictive in the techniques they can use given the
client’s limited knowledge of the game state and reduced
hardware capabilities.

This work makes three contributions to this area: 1) the
evaluation of a latency compensation technique, time warp,
in a cloud-based game system; 2) exploration of approaches
to cloud-based game streaming to reduce network bitrates;
and 3) evaluation using Drizzle, a cloud-based game system
designed and developed from scratch using the Dragonfly [5]
game engine.

Results of a 30-person user study show that time warp
for projectile weapons can ameliorate the effects of latency
on player performance, but with a cost in player perception
of inconsistencies (i.e., visual glitches) in the rendered game
world. Results of system experiments show graphics streaming
can significantly reduce network bitrates over video streaming,
but still has higher bitrates compared to traditional network
games. Both time warp and game streaming have considerable
CPU cost on the server, particularly as the number of game
objects increases.

The rest of this paper is organized as follows: Section II de-
scribes related work; Section III presents our methodology and
experiments; Section IV analyzes the results; and Section V
summarizes our conclusions and possible future work.

II. RELATED WORK

This section describes research related to this work: archi-
tectures for cloud-based game systems (Section II-A), studies
of latency and games (Section II-B), and work on latency
compensation algorithms (Section II-C).

A. Cloud-based Game Systems

While there is no single agreed-upon cloud system archi-
tecture, a four-layer architecture defined by Foster et al. [6]
has often been used by researchers, with cloud-based games
(and Drizzle) at the application layer providing software as a
service.

Cloud-based game systems can broadly be classified into
graphics streaming and video streaming [7]. In graphics
streaming, as done by de Winter et al. [3], instead of sending
video, the server sends graphics commands to the client and
the client renders the game images. In video streaming, as
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described by Shea et al. [8], the server is responsible for
rendering the game scene, compressing the images as video,
and then transmitting to the client. Both approaches reduce
computation on the client versus a traditional network game
architecture because only the server manages the entire game
world. The video streaming approach is discussed the most
in cloud gaming research [8], [9] and is currently used by
most existing commercial cloud-based game systems since
it reduces the workload on the client more than graphics
streaming. Drizzle, our custom cloud-based game system,
supports both graphics streaming and video streaming, each
of which is evaluated in this paper.

B. Latency and Cloud-based Games

Chen et al. [2] discuss the effects of network latency
(and other parameters) on the cloud-based game systems
OnLive [10] and StreamMyGame [11]. However, the authors
did not explicitly measure player performance with latency.

Jarschel et al. [12] conducted a user study in an emulated
cloud game system, measuring the quality of experience for
games users selected to play. Claypool and Finkel [13] present
the results of two user studies that measured the objective and
subjective effects of latency on cloud-based games. Sackl et
al. [14] analyze the relationships between latency and player
experience for cloud gaming. While more closely related to
our work, these papers do not compare cloud-based games
with and without latency compensation.

C. Latency Compensation

Bernier [15] describes methods game systems can use
to compensate for network latencies, but does not provide
scientific evaluation of the techniques.

Ivkovic et al. [16] carried out a controlled study of aiming
in a first person shooter game with latency both with and
without an aim assistance latency compensation technique. Lee
and Chang [17] evaluated the effects of the latency compen-
sation techniques time warp and interpolation on players in
a commercial first person shooter game. Lee and Chang [18]
continued evaluation of time warp with a custom first person
shooter game, providing a guideline of 250 milliseconds as a
limit for latency compensation.

While these papers are helpful in better understanding
latency compensation, and some of the techniques are even
used in traditional network games [19], latency compensation
techniques have not been applied to cloud-based games. Our
work applies a popular latency compensation technique, time
warp, to a cloud-based game and evaluates it with a user study
and system load measurements.

III. METHODOLOGY

This section presents our methodology to evaluate graphics
streaming and latency compensation in cloud-based games.

A. Cloud-based Game Streaming

There are generally three approaches to cloud-based game
streaming, depicted in Figure 1. At the top left is image
streaming, where the game server renders the game frames
to be displayed as individual images, compresses them (e.g.,
as a JPEG image) and sends them to the client for decoding
and playing. Next down, is video streaming, where the server

renders the game frames as images, then encodes them into a
video stream and sends the stream to the client for decoding
and playing. In video streaming, the server applies intra-
encoding for each image as in image streaming, but also takes
advantage of the temporal redundancy in adjacent images,
applying inter-encoding for a higher compression rate. At the
bottom is graphics streaming, where the server does not render
individual images but instead sends graphics information for
each frame to the client whereupon the client renders the im-
ages. Unlike in image streaming or video streaming, graphics
streaming requires both the server and client to have a priori
knowledge of how to render the image from the underlying
image data.

