
Discovering Attack Strategies Using Process Mining

Sean Carlisto de Alvarenga, Bruno Bogaz Zarpelão,
Sylvio Barbon Junior

Computer Science Department
State University of Londrina (UEL)

Londrina, Paraná, Brazil
E-mail: {sean, brunozarpelao, barbon}@uel.br

Rodrigo Sanches Miani
School of Computer Science (FACOM)
Federal University of Uberlândia (UFU)

Uberlândia, Minas Gerais, Brazil
E-mail: miani@ufu.br

Michel Cukier
A. James Clark School of Engineering

University of Maryland
College Park, Maryland, USA

E-mail: mcukier@umd.edu

Abstract— Intrusion Detection Systems generate alerts which
depend on manual analysis of a specialist to determine a re-
sponse plan. However, these systems usually trigger thousands
of alerts per day. Investigating unmanageable amounts of
alerts manually becomes burdensome and error-prone. Be-
sides, it complicates the analysis of critical alerts. In this paper,
an approach is proposed to facilitate the investigation of huge
amounts of intrusion detection alerts by a specialist. The pro-
posed approach makes use of process mining techniques to
discover attack strategies observed in intrusion alerts, which
are presented to the network administrator in friendly visual
models. Tests were performed using a real dataset from the
University of Maryland. The results show that the proposed
approach combines visual features along with quantitative
measures that help the network administrator to analyze the
alerts in an easy and intuitive manner.

Keywords-intrusion detection; security visualization; alert
mining; heuristic mining.

I. INTRODUCTION
In recent years, the increase of security vulnerabilities

has concerned companies and organizations. In 2014 alone,
almost 8000 new vulnerabilities were found in software
applications and operating systems, as shown by the National
Vulnerability Database (NVD) statistics [1]. The more in-
creases the number of new vulnerabilities, the greater the
likelihood of increase in the frequency of computer security
violations. That is where the security measures come into
play.

Intrusion Detection Systems (IDS) are devices that play
an important role in the set of security policies in information
systems. IDS monitor the network and system activities for
any security violations. When it detects a security violation,
it reports the event to a network administrator, who assesses
the threat and initiates a response [2]. Unfortunately, IDS
sensors generate huge amounts of alerts that makes it diffi-
cult to analyze them and identify relevant alerts [3]. To ad-
dress this problem, alert correlation techniques [3][4][5] have

been proposed to extract high-level descriptions of huge
amounts of alerts.

The idea of using high level descriptions and graphical
models in security assessment is not exclusive of alert corre-
lation research, but it is also employed in the theory of attack
trees and attack graphs. Attack trees and attack graphs have
been extensively used to a variety of purposes such as attack
and defense assessment, as well as for metrics quantification
(e.g., cost, time, impact, probabilities, etc.). However, these
representations usually require some expert knowledge of the
network (e.g., topology, hosts) to generate the model.

In this paper, an approach is proposed to the IDS alert
analysis problem from a process-oriented perspective. Alerts
are considered as events of a process and they are analyzed
with process mining techniques to generate a process model.
The process model is a high-level visual representation of
attack strategies observed in IDS alerts.

The proposed approach has the following benefits. At
first, specific data acquisition is not necessary since compa-
nies and organizations usually employ IDS sensors to protect
their networks. Secondly, process models provide an intelli-
gible and intuitive way to interpret complex information such
as IDS alerts. Thirdly, it is possible to model different per-
spectives from the alerts, e.g., the attackers’ perspective,
giving the network administrator a comprehensive view of
the network. Moreover, it supports different levels of granu-
larity in analysis as it is possible to filter the most frequent
behavior observed in the alerts. Finally, the proposed ap-
proach shows the strategies that attackers are employing to
compromise the network, helping network administrators to
determine preventive measures.

The rest of the paper is organized as follows. Section II
reviews related work. Section III defines the preliminary
concepts used in this paper. Section IV shows the proposed
approach and its operation. Section V presents the results
obtained in the evaluation of the proposed approach. Finally,
the Section VI contains concluding remarks and future work
possibilities.

119Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

II. RELATED WORK
In this section, an overview of previous work on attack

modeling and IDS alert analysis is presented. Previous work
that used real IDS alerts data to discover attack strategies
with process mining techniques was not found in literature.
Therefore, approaches that use visual representation for
attack modeling and data mining for IDS alerts analysis will
be presented.

One of the great advantages of using higher level graph-
ical models is that they are intuitive and facilitate threat
assessment and attack scenario understanding. Attack trees
and attack graphs are the most common methods used to
modeling attack threats. As introduced by Schneier [6], at-
tack trees are a visual representation that aims at modeling an
attack in a tree structure. The attacker’s goal is specified as
the root of the tree. Branches in the tree represent attack
subgoals, which can be represented as disjunctive or con-
junctive nodes. Disjunctive nodes depict different alternative
paths that an attacker can follow to achieve his goal. Con-
junctive nodes represent different steps an attacker needs to
take in order to achieve a goal [7].

Unlike the approach proposed in this work, attack trees
are often modeled manually, a labor-intensive and error-
prone process. In [8][9][10], this problem is addressed by
methods to automate attack trees generation. Moore et al.
[11] use attack trees to represent security attacks and docu-
ment information, aiding security analysts to identify attack
patterns. Tidwell et al. [12] enhance attack trees to represent
multi-stage attacks behavior with an attack specification
language.

Attack trees have some limitations regarding attacks
modeling. This type of representation is static and can not
take temporal aspects, such as dynamic time variations and
order or priority of actions [7]. Therefore, this representation
is not suitable for the proposed approach that takes these
aspects into account.

Attack graphs are another way to represent and analyze
security attacks. The term was first introduced by Phillips
and Swiler [13]. In an attack graph, the nodes represent the
network state and the edges represent an action of the attack-
er that changes the state. Weights can be assigned to the
edges to enrich the model and algorithms can be applied to
graph analysis, e.g., shortest path, to find which paths are
more likely to succeed, time to success and other metrics [7].
Swiler et al. [14] developed a tool to generate attack graphs.
Researches in [15][16] addressed the scalability problem of
the graph size. Attack graphs are generated based on infor-
mation about the attack, the system and the attacker profile
[7]. This requires some background knowledge that is not
always known. The approach proposed in this work gener-
ates the model based only on IDS alerts and hence does not
require such knowledge.

Researchers have also studied how to extract attack in-
formation from huge volumes of IDS alerts. In [3], Ning and
Xu published one of the first researches in this field. They
proposed a model that builds graphs from IDS alerts to rep-
resent attack strategies. The authors also presented a method
to measure the similarity between different attack strategy

graphs. In more recent work, Lagzian et al. [4] and Xuewei
et al. [5] used data mining techniques. Lagzian et al. present-
ed a framework that, at first, aggregates the alerts in graphs.
Then, it applies the Bit-AssocRule algorithm to mine the
most frequent patterns in the graphs. Xuewei et al., on the
other hand, proposed to identify causal relationships between
the alerts with Markov models.

III. BACKGROUND INFORMATION

A. Intrusion Detection Systems
An IDS is a software or a hardware device that monitors

computers or network traffic for malicious activities or intru-
sive behavior. Once a malicious activity is detected, IDS can
either raise an alert or log the event [17]. IDS can be classi-
fied into two categories, namely network-based and host-
based. Moreover, it can use one of these three techniques:
signature-based detection, anomaly-based detection or hy-
brid [18].

Signature-based detection is the process of comparing
patterns or signatures that corresponds to a known threat
against observed network events to identify malicious activi-
ty. This technique uses a database of already known attack
signatures for detecting intrusions. Signature-based IDS is
very effective to detect known attacks, already defined in its
database. On the other hand, it can not detect attacks that do
not have a previous signature, e.g., zero-day attacks or modi-
fied attacks. This limitation is circumvented by adding new
signatures and keeping the database up to date.

An anomaly-based IDS works by distinguishing an ab-
normal behavior from what is considered to be normal.
Therefore, this technique builds a model of normal traffic
and raises an alert for any traffic that deviates from this
model. A great advantage of this method is the detection of
new attacks without any prior knowledge. The weakness of
anomaly detection is the difficulty to define a model for what
is normal, what is malicious and the boundaries between
them.

