AICT2014 : The Tenth Advanced International Conference on Telecommunications

Automatic Floor Map Construction for Indoor Localization

Xin Luo, Albert Kai-sun Wong, Mu Zhou, Xuning Zhang, and Chin-Tau Lea
Electronic and Computer Engineering Department
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
Emails: xluo@connect.ust.hk, eealbert@ust.hk, zhoumu@cqupt.edu.cn, eexuning@ust.hk, and eelea@ece.ust.hk.

Abstract—Existing indoor localization systems based on Wi-Fi
Received Signal Strength (RSS) fingerprinting often assume the
knowledge of a map of the coverage area and involve a tedious
manual survey process at a set of sample locations along this
map. In this paper, we describe an automatic graphical floor map
and radio fingerprints generation system, called the Intelligent
Mobility Mapping System (IMMS), which applies the concepts
of crowd-sourcing and Simultaneous Localization and Mapping
(SLAM) to construct a floor map in support of indoor people
localization and tracking. IMMS makes use of high similar
patterns in crowd-sourced traces of RSS measurements to identify
location segments in the coverage area and to construct a
graphical floor map. With IMMS, the elaborate off-line manual
data collection process is eliminated.

Keywords—Wi-Fi SLAM; Indoor Localizations; Graph Theory;
Mobility Mapping.

I. INTRODUCTION

Indoor localization based on radio signals has been a
focus of research for over 10 years. Kong et al. [1] study
the use of CDMA2000 pilot signals to record the fingerprints
for radio map construction. The fingerprinting approach for
indoor localization typically requires a time consuming off-
line survey process for building a radio map. Various proposals
have been made to reduce the complexity of this process.
Ouyang et al. [2], proposed to use unlabeled Wi-Fi Received
Signal Strength (RSS) data to enhance the radio map created
by labeled survey data. Zhang et al. [3], used a pedestrian
mobility model based on knowledge of the physical indoor
map to enhance localization.

Recently, the new concept of Simultaneous Localization
and Mapping (SLAM) has been developed with the objec-
tive of minimizing the off-line survey effort [4]. A SLAM
system gathers location and mapping information at the same
time, and requires only a very short time for off-line survey.
Typically, SLAM records a user’s “footprint’ using Microelec-
tromechanical System (MEMS) devices such as accelerometer,
gyroscopes and magnetometers on a mobile device, and labels
the RSS measurements with this footprint information to
construct the mobility maps. Then, the system can locate
users on this constructed indoor map in the on-line stage. For
example, the system proposed by Shin et al. [5] constructs a
floor plan of a building by integrating the number of walking
steps (from pedometer), the walking orientation (from magne-
tometer), and the RSS values recorded with user movements.
Zhou et al. [6] use only Wi-Fi RSS measurements from one
or multiple individuals walking around the coverage. Similar
RSS measurements are clustered and aligned to construct a
map for the coverage area.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

A. Main contributions

In this paper, we present a system called the Intelligent
Mobility Mapping System (IMMS), which is a crowd-sourced
system that sporadically collects traces of RSS measurements
from users moving around the indoor coverage area as they
carry on their daily routines. IMMS automatically creates
graphical floor maps to support Wi-Fi RSS-based indoor local-
ization and tracking. There are three modules in IMMS. The
first module is designed to facilitate the subsequent processes
by various data pre-processing methods. The second module
is designed to find the highly similar pieces of measurements
in traces. IMMS estimates similarities of measurements in
different traces by correlations. Then, the resemblant measure-
ments in different RSS traces are clustered as High Cross-
Trace Correlation Patterns (HCP), and the intersections of
these HCPs are used to segment traces into Atomic Location
Segments (ALSs). The third module is designed to construct
the draft graphical floor map and radio map. The floor map
is a simple planar embedding of a drawing that represents the
interconnections of ALSs.

Section II overviews the system framework. Section III de-
scribes the location segment recognition algorithm and Section
IV explains the graph drawing procedures.

B. Notations

Notations to be used in this paper are first summarized in
Table I.

