
Interference Classification in a Factory Environment Based on

Semi-supervised Deep Learning

Su Yi, Hao Wang, Wenqian Xue, and Lefei Wang
Fujitsu Research and Development Center

Beijing, China
Email: {yisu, wangh, xuewenqian, wanglefei}@cn.fujitsu.com

Abstract—The steadily growing use of license-free frequency
bands requires reliable coexistence management and therefore
proper wireless interference identification. This paper provides
a realtime interference source classification method based on
semi-supervised deep learning. It uses Received Signal Strength
Indicator (RSSI) samples collected by an 802.15.4-based wireless
sensor for formulating training data as well as online test data in
a factory environment. To address the issue of laborious process
on labeling the training data, a Fast Fourier Transform (FFT)-
based algorithm is used to help labeling the sample data. We have
trained a deep neural network with two hidden convolutional
layers using raw RSSI samples as inputs. The whole realtime
management system with the classifier is implemented on IEEE
802.15.4 System on Chip (SoC) and Linux-based system.

Keywords–Interference classification; Semi-supervised deep
learning; RSSI sampling.

I. INTRODUCTION

The Internet of Things (IoT) is one of the most important,
exciting, and transformational technology developments today.
IoT is global in impact, multi-disciplinary in nature, and spans
virtually all industry segments. Recent trends to introduce IoT
devices, such as sensors and cameras into factories have been
accelerated by a strong demand for improving productivity,
reducing labors and cost. For this reason, the digitalization
of the factories, as well as the connection of information on
production process and supply chain management within a
factory and across factories are becoming important.

There are several system applications, e.g., preventive
maintenance, management of materials and products, monitor-
ing of movements and machine monitors, which are integrated
in the network. More efforts will be required for wireless
communication because of its limited and shared radio re-
sources and the sensitive nature of the environment in which
it will operate in. One of the most common and frequent
wireless issues is related with interference, which is common
to all wireless short range networks operating in unlicensed
frequency band, such as IEEE 802.11, 802.15.4, 802.15.1, etc.
Interference issues are critical since multiple systems may
interfere with each other, and the number of nodes in the
unlicensed spectrum is increasing rapidly.

When deploying a sensor network in a factory, it has been
found that there exists different levels of interference, during
different times, and at different positions. This paper aims to
identify different interference sources in a factory environment.
By diagnosing different interference sources, either at the
network provisioning phase or during operation, IoT service

providers can do better network planning, take countermea-
sures to solve the problem or avoid potential problems. There-
fore, realtime state monitoring and automated trouble detection
are required for efficient operation and management services.
For instance, with the help of the resulting knowledge, the
system can adapt its communication by choosing a better
channel or other mitigation strategies.

The key idea is to use a low power, narrow band IEEE
802.15.4 wireless module to sample radio frequency (RF)
energy and identify the interference source by learned inter-
ference patterns. The IEEE 802.15.4 standard defines that an
Energy Detection (ED) value must be measured for the Clear
Channel Assessment (CCA) and channel selection [1]. It is an
estimate of the received signal power within the bandwidth of
an IEEE 802.15.4 channel. No attempt is made to identify or
decode signals on the channel. The ED time shall be equal to
8 symbol periods. This ED value is also widely known as the
Received Signal Strength Indicator (RSSI). By setting the sam-
pler on different ZigBee channels, it can detect Wi-Fi, ZigBee,
Bluetooth, Bluetooth Low Energy (BLE), microwave oven, and
other magnetrons, which use the spectrum overlapped with the
sampler’s channel.

Many efforts have been made to classify interference
in wireless networks, such as in Wi-Fi systems or sensor
networks. Airshark [2] leverages powerful Wi-Fi hardware to
get the spectrum information to detect and classify non-Wi-
Fi interference. In [3]–[5], the authors propose methods to
classify interference by the observation that different interfer-
ences will result in different corruption patterns on received
packets. The authors in [6]–[9] study and extract features
purely from the time-domain RSSI sequence, and design a
classification approach to identify the existence of different
sources of interference. In recent years, deep learning has been
introduced to analyze the spectral data for signal identification.
In [10]–[12], spectral samples over frequency and time span
are collected for training using convolutional neural networks.