A hybrid method combines the qualities of both signa-
ture-based and anomaly-based detection and integrates them
in a single system.

B. Process Mining
Process mining depicts a set of methods and approaches

that combine data mining techniques and business process
modeling and analysis [19]. Process mining uses information
recorded in a log to extract knowledge and represent it as
process models. Therefore, it is important that logs have
relevant and proper information as they are the starting point
for process mining techniques.

For process mining, each record in the log is considered
an event, the reason the logs are known as event logs. Fur-
thermore, to extract information from the event logs, some
characteristics must be considered [20]:

• Each event in the log corresponds to an activity, i.e.,
an action that was performed in the process [20]. As
an example, suppose a user registration system that
records all its actions in a log. Each recorded action,

120Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

e.g., Create User, Update User, Delete User, etc.,
can represent an activity in the process.

• Each event in the process has to refer to a process in-
stance or case. A case defines the process scope, i.e.,
where the process starts and where it ends. In the ex-
ample of a user registration system, a set of events
associated to the registration of a particular user can
compose a case.

• Events can have attributes such as activity, time and
resource. The attribute activity shows the event ac-
tion, as mentioned before. The attribute time records
the event timestamp. Finally, the attribute resource
presents the responsible for performing the event.

• Events within a case are ordered as they occur, e.g.,
according to their timestamp. The occurring se-
quence of events is crucial because process mining
algorithms determine causal dependencies between
events to build the model.

There are three main areas in process mining, namely
process discovery, conformance checking and model en-
hancement. Process discovery is related to how to transform
an event log into a model. A process discovery technique
receives as input an event log and returns as output a process
model, so the model is representative for the behavior ob-
served in the event log [19]. This is the main focus of the
approach proposed in this work. Conformance checking uses
metrics such as fitness and precision to evaluate the process
model in the context of a log. Model enhancement uses new
information to improve the process model.

In the next subsections, some process discovery tech-
niques are briefly discussed. It is out of scope to discuss in
details how these algorithms work, but benefits and draw-
backs of each one will be pointed out. Further details can be
found in [19]-[26].

C. The α-Algorithm
Proposed by van der Aalst et al. [23] in 2003, the α-

Algorithm is one of the first algorithms designed for process
mining and its ideas contributed to the development of more
powerful discovery algorithms currently in use. The algo-
rithm produces as output a WorkFlow net (WF-net), which is
a subclass of Petri nets. In a WF-net, all nodes are on a path
from the source place (unique place where the process starts)
to the sink place (unique place where the process ends). The
α-Algorithm examines the event log for four ordering rela-
tion between activities: directly follows relation, dependency
relation, non-parallel relation and parallel relation. Refer to
[22][23] for a complete description of the algorithm.

Under some specific conditions, the α-Algorithm works
well. However, it has problems to deal with some situations
(control-flow constructs) found in real life event logs. For
instance, short loops, i.e., loops of length one or two, make
the algorithm to derive an incorrect WF-net. Short loops
occur when the same activity or two activities are executed
multiple times in sequence. Considering IDS alerts, this may
happen when the attacker attempts to perform the same vio-
lation several times until succeed.

The α-Algorithm has other limitations as it may not de-
rive a correct WF-net when dealing with noise, i.e., event log

with rare events that do not represent the process behavior,
and incompleteness, i.e., the event log does not have enough
events to discover a model. Therefore, this technique is not
suitable in most real life processes.

D. The α-Algorithm extensions
To overcome the α-Algorithm limitations, many exten-

sions have been proposed. Each of them extends the α-
Algorithm to add support to some constraint. The α+-
Algorithm deals with the short loop problem. The Tsinghua-
α-Algorithm focuses on event logs containing activities asso-
ciated to transactional life-cycle. The α++-Algorithm seeks to
support non-free-choice control-flow construct. The α#-
Algorithm and the α*-Algorithm concentrates on discovering
some Petri nets that are not in the class of WF-nets and hence
can not be discovered by the basic algorithm. Refer to a
survey in [26] for more details.