TABLE I. IMPORTANT NOTATIONS

Symbol Meaning

R! 1*7 trace

v it measurement in I*" trace

S Raw data matrix

N Number of Traces in S

T Number of measurements in S

M Number of hearable APs in the target area
C Cross-Trace Correlation (CTC) matrix
ctfel | Submatrix of CTC matrix corresponds to RY and R®
Cl{g‘g} A element in C1F:8}

Q Quantized matrix of C

x; Row breaking points

Yi Column breaking points

G Geometric map

U Set of unique vertices/ALS of graph G

E Set of unique edges of graph G

d(*) Direction of an edge

I Indication matrix of endpoints

II. SYSTEM OVERVIEW

During the data collection phase, traces of RSS measure-
ments are recorded from mobile phones when users move
around the coverage area as they conduct their daily activities

155

AICT2014 : The Tenth Advanced International Conference on Telecommunications

indoors. For a user, the RSS measurements are collected at a
regular time interval (1 read/sec by default) when movement is
detected. Data collection stops when the user ceases moving.
Each measurement is a sample vector that contains the mea-
sured RSSs from a set of hearable Wi-Fi APs. The recorded
traces are uploaded to IMMS in cloud.

Traces Segmentation and Locations
Recognition
ross-Trace Correlation Calculation
Noisy Data Flattening
High CTC Pattern Recognition
Traces Segmentation and Identification
Unique Vertices and Edges Identification

\ 4

Floor Map Construction/Visualization

Data Pre-processing ‘

Missing Values Imputation
Dimension Reduction

=

IMM
S Depth First Block Search

Path-Finding
Planar Embedding

Figure 1. The System Framework

IMMS compares the unlabeled measurements in each pair
of traces to see if there are highly similar ones. It is expected
that measurements in two traces would exhibit similar distribu-
tions if they were collected at nearby places. A string of similar
measurements between two traces form what we call a High
Correlation Pattern (HCP). Intersecting the HCPs form by a
given trace with all other traces allows us to segment HCPs into
what we call ALS, which we expect would represent corridor
sections between intersections in the physical environment. By
observing how the ALSs are connected in the traces, we can
then construct a 2D graphical floor map. The architecture of
IMMS is shown in Fig.1. It contains three modules: data pre-
processing, traces segmentation and locations recognition, and
floor map.

The data pre-processing module includes missing value
imputation and dimension reduction. Because of the limited
coverage of each AP and the random variation of the RSS
signals, most of the recorded RSS values are zero. In order
to insure the accuracy of the similarity evaluation, we need
to find a way to impute these zero, or missing values. Based
on recommendation provided by Ouyang et al. [7], we impute
missing values with a number that is smaller than the minimum
collected RSS measurements. Moreover, because the total
number of APs in the coverage area can be very large [6], it
is desirable to reduce the data dimensionality to reduce com-
putation complexity. We apply Principal Component Analysis
(PCA) [8] to reduce the measurement dimensionality.

The details of the second module ,traces segmentation and
locations recognition module, and the third module, floor map
construction module, will be given in Section III and Section
IV, respectively.

III. TRACES SEGMENTATION AND LOCATIONS
RECOGNITION

Our approach is based on the premise that the physical
space can be modeled as an interconnection of corridor seg-
ments that we call ALSs. Users tend to traverse an ALS in its
entirety, and in one of two directions. Each recorded trace of

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

Trace 1:
Trace2: — - - - -
Trace 3: —— ——
Trace 4:
Trace5: —. . —.—.

—p

N > S DY I
| T s
|
21m | @
. e ————— »
y—/ Al AT Tt
e > 93m <« .

Figure 2. Example of Traces, HCPs and ALSs

Wi-Fi measurements reflects the movement of a user through
a number of ALSs.