Figure 1. Cloud streaming approaches. Top: image streaming, Middle: video
streaming, Bottom: graphics streaming.

The three approaches – image streaming, video streaming
and graphics streaming – have tradeoffs depicted in Figure 2
in the bitrates required by the network and the decoding and
rendering complexity needed by the client. At the top left
is image streaming, the simplest for the client, but with the
highest network bitrate owing to the only modest compression
afforded to the individual images. Video streaming requires
more client complexity in that both intra- and inter-image
decoding is needed, but with a significant bitrate reduction
attained by the inter-encoding. Graphics streaming requires
somewhat more complexity than video streaming in that the
client itself must render the images from graphics data, but
there is significant potential for lower bitrates than in video
streaming. For comparison, traditional games are at the bottom
right, having fairly low bitrates (5 kb/s to 124 kb/s [1]) but
require complex clients, capable of running a game engine
and doing a full render of the game world from game data.

B. Time Warp

Time warp is a latency compensation technique deployed
at a game server, as depicted in Figure 3. With time warp, the
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Figure 2. Cloud-based game streaming tradeoffs.

player acts (e.g., shooting) based on the opponent’s apparent
position, but when the server gets the input ∆t later, the
opponent’s actual position has moved. To compensate for this
latency, the server warps time (and the game world) back by
∆t, determines the outcome, and rolls the game world forward
to the present time.

Figure 3. Time warp – server rolls back game world ∆t.

C. Drizzle

Drizzle is based on Dragonfly – a text-based, 2d game
engine, full-featured enough to make a wide variety of arcade-
style games [20]. The core engine is written in C++ and in-
cludes graphics rendered with the Simple and Fast Multimedia
Library (SFML), basic kinematics (velocity and acceleration),
keyboard and mouse input, collision detection and resolution,
and audio (sound effects and music).

We extended Dragonfly to support networking – specif-
ically a network manager that uses Transmission Control
Protocol (TCP) sockets. Drizzle uses the network manager in
a heavyweight server that does the game computations and a
“thin” client that displays frames and transmits user input.

The server starts up the game engine and gets ready for a
client to connect by waiting on a well-known port. The client
connects to the Drizzle server using the hostname provided by
the player and the well-known port. Once the client connects,

the server starts the game and does all the game computa-
tions – processing any game Artificial Intelligence, updating
positions of game objects, detecting and resolving collisions,
and composing frames. However, unlike in a traditional game,
there is no player sitting at the console viewing the game
and providing input. Instead, the server composes the game
stream (depending on if it is using image streaming, video
streaming or graphics streaming). The game stream data is
streamed down the network socket to the client. The client
receives the data and renders the frame depending on the type
of streaming. The client also captures keyboard and mouse
input from the player, sending all input back up to the server.
The server receives the player input and applies it to the game
as if the player were providing that input via the local keyboard
and mouse on the server.

Drizzle can be configured to do image streaming, video
streaming or graphics streaming. Image streaming is provided
by using the SFML capture() method, sending the re-
sulting image as a JPEG image. Video streaming is provided
via the FFmpeg libraries. Graphics streaming is provided by
sending the bare minimum information needed by the client
to draw a game frame – the character to draw (1 byte), color
(1 byte), and (x,y) location (4 bytes each).

D. Cloud Saucer Shoot

We created a Drizzle-compatible game called Cloud Saucer
Shoot – an arcade-style shooting game set in space, where
the player pilots a space ship against an endless, and ever
increasing, horde of alien saucers. The player controls a ship
using arrow keys to move up and down and green saucers
automatically move right to left, spawning in greater numbers
as time progresses. If the player’s ship is struck by a saucer,
both are destroyed. The player fires bullets from the ship by
pressing the spacebar. Bullets When a bullet hits a saucer, both
are destroyed and the player is awarded 10 points. The player
also receives 1 point each second the ship is alive. The goal is
to shoot as many saucers as possible before being destroyed.

E. Experiments

Our user study was conducted in a windowless computer
lab with bright, fluorescent lighting.