Most previous works face the problem of labeling the
interference source effectively. They often use human expe-
rience to label the training data or test data. Labeled data
is always very hard to get since human annotation is boring
and time-consuming. In our previous work [13], we study
the interference effect on the link condition and the network
performance and design a machine learning method to classify
the wireless channel errors into different categories. We also
conduct extensive experiments in office to study the RSSI
patterns and use deep learning to identify different patterns for
major wireless scenarios [14]. In this paper, we develop a semi-

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

supervised deep learning mechanism to identify interference
types with focus on a factory scenario. Compared with our
previous work, one novel point is an auto-labeling algorithm
which can be done using training data collected from natural
environment instead of a controlled environment.

The rest of the paper is structured as follows. Section II
gives an overview of deployment of the interference identifi-
cation. In Section III, we describe the semi-supervised deep
learning with an auto-labeling method. Section IV provides
the test results. Finally, we conclude the work in Section V.

II. DEPLOYMENT SCENARIO

The interference identification framework we propose in
this work can be deployed in industrial IoT where some ex-
ample IoT applications include miniaturized sensors integrated
into critical equipment that monitor performance parameters to
proactively diagnose maintenance issues, enable trend analysis
of equipment performance, and optimize overall system oper-
ations.

Inspired by recent advances and the remarkable success of
deep learning in a broad range of problems such as image
or speech recognition and machine translation, we use similar
approaches in interference classification with a high rate RSSI
sampler to get RSSI traces as input. As a measurement of
the RF power level at the input of the transceiver, RSSI is
an important parameter to reflect a wireless channel condition.
When there is interference, the RF energy increases so it can
be used to detect the occurrence of interference.

In our implementation, a 95µs sampling interval (10.5kHz
sampling rate) is achievable. We use a TI CC2530 802.15.4
module and program it to read the built-in RSSI register
continuously to get the RSSI sampling data. The RSSI sampler
captures the energy in the channel due to the interferers’
emissions. It continuously reads the RSSI register of the sensor
nodes’ radio chip.

The interference analysis is done in a very short period to
reflect the fast-changing channel condition. We use the training
data collected from different channels to train a unified data
model, then this data model becomes channel-independent.
That is to say, when we run the online classification algorithm,
we use the same model for any sampling channel. The end user,
such as the network administrator or a network management
application, can generate a detailed report for every diagnosis
window or a report with statistical results over a longer period.

Figure 1 illustrates our deployment scenario where these
samplers are placed in the intended locations in a factory
environment. The RSSI sampler is connected to a small single-
board computer Raspberry Pi (RPi) 3 with an USB to serial
interface. The sampling results are easily accessible by the
interference analysis engine on the RPi. One or more samplers
can be placed in a certain area to get the channel information of
that area. The Network Management System (NMS), usually
implemented with a graphical user interface (GUI), or a Web
service, can remotely access the analysis engine on the RPi
through Internet. This management system can configure the
setting of the interference diagnosis and read the results of the
interference source classification.

NMS

RSSI sampler

(CC2530)

RSSI sampler

(CC2530)

usb2serial

Raspberry Pi

Raspberry Pi Internet ...

Figure 1. Deployment scenario of the interference classification system.

Another implementation choice is to implement RSSI
sampling function on a sensor node. In this case, there is no
dedicated node for sampling. The sampling function may be
activated during provisioning phase, analyzing phase, or as all-
time monitoring.

In the investigated factory, we find out that the interference
sources mainly come from electromagnetic radiation caused by
the operating machines, and interference caused by the sparse
wireless communication signals from the sensor network de-
ployment, such as beacons and sensor data. It has been shown
in many studies that industrial and factory equipment produces
electromagnetic interference (EMI) that causes a great deal of
damage on wireless performance [15].

Figure 2 shows four typical RSSI traces for different
interference scenarios in our factory, as well as a Normal
scenario (Figure 2a) meaning that channel is relatively idle
and clear of interference. Sometimes there will be a mix of
different patterns of these four.

The RSSI pattern in Figure 2b is a waveform with a cycle
of 20ms, which means the energy pattern is periodic with a
frequency cycle around 50Hz. Figure 2c has a similar pattern,
only that the period is about 10ms, leading to a frequency
cycle of 100Hz.

Figure 2d is the RSSI pattern for pulse-shaped wireless
communication signals. In factories where there is very sparse
traffic, the pulse-like signal pulses are mostly from beacons
(Wi-Fi, Bluetooth, BLE, etc.), or sensor data transmitting mea-
surement results. These energy peaks also exhibit a periodic
pattern (with a 60+ms period in the figure). We define this
pattern as the result of wireless communication signals.