The objective of traces segmentation is to identify all ALSs
in the physical environment using traces from crowdsourcing.
The traces segmentation process starts with the recognition of
any high similarity pattern, which we call High Cross Trace
Correlation (CTC) Pattern, that may exist in any given pair
of traces. A High CTC Pattern (HCP) reflects a sequence of
overlapping ALSs between two traces. From the starting points
and ending points of all HCPs found in many trace pairs, we
can identify all the Breaking Points (BPs) which separate the
ALSs in all the traces. In other words, we identify all the
individual ALSs by intersecting all the HCPs. An example is
shown in Fig. 2. Computation of similarity is based on the
dimension-reduced measurements after data pre-processing.

A. Cross-Trace Correlation (CTC)

We measure the Cross-Trace Correlation (CTC) by the
Pearson product-moment [9] correlation coefficient between
measurements in two different traces. Assume N traces are
collected. Let Rf = (I/{,...,I/Zf) be the f* (f = 1,...,N)
trace, where Vif is the i*"(i = 1, ...,n') measurement in trace
Rf, and nf is the number of measurements in the trace. Each
measurement is a row vector Vif = [Vf 1...1/{ M}, where 1/5 j

is the signal strength from the j**(j = 1,..., M) AP. The
raw data of all A/ traces can be kept in a T X M matrix

= [RIR2.RV]T, where T = Y4, n/ is the total num-
ber of measurements in the data. After dimension reduction,
each measurement is reduced to k dimension, denoted as
,u% (k—dimension row vector). The dimension reduced data
matrix is S = [R'R2..RVN]T (T x k matrix). We define
CTC matrix, C, as the matrix containing the sub-matrices

cifel where f,g = {1,...,N'}. C{f:8} contains CTC values

of measurements in trace Rf and RS, denoted as C’Z{{ g }.

Definition 1: The CTC value of measurements ulf € Rf
and pf € R® is

1
CH9 = corr(pf, 1) = ——E[(uf — m)(u§ —m)]. (1)
Ji Jjg

The column mean of the dimension reduced sample matrix

N foof
L Xy ity f

: — . g
S is m = [my...my]. Then, m; = T . 0,07 are

156

AICT2014 : The Tenth Advanced International Conference on Telecommunications

Missing value Ifdex Y

hl/row BPS*
~l High CTC

\ / points
Horizontal/col BPs

Index X

Index X

Figure 3. Examples of data structure and HCP

the standard derivation of measurements ,uif and ujg, calculated
f_ f
as o; = \/Zjek(ui,j —m;)?.

B. High CTC Pattern Recognition (HCPR)

The High CTC Pattern Recognition (HCPR) algorithm is
used to identify groups of correlated measurements in each
pair of traces. If two measurements, uf € Rf and 1 € R®
have high CTC value, we assume they are collected at nearby
physical locations in the two traces and we expect that:

° /”Lf{‘i 413 and ,u%j 1) will continue to be a high CTC
point if the two users are traversing an ALS in the
same direction;

° /‘f{‘i 1) and ,u?jil} will continue to be a high CTC
point if the two users are traversing an ALS in
opposite directions.

Thus, the high CTC points should continue in either the
southeasterly direction or southwesterly direction until trace
Rf and trace R® diverge to two distinct ALSs. We call the
point that breaks the continuity of the high CTC points a
breaking point (BPs), shown in Fig. 3.

The HCPR algorithm first quantizes all the CTC points
in the evaluated submatrix to two quantization levels, setting
all CTC values bigger than a given threshold thres as 1 and
all CTC values lower than thres as 0. The resulting matrix
is denoted as QIf8}, Then, HCRP groups a contiguous set
of high CTC points in the quantized matrix into a high CTC
Pattern (HCP).

Missing values and random variations in the raw mea-
surement may lead to unwanted breaks in the high CTC
pattern. Additionally, the walking speeds of different users
are different, and so the height and width of a HCP may
be different. We apply the following criteria to determine the
boundary of an HCP:

1) HCPR amounts to finding the row indexes and column
indexes of each submatrix in Q that encloses a continuous
cluster of 1s.

2) There should be a sufficiently large gap between two
different HCPs.

3) Small HCPs should be discarded as noise.