E. Heuristic Mining
As mentioned in Section III-C, one of the limitations of

the α-Algorithm is it can not deal with noise. However, noise
is common in real life event logs due to information incor-
rectly logged and occurrence of exceptional events [23]. The
Heuristic Mining algorithm handles this problem by taking
the frequencies of events into account. Therefore, the algo-
rithm can express the main behavior observed in the log
without including the low frequency behavior from the noise
into the model. Short loops are also overcome by the use of
dependency/frequency table (D/F-table) and the dependency
score [25]. The D/F-table contains metrics about the fre-
quency of ordering relations occurrence, e.g., number of
times one activity is directly followed by another activity.
Based on these metrics, the dependency score, a numeric
value between -1 and 1, is computed. The dependency score
represents how strong the dependency relation between ac-
tivities is. For instance, if the dependency score between
activity a and itself is close to 1, then a is often the cause of
a, suggesting a loop. These metrics along with dependency
score and a threshold can be used to refine the output model.

IV. PROPOSED APPROACH
In this section, the proposed method to automate the dis-

covery of attack strategies using a process mining discovery
algorithm will be introduced. The proposed approach con-
sists of four steps. In the first step, alerts with common fea-
tures are aggregated. In the second step, the aggregated alerts
are converted in a suitable format for process discovery
algorithms. In the third step, the process discovery algorithm
is executed to build the attack model. Finally, in the last step,
the resulting attack model is analyzed. Figure 1 shows the
four steps that compose the proposed approach.

Raw alerts AnalysisEvent log Attack Model

Aggregation
(A) (B) (C) (D)

Figure 1. The four steps of the proposed approach.

In the following subsections, the details of each step are
described. Then, in the next section, the method is evaluated

121Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

using a real dataset of IDS alerts, discussing the results and
some considerations.

A. IDS alerts aggregation
In attack strategy discovery, the goal is to discover how

the attackers are attempting to compromise the network.
After attack strategy discovery, network administrators can
know each step attackers often take and the dependencies
between these steps. Therefore, in the first stage of the pro-
posed approach, alerts with common features are aggregated,
aiming to group the alerts that compose each attack strategy.
Then, in the next stage, the process discovery algorithm will
investigate the relationships between these alerts. To aggre-
gate the alerts, the perspective to be represented is taken into
account. The perspective denotes how the alerts will be asso-
ciated in the aggregation process. For instance, to represent
the attackers’ perspective, one can aggregate the alerts origi-
nating from the same source IP address. Similarly, to repre-
sent the targets’ perspective, one can aggregate the alerts
with the same destination IP address. The flexibility to repre-
sent different perspectives in this step can be explored to
provide the network administrator a comprehensive view of
the network.

B. Conversion of aggregated alerts to an event log
As aforementioned, for process mining, the input dataset

should consist of events recorded in a log. Therefore, since
the intention is to use process mining in IDS alerts analysis,
the second step of the proposed approach is to convert the
aggregated alerts into an event log. IDS collect information
that may vary according to the type of device. This infor-
mation may include source IP address, destination IP ad-
dress, source port, destination port, Autonomous System
Number (ASN) information, signature severity, attack type
group for each signature, etc.

To analyze IDS alerts under a process mining perspec-
tive, each individual alert is considered an event. Each event
attribute (i.e., the attributes of the alerts) will be analyzed to
build the attack model. Because the objective is to discover
attack strategies, the alert attributes that provide information
about the attacks must be chosen. Then, this information
will be used to build an event log with the characteristics
required by process mining such as the concepts of case,
activity and time (see Section III-B).

At first, event activity (i.e., the action performed in the
process) has to be defined. The event activity is an im-
portant information as it will be denoted by the nodes in the
attack model. The nodes in the model represent the steps
performed in the attack-flow and help the identification and
visualization of sequences and dependencies of attacks in
the model. Usually, IDS record information about what
triggered the alert, e.g., some signature identification or
description of the violation. In the context of IDS alerts, the
signature can be considered the action of the attacker as it
depicts his intentions to compromise the network. There-
fore, the signature is defined as the event activity.