Both the server and client ran on a laptop equipped with
a 14” display, Intel i7 CPU 4 GHz processor, and 8 GB of
memory running Windows 10. The system experiments were
conducted on the same laptop. Given the lightweight nature of
both the server, game and game client, the hardware was more
than sufficient to provide a playout rate of 30 f/s.

Participants were volunteers solicited among graduate stu-
dents in the game development program. First, the users
heard a scripted brief about the study and signed an Institute
Review Board (IRB) consent form. Next, they were asked to
make themselves comfortable at the laptop by adjusting chair
height and laptop screen tilt. Then users filled out an online
demographics and gaming experience survey.

Users were told how to play the Cloud Saucer Shoot game
and then played through a 15 second version of the game for
practice. Results were not recorded for the practice session.

Immediately after the practice, users played 10 game
sessions, each with an added latency selected from the range
[0, 100, 200, 400, 800 milliseconds] using the network utility
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Clumsy. Five of the sessions had time warp on and the other 5
had time warp off. The game sessions were shuffled and users
were blind to the amount of added latency and time warp.

After each of the 10 game sessions, users were asked to
rate the responsiveness and graphics consistency (i.e., absence
of visual “glitches”) from 0 (low) to 5 (high).

Playing through all game sessions typically took less than
15 minutes.

IV. ANALYSIS

This section summarizes participant demographics (Sec-
tion IV-A), presents analysis of the user experience with time
warp (Section IV-B), and analyzes system impact for the game
streaming options (Section IV-C).

A. Demographics

Thirty users participated in the study. All users were 20 to
30 years old. Twenty-five identified as male and 5 as female.
Sixty percent of the users played online games every day, 25
percent once per week, and 15 percent once per month or less.

B. User Experience

Figure 4 depicts user game performance, measured by
game score, versus added latency, both with and without
time warp. The x-axis is the added latency (in milliseconds)
and the y-axis is the user score (a combination of Saucers
destroyed and seconds alive). There are two trendlines, one
for sessions with time warp on and the other for sessions with
time warp off. Each point is the mean score for all users at
that latency, shown with standard error bars. From the graph,
user performance decreases with added latency, both with and
without time warp. Without time warp, the trend is a clear
exponential decay. With time warp, there is an initial decline
in performance from 0 to 100 milliseconds of added delay,
but then performance does not decline appreciably from 100 to
400 milliseconds, before decreasing again at 800 milliseconds.
800 milliseconds is about the time it takes a Saucer to travel
completely across the screen in the game.
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Figure 4. User game score versus added latency.

Figures 5 and 6 depict user opinions of the game sessions
in the presence of latency – specifically, responsiveness and
consistency, respectively. User opinions are on a 6 point scale,
from 0 (low) to 5 (high). In both graphs, the x-axis, data
points, error bars and trend lines are as for Figure 4. From
the graphs, the responsiveness of the game is about the same

with and without time warp, evidenced by the overlapping red
and blue trend lines in Figure 5. The inconsistency in the
game (i.e., presence of visual “glitches”) with time warp is
noticeable, however, seen by the clearly higher blue trend line
in Figure 6. The absolute difference in consistency between
time warp on and time warp off stays about the same (1 point)
for all latencies.
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Figure 5. Responsiveness versus added latency.
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Figure 6. Consistency versus added latency.

C. System Impact

Figure 7 depicts the average downstream (server to client)
network bitrate (the y-axis) for different Drizzle streaming ap-
proaches. Each bar shown is the average bitrate measured over
a complete Cloud Saucer Shoot game session. From the graph,
image streaming is network intensive, needing an average of
almost 8 Mb/s. Video streaming has substantial bitrate savings,
about 20% of that of image streaming. Graphics streaming
has significantly reduced bitrates, about 20% that of video
streaming and less than 5% that of image streaming.

In order to provide a perspective on Drizzle bitrates, Table I
compares Drizzle bitrates to a commercial cloud-based game
service, traditional network games and video conferencing.
From the table, traditional network games have the lowest
network bitrates since the heavyweight client runs a full copy
of the game and only game object updates need to be sent over
the network. Drizzle image streaming has the highest bitrate,
but not substantially higher than commercial cloud-based game
streaming. Drizzle image streaming has bitrates around that
of video conferencing. Drizzle graphics streaming has bitrates
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Figure 7. Network bitrates for Drizzle streaming approaches for Cloud
Saucer Shoot.

between video conferencing and traditional network games,
but closer to the latter.