Our algorithm for finding HCPs works as follow. We start
from the top row of each sub-matrix Q{f:8} and scan from
left to the right for 1s. If none is found, we move to the next

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

Index Y st Index Y

%
High CTC

Sz S1 High CTC Low CTC A
Low CTC point point point
point

(@ (b)

Figure 4. Example of sub-matrices si, o, S3

row below and scan from left to right again. Once a 1, or a
high CTC point, is found, we mark the column and row index
of this point as (z,y), and keep searching in the southeasterly
or southwesterly direction for 1s. After an HCP is identified,
we resume the search for new HCP on the row we left off
from. Points covered in a search will be precluded from future
search. Starting from a 1, if the point to the southeast is also
a 1, then HCPR continues to look for a 1 in the southeast.
If a O appears, then HCPR calculates the sums of the three
sub-matrices indicated in Fig. 4. It compares s; and so, and
sy and s3. If so = sj, it means that there are no new high
CTC points is added when the row number is increased (Fig.
4(a)), then the row gap counter: 7oWgep = TOWgqp + 1. If
s9 > s1, then one or more new high CTC points are added
when the row number is increased. In a similar way, if s3 = s1,
the column gap counter: colgqp = colgap + 1. If 53 > 59,
then one or more new high CTC points is added because of
when the column number is increased (Fig. 4(b)). Once rowgyqy,
or colgq, reaches the defined gap threshold gapipres, HCPR
stores the row/column end point of the current HCP, and stops
the search of 1s in the southeasterly direction. Next, HCPR
starts searching for 1s in the southwesterly direction, using the
same search and stop logic as above. Finally, HCPR labels the
current HCP using the smallest stored row index and smallest
stored column index as well as the largest stored row index
and the largest stored column index. The smallest and largest
row indexes represent the BPs in trace Rf and the smallest
and largest column indexes represent the BPs in trace RS.
For any possible new HCP between trace Rf and R&, HCPR
starts searching on row « five entries to the right of the largest
column index of the current HCP. The details of HCPR are
specified in Algorithm 1.

C. Traces Segmentation and Identification Algorithm

From HCPR, we determine the end points of all HCPs.
These end points are the BPs in physical paths at which user
paths may diverge. Let {x%,...,m}ll,m{,...,:cflfx{\[,...7xﬁ]v
be the set of row indexes in increasing order which are marked
as BPs in the vertical direction of Q, where ;vzf is the i-th
BP marked for trace R/ and n ¢ the number of BPs marked
for trace R/ . Likewise, let {y}, ...y} ,y], .., ARV AR AN
be the set of column indexes in increasing order which are
marked as BPs in the horizontal direction of Q. Although Q is
symmetric, because of the way we identify the BPs in HCPR,
some x{ and yzf can become different (empirically most of

them are the same).

Our algorithm partitions all the traces using the BPs
identified and assigns a unique label (ALS ID) to segments

157

AICT2014 : The Tenth Advanced International Conference on Telecommunications

Algorithm 1:
(HCPR)

Initial: hid := hid + 1 := 1, rowgap 1= 0, colgap = 0.
In a submatrix Q{/-9};
For(z =1z <=nf,z = 4++4)
For(y =1Ly <=nf y=++4)
COMMEVT’ Search high CTC point
1 Qe y)=1:
Store row index z and column index y:
COMMENT: Track the point in the southeasterly Q/9}(z 4 i,y + i)
For(i=1i<=n/ —z,i=+44)
Qi ehz+iy+i)=0
a1 = sum(QU Nz z +i,y:y+1)):
2, =sum(QU oz z+i—1,y:y+1i))
a3 =sum(QU Nz z +i,y:y+i—1))
COMMENT: Compare the sums

High Correlation Patterns Recognition

If 830 == 8y
TOWgap = TOWgap + 1}
If rowgap == gaPthres
Store row index T + i — gaP¢hres:
END
END
If 83 == a1
eolgap = €olgap + 1;
If colgap == Gapthres

Store column index ¥ + @ — gaPihres:
End End End End
COMMENT: Keep iterating until colg,p, and rowg,, reach gapes res
Track high CTC points in the southwesterly direction by the same process
End
Label the current HCP with hid.
End End