Moreover, in an event log, events should be grouped in a
case (i.e., each event in the process belongs to a case). The
case defines the scope of the process. During the process
discovery, several cases are compared among each other to
determine the causal dependencies between activities. In the
proposed approach, a case is defined as a group of alerts that
were aggregated in the first step (see Section IV-A) and
occurred within a time span t. As an example, suppose that
the alerts are aggregated according to the source IP address
and the time span t is set as 1 day. Then, all alerts with
source IP address x.x.x.x triggered in day m will belong to
case i. All alerts with source IP address x.x.x.x triggered in
day n will belong to case j. Finally, all alerts with source IP
address y.y.y.y triggered in day m will belong to case k. In
this manner, each attacker composes a case and his attack
steps (i.e., its alerts occurred within t) are the events of the
case. Finally, in an event log, events in a case must be or-
dered as they occur. In the IDS alerts context, the timestamp
information is used to order the alerts.

The event log format adopted in the proposed approach
is the eXtensible Event Stream (XES). XES is an eXtensible
Markup Language (XML)-based standard used to store
event logs supported by most process mining tools including
the ProM Framework [27] used in this research.

C. Attack model discovery
To build the model, the process discovery algorithm that

will take the event log as input and generate the attack model
as output must be defined. As mentioned before, process
discovery algorithms have limitations regarding the control-
flow constructs they can discover. Different algorithms may
generate different attack models. Furthermore, some algo-
rithms may generate attack models that are not able to repre-
sent the behavior observed in the event log and consequently
may lead to wrong conclusions about the attacks.

In IDS alerts, loops may take place in the model, since
events that compose a case may have repeated activities in
sequence (e.g., situations in which the attacker executed the
same violation until succeed or attempted to compromise
multiples hosts such as in a botnet). The discovery algorithm
should be able to detect these repeated activities and repre-
sent them not as individual activities in sequence but as a
loop in the model. On the other hand, duplicate tasks (e.g.,
situations in which two different violations have the same
signature) will unlikely be a problem because IDS alerts are
atomic entities (e.g., a buffer overflow exploit will not have
the same signature of a nimda attack in the log). Therefore,
the proposed approach uses the Heuristic Mining algorithm
as it can deal with these characteristics.

D. Model evaluation
After the model has been generated, an expert analysis is

required. Through the model, different aspects can be ob-
served. In the next section, a case study and some analysis
will be presented and discussed.

122Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

V. RESULTS
To evaluate the proposed approach, raw IDS alerts gener-

ated by a signature-based device deployed at the University
of Maryland, whose network has about 40000 computers,
were used. These alerts were triggered between April and
December 2012 for inbound and outbound network traffic
of the University. The alerts raised in October were chosen
to evaluate the method.

To perform the first step of the proposed approach, alerts
with the same source IP address were aggregated. Then, the
cases were defined, setting the time span t to 1 day. Conse-
quently, alerts with the same source IP address that were
triggered in the same day were associated to the same case.
Moreover, only inbound alerts, i.e., alerts originating from
traffic addressed to the University were considered. To
represent the frequent behavior of the attackers, exceptional
situations were filtered (similar to the filtering performed in
[3]). Therefore, cases containing a single event (isolated
alert) or cases containing multiple events associated to the
same violation (i.e., same signature) were not included in
the model. These cases do not depict attack strategies used
by attackers, as they show an attack-flow with a single step
and do not provide enough information on the behavior of
the attacker, as illustrated by Figure 2.

Similarly, cases containing more than 50 events in which
almost all the events have the same signature were not in-
cluded in the model.

The ProM Framework [27] was used to generate the pro-
cess model with the Heuristic Mining algorithm. Figure 3
shows the results of tests performed on October 7th. In this
day, there were 97 events (i.e., triggered alerts) with 8 dif-
ferent activities (i.e., distinct signatures) organized in 9
cases.

Analysis of Figure 3 indicates that:
• Within that day, the attacks started in one of four

violations: (i) Malicious PHP Program Access, (ii)
Malicious SMB Probe/Attack, (iii) Possible nmap
Scan (XMAS (FIN PSH URG)) and (iv) Impossible
Flags (SFRPAU). Each of them lead to a different at-
tack-flow.