III. INTERFERENCE CLASSIFICATION WITH DEEP
LEARNING

Traditional machine learning has been used in error di-
agnosis or interference source identification in the wireless
systems in literatures while the results are not so promising.
Deep learning may be utilized to automatically extract more
low-level and high-level features and has been used in complex
applications [16]. It normally requires large amount of training
data, which can be achievable by the high rate RSSI sampling.

The RSSI samples in a detection window (20ms) form an
N -element input vector. Since a sampling rate 95µs/sample is
used, N = 20ms/95µs ≈ 210. This N -element input vector
is passed to a deep learning classification model to generate
an M × 1 output vector. M represents the number of classes
defined. In this paper, M = 4 representing Normal and 3 types
of interference sources.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

(a) Normal (b) Magnetron with 20ms cycle (c) Magnetron with 10ms cycle (d) Wireless communication signal

Figure 2. Typical RSSI traces of difference cases.

A. Auto-labeling

Training data is collected on a 24-hour basis in a factory.
Several days of data are used to formulate the training data set.
Before training, we need to prepare all the input vector data
composed of RSSI samples together with their labels. This is
specifically challenging since it is unfeasible to find out what is
actually happening over the air on a 24-hour basis. This paper
uses Fast Fourier Transform (FFT) to automatically label the
training data to avoid human annotation.

Due to the fact that all interference patterns in our factory
are found to be periodic, the proposed automatic labeling
utilizes FFT to find the spectrum characteristics of the RSSI
samples. Magnetron patterns and wireless communication sig-
nal patterns are quite different in that wireless communication
signals cover a much shorter time period and are very easy to
be overwhelmed by magnetrons or other noises. It happens that
magnetrons mostly happen in daytime, since they come from
machine noises. We collect sample logs for several days and
nights and separate them into daytime training data and night
training data. Daytime training data are used to find magnetron
patterns and night training data are for wireless communication
signals.

Firstly, we use FFT to find the ideal patterns for magnetrons
and for normal state. We use daytime training data and label
selected data automatically by FFT method. In detail, the
sample log is divided into sample sequences of length NF

corresponding to a period of time TF . TF can be considered as
a hyper-window size (multiple of detection window size) used
for FFT algorithm. For each hyper-window, NF -point FFT is
applied to find the fundamental frequency. NF is large enough
to guarantee the frequency resolution but not too large to have
a mixed RSSI pattern in a hyper-window. In our experiments,
NF = 5250, so TF = NF × 95µs ≈ 500ms. Sampling fre-
quency fs = 1/95µs = 10.526kHz. The frequency resolution
df = fs/NF = 2Hz.

We group these hyper-windows by their fundamental fre-
quencies, and count the number of hyper-windows for each
group over these sample logs. The number of hyper-windows
for each fundamental frequency is given in Table I. Hyper-
windows with DC (direct current) component (0Hz) as fun-
damental frequency indicate samples in these hyper-windows
represent a normal state, so these hyper-windows belong to
Normal. It is useful to choose fundamental frequencies (except
DC component) with obviously higher number of hyper-
windows than others. It implies that the interfering magnetron
waveform has a cycle with the corresponding fundamental

frequency. As a result, two fundamental frequencies (50Hz
and 100Hz) with the most numbers of hyper-windows are
selected, which exactly matches our observation on Figure 2b
and 2c. Note here 50Hz or 100Hz frequency means that the
interference is a waveform with 50Hz or 100Hz cycle (20ms
or 10ms period). The carrier frequency of the interference
source is the same as that of the sampler. We label hyper-
windows with 50Hz fundamental frequency as Interference
#1 and hyper-windows with 100Hz fundamental frequency as
Interference #2. Other hyper-windows are unlabeled for now.

TABLE I. NUMBER OF HYPER-WINDOWS WITH LENGTH TF GROUPED BY
FUNDAMENTAL FREQUENCY

Fund. freq. (Hz) 0 4 6 8 10 12 16 20
hyper-windows 11879 63 9 3 3 7 2 2
Fund. freq. (Hz) 22 24 26 30 34 36 38 40
hyper-windows 4 18 4 1 1 1 2 2
Fund. freq. (Hz) 42 44 46 48 50 54 80 88
hyper-windows 3 17 15 38 236 1 1 1
Fund. freq. (Hz) 98 100 136 142 150 188 200 250
hyper-windows 8 87 1 1 40 3 18 2

We break up each labeled hyper-window into multiple
(500ms/20ms = 25) detection windows and label each 20ms-
detection window using the same label of hyper-window it
belongs to. Now we have three types of labeled training data:
Normal, Interference #1 and Interference #2.