Figure 5. High Correlation Patterns Recognition Algorithm

in different traces that recognized as the same ALS. The
algorithm is described by the pseudo-code in Algorithm 2 and
Algorithm 3. In Algorithm 2, each trace R/ is considered
as a sequence of ALSs. Each segment, ef is a cluster of
RSS measurements between two row BPs sc and ﬂc + 1. If
a segment has not yet been labelled, we label it w1th a new
ALS ID, and then consider different traces RY (for g > f) and
check whether if any ALSs eg in RY forms an HCP with elf .
This checking is via the test function TestHCP as described
in Algorithm 2. Basically, the algorithm checks whether the
average number of ”1”s in the submatrix of Q formed by
elf and e? is greater than a given threshold. TestHCP also
determines whether ejg is in the same or opposite direction
as elf , based on whether the column indexes and row indexes
of the ”1”s within the sub-matrix is positively or negatively
correlated.

As result we derive from each trace a sequence of ALSs.
Each e is identified w1th an ALS ID [(e] 7y = r and marked

with dlrectlonahty d(e] 7y = 1. A sample of labeled ALSs is
shown in Fig. 6.

D. Unique Vertices and Edges Identification Algorithm

Next, we proceed to identify and label all the unique
vertices that connect the ALS’s. Let s, represent the starting
vertex and ¢, the terminating vertex of ALS 7 in the reference
direction. Then, we can represent each segment ef in a trace
by a tuple of two vertices as follow:

Assume (e; hy = 7" If d(e; 7y
d(el) = -1, then el (tr,sr).

Then, we can identify vertices that are the same by exam-
ining the sequence of segments in all traces, using an indicator
I to record the result as follows: For trace R, if l(e{)=,
l(efﬂ) =7/, we set:

= 41, then e{ = (sp,t); if

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

Algorithm 2: Traces Segmentation Algorithm
COMMENT: Each trace is now viewed as a sequence of ALSs, where each ALS
is bounded by two BPs found in HCPR: RY — (e','.eé, ...Aez!',_1):
n
b

COMMENT: ¢/ is the i** segment in trace R/
Initialize ALS ID: 7 = 0;
Initialize labels of all segments as null: l(e{) = null for all f,i.
Row BP: {zf; f=1,...,2V,i= 1.,...2n,{}:cm BP:
==zl f=1,..,.oN,i=1,..,2nf};
For(f=1,f <= ,A//+ +) COMVIENF trace R
For(i=1i<=n
If e/ not already labelled
COMMENT: e{ represent the g segment in trace R

COMMENT: Label ¢/ by r;
d(ef) =1
COMMENT: ¢/ becomes the r*" reference edge and has a direction of 1
For(g=f+1,g<=N.g++)
For(j =1,j <=ng,j++)
[Tru, Dir] = HCPrest(e
COMMENT: Call function TeslHCiJ (Algonthm 3
COMMENT: Return trueness of whether {e e"} are highly similar
COMMENT: Define direction of 9.
If Tru == 1 COMMENT: the suﬁ)sel in an HCP
l(ef) =
(.‘O\&MFNT Label measurements in e with e,.
End
d(e?) = Dir;
End End End fnd End

Figure 7. Trace Segmentation Algorithm

Algorithm 3: Function: TestHCP

COMMENT: Tru is the Boolean type variable.
COMMENT: Returns 1 when judgment is true, 0 when judgment is false:
COMMENT: Dir return lhe direction of f

Function TestHCP(c
B =Q(z! :I:+l y S
COMMENT: Sub—matnx of Q formed by e/ and [

If g b > Sumu.ru

’I(_-:‘,u“_—r)X(uj+l vJ)

COMMENT: The density of 1 in B is greater than threshold
Else

Tru=0;
End

Let the set (xy) be the row and column indexes of all the 1s in B
If (Corr(z,y) > 0)

Dir =1
COMMENT: HCP extends south-easterly, direction of 7 is equal to e{
Else
Dir = —1;
COMMENT: Direction of e9 is the opposite with e
End
Return(Tru,Dir)

Figure 8. TestHCP function

It s) =1 if d(e])=+1,d(el,,) = +1;

Ity b)) =1 if d(el) =41,d(el,,) = —1;
ok i @)

L(sp,s) =1 if d(ej) = —1,d(ej) = +1;

I(sp,tm) =1 if d(e]) = —1,d(el,,) = —1.