• Among the 9 cases, there is one case that starts with
Malicious PHP Program Access, two cases that start
with Malicious SMB Probe/Attack, three cases that
start with Possible nmap Scan (XMAS (FIN PSH
URG)) and three cases that start with Impossible
Flags (SFRPAU). Similarly, one case ends with PHP
Code Injection, one case ends with Windows
PlugnPlay Request Anomaly, four cases end with
Possible nmap Scan (XMAS (FIN PSH URG)) and
three cases end with Impossible Flags (SFRPAU).

• In (i), an attack can be clearly observed. First, the at-
tacker executes a Malicious PHP Program Access.
Afterwards, the attacker executes a PHP Code Injec-
tion and then the two activities come into loop. This
shows that some attacker is injecting code (e.g., eval

injection) into a PHP server located at the University
network and then some user/visitor is accessing the
server and executing the code. This attack-flow
shows a possible unknown vulnerability that the
network administrator has to fix.

• In (ii), in one of the attack-flows, the attacker per-
forms a Malicious SMB Probe/Attack followed by
Windows PlugnPlay Request Anomaly. Although not
directly related, both attacks have something in
common: they are associated to Microsoft Operating
System (OS) and exploit vulnerabilities that allow
remote code injection and elevation of privileges.
These vulnerabilities, if successfully exploited, can
allow the attacker to take control of the compromised
system as reported by Microsoft Security Bulletin
[28][29].

• In (iii), a possible attack attempting is presented. The
attacker performs a port scan (TCP Xmas scan),
probing the server or host for open ports. Port scan is
a well known technique used in pre-attack phases to
gather information about the target and be able to
exploit them. After the port scan, the attack-flow
splits into three paths. One path leads to (ii). The
other path leads to (iv). In the third path, the attacker
performs NULL OS Fingerprinting Probe, an attempt
to collect information about the target OS and thus
know what vulnerabilities he can/can not exploit
(e.g., if the vulnerability was already patched in this
OS version). After that, the path leads to (iv). This
attack-flow indicates that the attacker is conducting a
reconnaissance of the target before executing the at-
tack.

• In (iv), the attack-flow is similar to (iii). The Impos-
sible Flags (SFRPAU) are TCP packets with all flags
(SYN, FIN, RST, Push, ACK, UrgPtr) set. These
packets might be unintentional produced by poorly
implemented applications but are more likely (con-
sidering the attacks in the paths it splits) from a Full
Xmas scan.

It is possible to obtain other information by analyzing the
model. For example, the Impossible Flags (SFRPAU) signa-
ture was the most executed attack (30 times). Next, there is
the Possible nmap Scan (XMAS (FIN PSH URG)) attack (21
times). The reason for this behavior is the loop between the
attacks, showing that many port scans were executed in this
day. In addition, the model provides an intuitive and easy
way to investigate the alerts, showing the attack strategies
that would hardly be discovered investigating almost 100
alerts manually.

As mentioned before, the attack model presented in Fig-
ure 3 represents the attackers’ perspective, i.e., how multiple
source IP addresses (i.e., the attackers) are attempting to
compromise several targets in the University network.
However, this representation may not be the ideal for all
situations and other perspectives can be explored for a deep

123Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

Start
1

End
1

Apple QuickTime RIFF
Parsing Integer Overflow
Vulnerability (ZDI-11-229)

1

Sun Solaris Login Bypass
(General)

1

Metasploit Shellcode
1

Microsoft Server Service
Buffer Overflow

1

Possible nmap Scan (No
Flags)

1

Possible nmap Scan
(XMAS (FIN PSH URG))

1

Figure 2. Example of the behavior of isolated alerts on October 7th.

Malicious SMB Probe/
Attack

7

Hello Buffer Overflow
1

Possible nmap Scan
(XMAS (FIN PSH URG))

21
NULL OS Fingerprinting

Probe
1

Impossible Flags (SFRPAU)
30

Windows PlugnPlay
Request Anomaly

2

Start
9

PHP Code Injection
16

Malicious PHP Program
Access

19

End
9

(iii)

(i)

(ii)

(iv)

1

2

3

3

4

4

15

1

1

1

1

1

4

3

1

1

13
6

5 10

1

1 1

1211

Figure 3. Attack model that represents the behavior of the attackers on October 7th.

investigation into the attacks. For instance, to represent
the behavior of distributed attacks (many-to-one attacks),
the targets’ perspective can be explored (i.e., cases with
events associated to the same destination IP address).