Secondly, we use FFT to find the ideal patterns for wireless
communication signals using night training data. Unlike the
magnetron, the pulse-like wireless communication signal only
covers very short time. Due to the background noise, the
energy of the signal pulse cannot be identified by directly using
FFT. To identify pulse-like wireless signal, a filter (Figure 3)
is used to filter out noises before using FFT.

In our experiments, RSSI THRESHOLD = -80dBm,
NOISE FLOOR = -108dBm.

The new filtered RSSI trace is used to do FFT and
automatic labeling. For each hyper-window with length T ′

F ,
FFT is used to find the fundamental frequency. N ′

F = 52500,
T ′
F = N ′

F × 95µs ≈ 5s and thus d′f = 0.2Hz. T ′
F is larger

than TF since wireless communication signals normally have
a period longer than that of the magnetrons. The fundamental
frequencies are rounded down to the nearest integer and the
count of hyper-windows for each rounded-down fundamental
frequency over these sample logs is listed in Table II. Similarly,
one or more fundamental frequencies which have obviously
highest number of hyper-windows are selected. Hyper-window

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

Input: A sequence of RSSI values: {rssi0, rssi1, ..., rssin−1}
Output: New sequence of RSSI after filtering: {rssi filt0,

rssi filt1, ..., rssi filtn−1}
1: for (i = 0; i < n; i++) do
2: if rssii < RSSI THRESHOLD then
3: rssi filti = NOISE FLOOR
4: else
5: rssi filti = rssii
6: end if
7: end for

Figure 3. Pseudo codes for RSSI filtering

with selected fundamental frequency means that the samples in
this hyper-window indicate the existence of a periodic, pulse-
like wireless signal. Frequency 15Hz (actually ranging from
15Hz to 16Hz) has the maximum number of hyper-windows,
which corresponds to the ˜64ms period signal shown in Figure
2d. These hyper-windows are labeled as Interference #3. Then
all the RSSI samples are replaced by their original pre-filter
values.

TABLE II. NUMBER OF HYPER-WINDOWS WITH LENGTH T ′F GROUPED BY
FUNDAMENTAL FREQUENCY

Fund. freq. (Hz) 0 5 6 7 8 9 10 11
hyper-windows 2548 874 139 38 534 55 59 34
Fund. freq. (Hz) 12 13 14 15 16 19 20 ...
hyper-windows 18 15 7 2582 46 9 13 ...

We split the labeled hyper-window with length T ′
F

into multiple prediction windows. Only the prediction
windows which have samples with value greater than
RSSI THRESHOLD are chosen and labeled as Interference
#3. We put these new labeled data into training data. Other
data are left unlabeled and will be used in later semi-supervised
learning.

Finally, this auto-labeling process results in the initial
training data, each in a length of a detection window, with
four different labels. It’s necessary to balance the amount of
training data for each class before training.

One may ask why not apply the same labeling technique
to the test samples without learning process. The main reason
for using deep learning is that FFT can only find the typical
patterns of these interference source. There are large number of
unlabeled data due to FFT resolution errors, non-ideal RSSI
patterns, or mixed scenarios in a hyper-window. These data
cannot be solved by using FFT alone. Besides, most labeled
data are actually Normal. Semi-supervised learning is used to
utilize larger amounts of unsupervised labels, specifically non-
normal labels to improve the accuracy.

B. Semi-supervised Learning

When auto-labeling is done, there are data left unlabeled.
To make use of unlabeled data for training as well, each
unlabeled hyper-window is partitioned into multiple windows
in 20ms. We use a conventional semi-supervised learning
algorithm – self-training – to learn the deep model [17]. The
basic procedure is shown in Figure 4. We first train a deep

Input: Labeled data (Xl, Yl), unlabeled data Xu.
Output: CNN model f : X→ Y

1: f ← train using (Xl, Yl)
2: for x ∈ Xu do
3: Predict using y = f(x)
4: if y! = Normal then
5: (Xl, Yl)← (Xl + x, Yl + y)
6: f ← train using (Xl, Yl)
7: end if
8: end for

Figure 4. Semi-supervised learning algorithm

model using labeled data, then predict on unlabeled data and
get a classification output. After each prediction, we add the
wanted input-output pair to the labeled data to form a new set
of training data and then train again until all unlabeled data
are checked.