Assume all traces contain a total of N'* segments. That
means there are 2N® vertices and the indicator matrix I is
a 2N x 2N, As described in Algorithm 4, we examine
the 2N® vertices one by one. If a vertex ¢ has not yet
been labelled, we label it as well as all other vertices with
I(i,j) = 1 with a new vertex ID. The result is a set of
unique vertices U = {Uj, ..., Upr« }. Knowing the set of unique
vertices, we can further verify an unique edge as the edge
connecting two distinct unique vertices. The set of unique
edges is E = {F1, ..., Ene}.

158

AICT2014 : The Tenth Advanced International Conference on Telecommunications

RS RS R® R?

e6,2 e7,1 es,1 eo9,

R7
1
.5 ¥9,1y9,2

Rt R2 R3 R*
e21 e3,1 e41 €42 €43 _e5,1
V2,1 ¥2,2 V3,1Y3,2 V4,1¥4,2V4,3 V4,4 Y4,5 V¥5,1 yi’z

X1,1 @1.1 T ALCS] LS2 !

Xi:3e1.o 1 - ' 1 = '

e1, H H H H

R1 x1,a " ' : ' :

' ' ' ALS3

e1,4) ' ' ' * '

' ! H .

x1.5 L . ! ,

x2,1 A H .

2 e2,1 ' L] '

R ' 1 '

x22 ' [0

x2,a €% ' ' [. '

x2.4 ©2,9§ ' 1 ' ‘\ 1

x2,5 ©2,9) ' ' ' '

P R T T T [1

R3 ' ' ' '

x3,1 ' ' 1 '
x3,2 ey L L . L. I A

Index X

Algorithm 4: Unique Vertices Identification Algorithm

COMMENT: Search the indication matrix to verify the unique vertices
Initialize vertex label as v := 0; vertex label is a 1 x 2N'® zero vector;
For(i=1,i<=2N" i+ +)
If I(vi) is unlabeled
v=v+1;
For(j=j+1,j<=2N"j++)
IfI(i,j)==1
Label vertices [(v;) = I(v;) = v;
END: END
Elseif [(v;) is unlabeled
For(G=j+1.j<=2N"j++4)
IfI(i,j)==1
Label vertices [(v;) = I(v;);
End End End End
Return N = v;

Figure 9. Unique Vertices Identification Algorithm

IV. FLOOR MAP CONSTRUCTION/VISUALIZATION

With the set of vertices U and the set of unique edges E,
we create graph G = (E, U). The graph is described by an
adjacency matrix A. The draft floor map is an embedding of
G which is drawn according to the adjacency matrix.

The floor map construction algorithm aims to embed the
graph G on a plane in a way that is visually more intuitive to
a human observer. Three steps are involved: Depth First Block
Search (DFBS), path finding, and straight-line embedding.

A. Depth First Block Search

This step is based on Tarjan’s DFS block search algorithm
[10]. The purpose is to label each vertex with a DFS number
DFSN(v), create a spanning tree, and identify blocks and
fronds in the graph in order to enable path finding. DFS starts
from the vertex with the highest node degree, and iteratively
searches for unexplored descendants. Each new vertex is num-
bered by a DFS number according to the order in which it is
explored. DFS stops when all the edges are explored. As result,
the edges are separated into a set of arcs making up a spanning
tree T = v — w, where DFSN(v) < DFSN(w), and a
set of fronds F = E— T = v --» w, where DFSN(v) >
DFSN(w). In addition, DFS assigns an important parameter
called the low point value to each vertex, and identifies the
”blocks”, which are the biconnected components of the graph.
For vertex v, its low point value is defined as LPV (v) =
min({DFSN (v)} U{LPV (w)lv = w}U{DFSN(w)|v --+
w}) where initially all low point values are set to be the
corresponding DFS number: LPV (v) = DFSN (v). After the