VI. CONCLUSION AND FUTURE WORK
This paper has addressed the problem of analyzing

huge amounts of IDS alerts. A four step method that uses
process mining techniques to mine the alerts and generate
a process model, a high-level graphical representation of
the attackers’ behavior observed in the alerts, was pro-
posed. The method was evaluated on a real IDS alert
dataset from University Maryland. The results showed
that the resulting model has an intuitive and user-friendly
representation that can be used by network administrators
as an alternative to the manual investigation of alerts.

As future work, the objective is to extend the attack
perspectives and analyze the alerts from another view-
point (e.g., the target perspective). Besides, it was ob-
served that some models become complex as the number
of distinct signatures increases. Therefore, clustering
techniques may be employed to reduce the complexity of
those models and conformance checking metrics, such as
simplicity, may be employed to evaluate the model.

ACKNOWLEDGMENT
The authors would like to thank Gerry Sneeringer and

the Division of Information Technology at the University
of Maryland for allowing and supporting the described
research.

REFERENCES
[1] "National vulnerability database," [Online]. Available:

https://web.nvd.nist.gov/view/vuln/statistics. [Retrieved: April,
2015].

[2] S. O. Al-Mamory and H. Zhang, "Intrusion detection alarms
reduction using root cause analysis and clustering," Computer
Communications, 2009, vol. 32, no. 2, pp. 419-430.

[3] P. Ning and D. Xu, "Learning attack strategies from intrusion
alerts," in Proceedings of the 10th ACM Conference on Computer
and Communications Security. ACM, 2003, pp. 200-209.

[4] S. Lagzian, F. Amiri, A. Enayati and H. Gharaee, "Frequent item
set mining-based alert correlation for extracting multi-stage attack
scenarios," in Telecommunications (IST), 2012 Sixth International
Symposium on. IEEE, 2012, pp. 1010-1014.

[5] F. Xuewei, W. Dongxia, H. Minhuan and S. Xiaoxia, "An ap-
proach of discovering causal knowledge for alert correlating based
on data mining," in Dependable, Autonomic and Secure Compu-
ting (DASC), 2014 IEEE 12th International Conference on. IEEE,
2014, pp. 57-62.

[6] B. Schneier, "Attack trees: Modeling security threats," Dr. Dobb’s
Journal, December 1999. [Online]. Available:

124Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

https://www.schneier.com/paper-attacktrees-ddj-ft.html. [Re-
trieved: April, 2015].

[7] B. Kordy, L. Piètre-Cambacédès and P. Schweitzer, "DAG-based
attack and defense modeling: Don’t miss the forest for the attack
trees," Computer Science Review, 2014, vol. 13–14, pp. 1-38.

[8] R. Vigo, F. Nielson and H. R. Nielson, "Automated generation of
attack trees," in Computer Security Foundations Symposium
(CSF), 2014 IEEE 27th. IEEE, 2014, pp. 337-350.

[9] S. Paul, "Towards automating the construction & maintenance of
attack trees: a feasibility study," in Proceedings First International
Workshop on Graphical Models for Security, GraMSec 2014,
2014, pp. 31-46.

[10] H. Birkholz, S. Edelkamp, F. Junge and K. Sohr, "Efficient auto-
mated generation of attack trees from vulnerability databases," in
Working Notes for the 2010 AAAI Workshop on Intelligent Secu-
rity (SecArt), 2010, pp. 47-55.

[11] A. P. Moore, R. J. Ellison and R. C. Linger, "Attack modeling for
information security and survivability," Technical Note CMU/SEI-
2001-TN-001, Carnegie Mellon University, 2001.

[12] T. Tidwell, R. Larson, K. Fitch and J. Hale, "Modeling internet
attacks," in Proceedings of the 2001 IEEE Workshop on Infor-
mation Assurance and security, 2001, pp. 54-59.