Slightly different from Figure 4, in real implementation,
unlabeled data are put into iteration in batches for higher
efficiency. A final deep model can be achieved in the end.
By using semi-supervised learning, the training data amount
has been increased from 70,000+ to 100,000+.

C. Convolutional Neural Network

Convolutional Neural Network (CNN) is used in the semi-
supervised deep learning since it is applicable to array data
where nearby values are correlated, and it greatly reduces num-
ber of parameters for deep networks. CNN performs feature
learning via non-linear transformations implemented as a series
of nested layers. The raw RSSI samples organized into data
vectors are pipelined as input for classification. Traditionally
CNN is used mostly for 2-dimensional inputs, such as in image
recognition. In our case we just use one dimension – a vector
– as input. This can be considered as a special case and the
other properties for the network remain the same.

The goal of deep learning or more generally, machine
learning is to find a mathematical function f , that defines the
relation between a set of inputs X, and a set of outputs Y, i.e.

f : X→ Y (1)

The inputs, X = [x1, x2, ..., xK]T , present a number of
distinct data points, samples or observations, where K is
the sample size, while xi is a vector of N measurements
of features for the ith observation called a feature vector.
xi = [xi1, xi2, ..., xiN]T , i = 1, ...,K. The outputs, y, are all
the outcomes, labels, or target values corresponding to the K
inputs xi, denoted by y = [y1, y2, ..., yK]T . Then the observed
data consists of K input-output pairs, called the training data
or training set S.

We use three main types of layers to build CNN architec-
tures: convolutional layer, pooling layer, and fully-connected
(FC) layer (exactly as seen in regular neural networks). After
investigation on relevant literatures and numerous experiments,
we have settled with LeNet model, a CNN with two con-
volutional layers [18]. The configurations for the network
architecture are given in Figure 5, with a 210-element vector
as input and a 4-class output. The last FC layer [4 × 1]

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

Input: 210x1

Convolutional layer: 20x200x1

11x1 convolution

Pooling layer:

20x100x1

Output: 4x1

2x1 pooling
30 fully-connected neurons

4 fully-connected

output layer (softmax)

Convolutional layer: 40x80x1

Pooling layer:
40x40x1

2x1 pooling

21 x1 convolution

ReLU ReLU ReLU

Figure 5. CNN architecture.

will compute the class scores where each of the 4 numbers
corresponds to a class score, among the 4 types of classes.
The very last layer is a Softmax classifier, which computes
the posterior probability of each class label over 4 classes as

ŷi =
ezi∑4

j=1
ezj

, i = 1, ..., 4 (2)

That is, the scores zi computed at the output layer are
translated into probabilities.

A cost function, C, is calculated on the last fully-connected
layer that measures the difference between the estimated
probability vector, ŷi, and the index encoding of the true class
label, yi. The CNN parameters, Θ, are obtained by minimizing
the cost function on the training set {xi, yi}i∈S of size K,

min
Θ

∑
i∈S

C(ŷi, yi) (3)

where C(ŷi, yi) ≡ − ln(ŷi[yi]) is the negative log-likelihood
cost function. Note that ŷi[yi] means the yi-th element of the
vector ŷi.

All the RSSI samples are normalized to range [-1, 1] as
CNN inputs. In the training process, stochastic gradient descent
(SGD) is used with backpropagation with a mini-batch size of
500 and a learning rate 0.1, as well as L2 regularization to
avoid overfitting.

One advantage of this framework is that our data inputs
for learning and testing do not need feature extraction as most
prior arts do. Feature extraction may have a chance to lose
some hidden features in the data. We use raw RSSI samples
as input so that all information is conveyed to deep learning.

IV. RESULTS

We have implemented the off-line training on a Linux
based server, and an online realtime detection system with a
RPi, a ZigBee sampler, and a GUI on a PC.

With regard to the implementation on the off-line training,
Python 2.7 in combination with computation library Theano
0.9 is utilized. The CNN is trained and validated on a high
computation platform with 24-core CPU Intel(R) Xeon(R) E5-
2620 v2 @ 2.10GHz, with 128GB RAM and the Cuda enabled
GPU Nvidia Tesla K80.