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

es5.2 e6,1
VW&G V6,4V7,W7,2v8,1 V8.2 V8,3 V8,4y8

ALS1

Index Y

—> Arcs

— =» Fronds
1/0 DFSN/LPV

Figure 10. A sample of spanning tree

low point values are calculated, we look for all vertices such
that DF'SN (v) < LPV(v). The edge leading to such a vertex
v is a bridge, which is an edge whose deletion would partition
the graph. The bridge and all edges whose connectivity to the
graph depends on this bridge are grouped into a sub-graph
called a block. All remaining edges are also grouped into a
block. An example of a spanning tree is shown in Fig. 10.
The numbers next to each node are the nodes DFS number
and low point value respectively. There are four blocks in the
example, and the largest block is the set of edges that exclude
edges (3,6), (2,4), (5,11).

B. Path-Finding Algorithm

This algorithm searches for circle paths block-by-block,
starting from the largest block. Initially, all vertices and edges
in the block are marked as unexplored. We start from the
vertex with the smallest DFS number in the block, which
is the root vertex in the subgraph and mark it as explored.
In each iteration, we extend the path to a neighbor vertex
with unexplored edges. If the neighbor contains an unexplored
frond, the path is outputted as a circle path. We repeat until all
vertexes and edges in the block are explored. If there is only
one edge which is in 7" in the block, we also output the edge
as a path.

C. Planar Embedding Algorithm

This algorithm is based on a straight-line planar drawing
algorithm [11]. Two main constraints are considered: i) Each
edge must be a straight-line; ii) The angle between edges

159

AICT2014 : The Tenth Advanced International Conference on Telecommunications

must have good angle resolution. The path-finding algorithm
produces a set of distinct circle paths. The direction of the
paths is ignored. We first draw the circle paths with four edges,
followed by those with three and then five or more edges.
Finally, the non-circle paths are drawn. The final result is a
draft floor map, which would enable us to visualize the logical
relationship of the vertices and edges on a plane.

V. EXPERIMENT AND RESULTS

The experiment took place at the lab area on the third
floor of our academic building. The actual floor map of the
area is shown in Fig. 2. The total survey area is 93 meters
by 21 meters. In the experiment, a student is equipped with
SAMSUNG GALAXY Tab 2 (7.0 version) and walks at a
relatively constant speed around the area. A total of 20 traces
are recorded with a total of 1468 measurements containing
RSS values from 267 APs.

Following the framework of IMMS (shown in Fig. 1), the
dimension of the measurement is reduced to 28. The traces
segmentation and locations recognition algorithm identifies
38 ALSs in total. Then, the unique vertices identification
algorithm produces 11 unique vertices and 13 unique edges.

Fig. 11 is the resulting draft floor map, and Table II shows
the relationship of unique edges and ALSs. The two numbers
next to the edge index are the number of times the edge appears
in different traces and the total number of measurements
corresponding to the edge. The black solid arrows are edges
that appear more frequently and they match the corridors in
the physical floor map quite well. The dash arrows are noise
vertices and edges, which do not match the physical floor
map. They apparently arise because of variability in the RSS
signals of the APs. In the future, we may need to conduct more
extensive experiments to determine how we may eliminate the
noise vertices and edges or how we may merge them with
those that match the physical map.