[13] C. Phillips and L. P. Swiler, "A graph-based system for network-
vulnerability analysis," in Proceedings of the 1998 Workshop on
New Security Paradigms, 1998, pp. 71-79.

[14] L. P. Swiler, C. Phillips, D. Ellis and S. Chakerian, "Computer-
attack graph generation tool," in DARPA Information Survivabil-
ity Conference & Exposition II, 2001. DISCEX '01. Proceedings.
IEEE, 2001, pp. 307-321.

[15] S. Jajodia, S. Noel and B. O’Berry, "Topological analysis of
network attack vulnerability," in Managing Cyber Threats, 2005,
vol. 5, pp. 247-266.

[16] X. Ou, W. F. Boyer and M. A. McQueen, "A scalable approach to
attack graph generation," in Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, CCS '06, 2006,
pp. 336-345.

[17] A. Patel, Q. Qassim and C. Wills, "A survey of intrusion detection
and prevention systems," Information Management & Computer
Security, 2010, vol. 18, pp. 277-290.

[18] J. Vacca, Computer and Information Security Handbook, Second
Edition, Morgan Kaufmann, 2013.

[19] W. M. van der Aalst, Process Mining: Discovery, Conformance
and Enhancement of Business Processes, Springer Science &
Business Media, 2011.

[20] W. van der Aalst and C. Giinther, "Finding structure in unstruc-
tured processes: The case for process mining," in Application of
Concurrency to System Design, 2007. ACSD 2007. Seventh Inter-
national Conference on, 2007, pp. 3-12.

[21] R. P. J. C. Bose and W. M. van der Aalst, "Context Aware Trace
Clustering: Towards Improving Process Mining Results," SDM,
2009, pp. 401-412.

[22] A. de Medeiros, W. van der Aalst and A. Weijters, "Workflow
mining: Current status and future directions," in On The Move to
Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,
2003, pp. 389-406.

[23] W. van der Aalst, T. Weijters and L. Maruster, "Workflow mining:
discovering process models from event logs," Knowledge and Data
Engineering, IEEE Transactions on, 2004, vol. 16, no. 9, pp. 1128-
1142.

[24] A. Weijters and J. Ribeiro, "Flexible heuristics miner (FHM)," in
Computational Intelligence and Data Mining (CIDM), 2011 IEEE
Symposium on, 2011, pp. 310-317.

[25] A. Weijters and W. van der Aalst, "Rediscovering workflow
models from event-based data using little thumb," Integrated Com-
puter-Aided Engineering, 2003, pp. 151-162.

[26] B. van Dongen, A. Alves de Medeiros and L. Wen, "Process
mining: Overview and outlook of petri net discovery algorithms,"
in Transactions on Petri Nets and Other Models of Concurrency II,
2009, pp. 225-242.

[27] B. van Dongen, A. de Medeiros, H. Verbeek and A. Weijters, "The
prom framework: A new era in process mining tool support," in
Applications and Theory of Petri Nets 2005, 2005, pp. 444-454.

[28] Microsoft, "Microsoft Security Bulletin MS05-039: Vulnerability
in plug and play could allow remote code execution and elevation
of privilege (899588)," August 2005, [Online]. Available:
https://technet.microsoft.com/library/security/ms05-039. [Re-
trieved: April, 2015].

[29] Microsoft, "Microsoft Security Bulletin MS11-019: Vulnerabilities
in SMB client could allow remote code execution (2511455),"
April 2011, [Online]. Available:
https://technet.microsoft.com/library/security/ms11-019. [Re-
trieved: April, 2015].

125Copyright (c) IARIA, 2015. ISBN: 978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications

	I. Introduction
	II. Related work
	III. Background Information
	A. Intrusion Detection Systems
	B. Process Mining
	C. The α-Algorithm
	D. The α-Algorithm extensions
	E. Heuristic Mining

	IV. Proposed Approach
	A. IDS alerts aggregation
	B. Conversion of aggregated alerts to an event log
	C. Attack model discovery
	D. Model evaluation

	V. Results
	VI. Conclusion and Future Work
	Acknowledgment
	References