When the model is trained, the calculation for classifying
a test instance into one of the classes is very fast since each
test instance needs to be compared against the pre-computed
model. The computation time for a single test data is around
8ms on RPi. If test data are input to the classifier in batches

the average computation speed will be even faster. Therefore,
the RSSI samples can be fed into the trained CNN model to
get the diagnosis result in realtime with a RPi.

To evaluate proposed interference source identification
scheme, extensive experiments are conducted in a factory
for several days. Test data and training data are collected
at different time to reduce the dependency of the data. The
RPi is used as a sample data collector, as well as a predictor
during online test phase. This system basically only consists
of ‘listening’ radio devices, which do not interfere with the
current wireless communication system.

Due to security and other reasons, any change of the
operating machines or change of the wireless system in the
field is not allowed. This leads to the difficulty to obtain
the ground truth of the environment. Nevertheless we have
randomly picked some RSSI traces from different times and
checked with the prediction result using human’s knowledge,
and the detailed prediction results (%) are compared with
observed results in Table III. As introduced in Section III-A,
three types of interference sources are: Interference #1 –
magnetron with 50Hz frequency cycle, Interference #2 –
magnetron with 100Hz frequency cycle, Interference #3 –
wireless communication signal. Note that some RSSI patterns
are unidentifiable by humans, so there is an additional observed
class named Unknown.

TABLE III. THE CONFUSION MATRIX OF IDENTIFIED CLASSES

Predicted class (%)
Normal Intf. #1 Intf. #2 Intf. #3

O
bs

er
ve

d
cl

as
s

Normal 100 0 0 0
Intf. #1 0 100 0 0
Intf. #2 1.3 16.4 82.3 0
Intf. #3 15.8 10.5 0 73.7
Unknown 25.5 16.4 58.2 0

The predictions for selected time periods are plotted in
Figure 6 with each plot having a duration of about 12 minutes.
The ratio of outputs for each of the 4 classes is calculated every
10 seconds. Only ratios of non-Normal results are plotted in
colored bars. Predictions for different time periods from two
days are compared. In early morning (6:00∼6:12), the predic-
tions of all interference types are low for both days. During
10:00∼10:27, probability of Interference #2 increases for some
time on both days. Around noon (12:30∼12:42), predictions
for Interference #1 become dominant and show a very high
probability for both days. In the afternoon (17:00∼17:12), the
predictions for interference decrease while the results for Day1
and Day2 are slightly different.

Generally, the magnetron cycle is a combination effect
of the machine model, AC (alternating current) power cy-
cle, transformer type, switching type, inverter type, etc. This
prediction can help manage, locate, or mitigate interference
caused by magnetron leakage or wireless systems in deploy-
ment scenarios.

V. CONCLUSION

In this paper, we collect extensive sample data from a
factory to study the RSSI trace patterns which are sampled
by IEEE 802.15.4 nodes for different interference sources.
A semi-supervised deep learning utilizing RSSI samples is

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

(a) Day1 06:00∼06:12 (b) Day1 10:15∼10:27 (c) Day1 12:30∼12:42 (d) Day1 17:00∼17:12

(e) Day2 06:00∼06:12 (f) Day2 10:00∼10:12 (g) Day2 12:30∼12:42 (h) Day2 17:00∼17:12

Figure 6. Selected predictions on factory data.

proposed to infer the interference type. Automatic labeling of
training data is achieved taking advantage of the periodicity
of the interference patterns. Sample collection and the classi-
fication algorithm are implemented on RPi 3 to monitor the
wireless channel condition in a realtime fashion. Compared
with the spectral data from a spectral analyzer, RSSI samples
on the working channel are much easier to obtain.

The training procedure has to be performed when used
in different environments and must be validated in the field to
become a viable option as a classifier. This interference source
identification scheme opens up numerous other possibilities.
There can be a dedicated device or it can be embedded in
a sensor to do external interference avoidance mechanisms
based on the input from the sampling. Finally, the classification
result of a channel is not only informative, but can be used
to adapt the transmit parameters. Thus, an interference-aware
communication protocol that adapts its parameters to the class
of interference is a potential application for this algorithm.
Further validation of these prediction results in a factory
deployment and how to utilize these results remain for our
future research.

ACKNOWLEDGMENT

The authors would like to thank Yuki Nishiguchi, Ai
Yano, Takeshi Ohtani, and Ryuichi Matsukura from Fujitsu
Laboratories Ltd., Kawasaki, Japan for providing experimental
data in factory and all the fruitful discussions on the topic.