E:s 1(4)

@e—0

=

E. 3(15)

%

>

E+w 1(4)

¥
Ex 1(7) ,

A

TABLE II. ADJACENCY LIST OF UNIQUE VERTICES

Vertex Inx. Incident Edges ALS Inx.
E, 1, 3, 22, 24
Eg4 21

Node Ul Es 4
E7 6
Ei0 14
E2 17
Eqa 10

Node Us Es T, 18
Ei2 12
Ei3 29

Node U3 E9 2
Es 24

Node U5 E15 32

Node Ug E6 35

Node U9 E]_]_ 13

location is required. Accelerometers or other MEMS devices
for measuring heading directions and distances are also not
used. IMMS is an unsupervised system and is time efficient.
The frequently found ALSs can be correctly correlated to
corridor segments in the physical environment. Some noise
vertices and edges are produced because of variability in the
RSS signals. We need to conduct more extensive experiments
and to enhance our algorithms so that these noise vertices and
edges can be eliminated or merged with other ones.

The next step of our work is to construct a radio map on
top of the draft floor map. The radio map can then be used in
on-line localization and tracking application of individuals.

REFERENCES

[11 Y. Kong, Z. Zhong, G. Yang, X. Luo, A. K. S. Wong, and H. Zhai,
“A non-parametric kernel method for CDMA2000 network indoor
localization using multiple observations,” in Proc. Int. Conf. Inform
Netwrking., 2012, pp. 97-101.

[2] R. W. Ouyang, A. K. Wong, C. T. Lea, and M. Chiang, “Indoor
location estimation with reduced calibration exploiting unlabeled data
via hybrid generative discriminative learning,” IEEE Trans. Mobile
Comput., vol. 11, Sep. 2011, pp. 1613-1626.

[3] V. Y. Zhang, A. K. Wong, and K. T. Woo, “Histogram based particle
filtering with online adaptation for indoor tracking in WLANS,” Int. J.
Wireless Inform. Networks, vol. 19, no. 3, 2012, pp. 239-253.

[4] M. Panzarino. What exactly Wi-Fi SLAM is, and why apple
acquired it. URL: http://thenextweb.com/apple/2013/03/26/
what-exactly- wifislam-is-and-why-apple-acquired-it/#!pSwMH
[accessed: 2014-05-20]. (Mar. 2013)

£° E:
7(96) | Ex
1), !@ 24(310
' En 4(63) s E.2(18)
. ! Es 1(5) I

<4—>» True edges
<+ -» Noise edges v

' True vertices @
@ Noise vertices

Figure 11. The resulting graphical floor map

VI. CONCLUSION AND FUTURE WORK

In this paper, an automatic floor mapping system, IMMS,
for draft floor map construction was presented. IMMS uses
unlabeled crowd-sourced RSS measurements to construct the
floor map of a building. Unlike existing fingerprinting methods,
no elaborate manual off-line data collection process at fixed

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

(5]

(6]

(71

(8]
[9]
[10]

[11]

H. Shin, Y. Chon, and H. Cha, “Unsupervised construction of an
indoor floor plan using a smartphone,” IEEE Trans. Systems, Man, and
Cybernetics-Part C: Applications andReviews, vol. 42, no. 6, Nov. 2012,
pp. 889-898.

M. Zhou, A. K. S. Wong, Z. Tian, Y. Zhang, X. Yu, and X. Luo,
“Adaptive mobility mapping for people tracking using unlabelled Wi-Fi
shotgun reads,” IEEE Commun. Lett., vol. 17, no. 1, 2013, pp. 87-90.
R. W. T. Ouyang, A. K. S. Wong, M. Chiang, K. T. Woo, V. Y.
Zhang, H. S. Kim, and X. M. Xiao, “Energy efficient assisted GPS
measurement and path reconstruction for people tracking,” in Proc.
IEEE GLOBECOM, 2010, pp. 1-5.

E. Alpaydin, Introduction to Machine Learning, 2nd ed. Cambridge,
Massachusetts, London, England: The MIT Press, 2010.

K. Pearson, “Notes on regression and inheritance in the case of two
parents,” in the Royal Society of London, vol. 58, Jun. 1895, p. 2407242.
R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM 1J.
Comput., vol. 1, Jun. 1972, pp. 146-160.

P. Rosenstiehl and R. E. Tarjan, “Rectilinear planar layouts and bipolar

orientations of planar graphs,” Discrete Comput. Geom, vol. 1, 1986,
pp- 343-353.

160