TABLE I. NETWORK BITRATE COMPARISON

System Bitrate (Kb/s) Citation

Traditional network game 5 to 67 [21]–[23]

Drizzle graphics streaming 320

Drizzle video streaming 1520

Video conference 2222

Commercial cloud-based game 6339 [1]

Drizzle image streaming 7950

The game frames captured and sent by the server vary
in size based on the game scene complexity. Game scenes
with more game objects tend to be visually complex, not
compressing as well for image and video streaming and
requiring more commands for graphics streaming.

Figure 8 depicts the average network bitrate versus number
of game objects for different Drizzle streaming approaches.
The x-axis is the number of game objects and the y-axis is
the network bitrate. Each point is the mean bitrate required for
rendering a Cloud Saucer Shoot game frame with the indicated
number of objects. From the graph, the bitrate requirements
grow linearly with the number of objects. In all cases, image
streaming has the highest bitrates by far, followed by video
streaming and then graphics streaming.
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Figure 8. Network bitrates versus number of game objects with trendlines
for each Drizzle streaming approach.

Supporting games with a lot of game objects can make

the performance bottleneck the server instead of the network.
Using the same computer as for our user study, we analyzed the
CPU load for the Drizzle server for image streaming scenarios
from Figure 9 with 200 milliseconds of added latency and time
warp. The breakdown is as follows:

Time warp - each game loop (30 Hz), the server rolls back
the game world 200 milliseconds to compensate for client
latency, applies the user input, and (after Update) rolls the
world forward again.

Update - the server updates the game world (moving game
objects and resolving collisions).

Copy - the server copies the current game world, effectively
replicating every game object in the game to preserve it for
future time warping.

Stream - the server renders the game world and sends it to the
client.

Figure 9. CPU load breakdown versus number of game objects.

From the graph, as expected, total CPU load increases
with number of game objects. Once the CPU load exceeds
33 milliseconds (at about 260 game objects), the game engine
can no longer keep up with the 30 Hz game loop rate. Under
these conditions, the player experience would degrade from
a reduced frame rate and overall sluggish performance. Time
warp and streaming have the highest processing load by far.
Many traditional game servers have latency compensation,
but streaming adds an additional processing overhead unique
to cloud-based game servers. This suggests the processing
requirements for cloud-based servers are significantly higher
than that of traditional game servers.

V. CONCLUSION AND FUTURE WORK

The growth in games and networking has provided the
opportunity for cloud-based games, where the server handles
most of the game processing and rendering, streaming game
frames to the lightweight client that primarily gathers and
transmits player input. While cloud-based games have some
advantages over traditional game architectures, the remote
processing of gameplay presents challenges in accommodating
latency and network bitrate requirements.
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This paper presents Drizzle, a lightweight cloud-based
game system that allows for the study of latency compensation
and game streaming approaches. Drizzle is written in C++
using the Dragonfly [5] game engine, adding a networking
component and a lightweight client for full cloud-based game
system functionality.

Addressing network bitrates, Drizzle is used to evaluate
different cloud-based game streaming approaches, comparing
the bitrates required by image streaming, video streaming and
graphics streaming. Results from our system experiments show
video streaming, the state of the art for most commercial
systems, provides a significant bitrate reduction over image
streaming but graphics streaming can reduce bitrates even
more.

Addressing latency, Drizzle is used to evaluate a well-
known (but not well-evaluated) latency compensation tech-
nique – time warp – wherein the game server rolls back time
to when the client provided input in order to accommodate
the server-to-client latency. While time warp is often used
by traditional game servers, e.g., Overwatch [19] (Blizzard,
2016), it has not been scientifically evaluated much nor has
it been applied to cloud-based games. Results from our 30-
participant user study show time warp with projectile weapons
can mitigate some of the effects of latency in terms of player
performance, but time warp has more visual inconsistencies
than without time warp. Analysis of CPU load shows time
warp and streaming dominate, suggesting cloud-based game
servers need more resources than traditional game servers.

Future work might look to optimize the processing of
streaming as well as latency compensation.

Future work could also evaluate time warp for hit scan (i.e.,
instant effect) weapons rather than for projectile weapons, as
was done in this paper. Other latency compensation techniques
such as aim assistance or time delay could be evaluated in a
cloud-based game system (e.g., Drizzle).

While Drizzle shows graphics streaming has potential to
reduce bitrates more than video streaming, future work could
apply graphics streaming techniques to systems other game
systems (e.g., Gaming Anywhere [7]) and explore the benefits
for a wider range of games and game conditions.
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