REFERENCES

[1] IEEE Std 802.15.4-2015, “Part 15.4: Wireless medium access control
(MAC) and physical layer (PHY) specifications for low-rate wireless
personal area networks (WPANs),” 2015.

[2] S. Rayanchu, A. Patro, and S. Banerjee, “Airshark: Detecting non-
WiFi RF devices using commodity WiFi hardware,” in Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference, Berlin, Germany, November 2011, pp. 137–154.

[3] F. Hermans, O. Rensfelt, L.-Å. Larzon, and P. Gunningberg, “A
lightweight approach to online detection and classification of inter-
ference in 802.15.4-based sensor networks,” ACM SIGBED Review
– Special Issue on the 3rd International Workshop on Networks of
Cooperating Objects (CONET), vol. 9, no. 3, July 2012, pp. 11–20.

[4] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L.-Å. Nordén, and
P. Gunningberg, “SoNIC: Classifying interference in 802.15.4 sensor
networks,” in Proceedings of ACM/IEEE IPSN, Philadelphia, PA, USA,
April 2013, pp. 55–66.

[5] K. Wu, H. Tan, H.-L. Ngan, Y. Liu, and L. M. Ni, “Chip error pattern
analysis in ieee 802.15.4,” IEEE Transactions on Mobile Computing,
vol. 11, no. 4, April 2012, pp. 543–552.

[6] X. Zheng, Z. Cao, and J. Wang, “ZiSense: Towards interference resilient
duty cycling in wireless sensor networks,” in Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems (SenSys),
Memphis, TN, USA, November 2014, pp. 119–133.

[7] S. Zacharias, T. Newe, S. O’Keeffe, and E. Lewis, “Identifying sources
of interference in rssi traces of a single ieee 802.15.4 channel,” in
Proceedings of the Eighth International Conference on Wireless and
Mobile Communications (ICWMC), Venice, Italy, June 2012, pp. 408–
414.

[8] ——, “A lightweight classification algorithm for external sources of
interference in ieee 802.15.4-based wireless sensor networks operating
at the 2.4 GHz,” International Journal of Distributed Sensor Networks,
vol. 10, no. 9, August 2014, pp. 265–286.

[9] V. Iyer, F. Hermans, and T. Voigt, “Detecting and avoiding multiple
sources of interference in the 2.4 GHz spectrum,” EWSN 2015, LNCS,
vol. 8965, 2015, pp. 35–51.

[10] M. Schmidt, D. Block, and U. Meier, “Wireless interference
identification with convolutional neural networks,” CoRR, 2017.
[Online]. Available: http://arxiv.org/abs/1703.00737

[11] K. Longi, T. Pulkkinen, and A. Klami, “Semi-supervised convolutional
neural networks for identifying Wi-Fi interference sources,” in Proceed-
ings of the Ninth Asian Conference on Machine Learning, ser. PMLR
77, Seoul, Korea, November 2017, pp. 391–406.

[12] M. Kulin, T. Kazaz, I. Moerman, and E. de Poorter, “End-to-end
learning from spectrum data: A deep learning approach for wireless

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

signal identification in spectrum monitoring applications,” IEEE Access,
March 2018, pp. 18 484–18 501.

[13] S. Yi et al., “Machine learning based channel error diagnostics in
wireless sensor networks,” in Proceedings of IEEE VTC Spring, Sydney,
Australia, June 2017, pp. 1–5.

[14] S. Yi et al., “Interference source identification for ieee 802.15.4 wireless
sensor networks using deep learning,” in Proceedings of IEEE PIMRC,
Bologna, Italy, September 2018, pp. 1–7.

[15] J. Chilo, C. Karlsson, P. Ängskog, and P. Stenumgaard, “EMI disruptive
effect on wireless industrial communication systems in a paper plant,”
in Proceedings of IEEE International Symposium on Electromagnetic
Compatibility (EMC), Austin, TX, USA, August 2009, pp. 221–224.

[16] M. A. Nielsen, Neural Networks and Deep Learning. Determination
Press, 2015.

[17] X. Zhu, “Semi-supervised learning tutorial,” in Tutorial of International
Conference on Machine Learning (ICML), Corvallis, OR, USA, June
2007.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, November 1998, pp. 2278–2324.

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

