
Towards a Carrier Grade SDN Controller: Integrating
OpenFlow With Telecom Services

Caio Ferreira†, Natal Neto†, Alex Mota†, Luiz C. Theodoro†, Flávio de Oliveira Silva∗†,
João Henrique de Souza Pereira∗, Augusto Neto‡§,Daniel Corujo‡,

Carlos Guimarães‡, Pedro Frosi Rosa†, Sergio Takeo Kofuji∗ and Rui Aguiar‡
∗Polytechnic School, University of São Paulo - Brazil

São Paulo, São Paulo, 05424-970
Email: flavio@pad.lsi.usp.br, joaohs@usp.br, kofuji@pad.lsi.usp.br
†Faculty of Computing, Federal University of Uberlândia - Brazil

Uberlândia, Minas Gerais, 38400-902
Email: {flavio, frosi}@facom.ufu.br, {caiocf,natal,alex,lclaudio}@algartelecom.com.br

‡Instituto de Telecomunicações, Universidade de Aveiro - Portugal
Aveiro, Portugal, 3810-193

Email: {dcorujo,carlos.guimaraes,ruilaa}@ua.pt
§Dept. de Informática e Matemática Aplicada(DIMAp), Universidade Federal do Rio Grande do Norte - Brazil

Natal, Rio Grande do Norte, 59078-970
Email: augusto@dimap.ufrn.br

Abstract—Software-Defined Networking (SDN) essentially decou-
ples the hardware from the software that controls it. Currently,
some SDN abstractions are materialized by OpenFlow and
several OpenFlow controllers, based on different programming
paradigms and architectures, are available. Usually, these con-
trollers are bundled with some sample applications that enables
the construction of new ones by using their particular way.
However, these applications focus on specific services being
tightly coupled with the switch behavior. In this scenario, SDN
community is working to build a SDN control layer that meets
carrier grade requirements such as throughput, availability and
scalability. This work proposes a new SDN controller architecture
that is integrated with a carrier grade service level execution
environment, based on Service Logic Execution Environment
(SLEE) architecture, defined under the Java APIs for Integrated
Networks (JAIN) initiative. The proposed approach extends SDN
based services by integrating OpenFlow with several network
resources and communication protocols providing a cross layer
platform that can satisfy these telecom operators requirements.

Keywords–Software-Defined Networking; Carrier Grade; Con-
troller; Telecommunications.

I. INTRODUCTION

Software-Defined Networking (SDN) [1], [2] is a promis-
ing networking technology since it has the potential to enable
innovation and also to give the network operators more control
of their infrastructure. SDN market is expected to reach thirty
five billion dollars by 2018 [3], [4]. Essentially, SDN decouples
the forwarding plane from the control plane. Currently, Open-
flow [5] materializes some concepts of SDN. In such approach,
a signaling protocol is defined for the networking control
plane, which enables controllers to orchestrate OpenFlow-
compliant network devices (e.g., switch and wireless access
points) in a programmable way by a controller.

The OpenFlow-enabled SDN is a key contribution that is
propelling the networking research community towards the
definition of the Future Internet, allowing the use and evalu-

ation of innovating mechanisms for both network control and
data transport. The list of Future Internet mechanisms include,
among others, innovative approaches for routing, mobility,
Quality of Service/Experience control, optical resource con-
trol. Future Internet Testbeds Experimentation Between Brazil
and Europe (FIBRE) [6], Global Environment for Network
Innovations (GENI) [7], OpenFlow in Europe: Linking Infras-
tructure and Applications (OFELIA) [8] and Abstraction Layer
for Implementation of Extensions in Programmable Networks
(ALIEN) [9] are examples of research projects across the world
that are envisaging to spread the use of SDN by enabling the
experimentation on top of an OpenFlow-enabled infrastructure
of some of these innovate mechanisms.

The high demands for improving more and more the
reliable aspects of their network systems and also the ability
to take a complete control of their infrastructure, allowing cus-
tomization and optimization and thus reducing overall capital
and operational costs recently sparked the interests of telecom
companies in exploring the use of OpenFlow-enabled SDN.

However, SDN poses some research challenges [10] to the
scientific community. A key challenge is related with the con-
trollers that should meet carrier grade requirements [11] that
encompasses high availability, scalability, high performance,
reliability, fault tolerance and manageability in order to foster
the SDN adoption in mission critical environments, such as
the ones handled by telecom operators.

Currently, several telecom operators have services [12]
deployed on top of a mature platform, known as JAIN SLEE.
The JAIN [13] is a set of APIs dedicated to creating voice
and data convergent services. The JAIN SLEE [14] is a
component model that supports the deployment of event driven
applications that requires carrier grade requirements [15], [16],
[17]. JAIN SLEE is available as commercial products, such
as Rhino [18], and also as open source platform, such as
Mobicents [19].

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

At this moment, the SDN community is still in pursuit of a
carrier grade SDN control layer that is suitable for the demands
of such environments. This work presents a contribution to
this research by using an approach that differs from efforts
currently undertaken by the SDN community in relation to
this quest. This approach consists of constructing a controller
layer that uses the component model defined by JAIN SLEE.

The remainder of this paper is structured as follows: Sec-
tion II describes related projects and presents the ecosystem of
OpenFlow controllers currently available. Section III presents
the JAIN Slee component model and the components created
as the basis for the carrier grade SDN controller that enables a
cross layer approach by integrating OpenFlow with protocols
used by telecom’s voice and data services. Section IV presents
an application scenario where the proposed approach was
used to integrate OpenFlow and the Multimedia Independent
Handover (MIH) protocols [20] and finally, in Section V, we
present some concluding remarks and future work.

II. OPENFLOW CONTROLLERS ECOSYSTEM

Currently, the literature notices the availability of a number
of OpenFlow controllers. In essence, they differentiate each
other by programming paradigms or focusing on applications.
For instance, Nox [21], [22] was the first designed OpenFlow
controller deployed based on C/C++ programming language.
Java based version of controllers were also created such as
Beacon [23] and Maestro [24]. POX [22] is a Python based
version of the controller, which offers a simplified program-
ming interface enabling rapid deployment of new network
applications. Ryu [25] is also based on Python and supports
OpenFlow versions 1.0, 1.2 and 1.3. Trema [26] is a controller
based on Ruby and FlowER is an Erlang based Openflow
Controller [27].

These controllers came with sample code that shows how
to create new network applications by using each controller
proposed approach. A classical example of such applications
is a Learning Switch. Usually, these applications offer low-
level services and the network developer is responsible to build
new ones according to particular requirements. While they are
suitable as a starting point to use SDN concept, these con-
trollers are not enough to achieve reliability and performance
carrier grade networks demands [28], [29]. Such demands
are not related to the telecommunication capabilities of the
network entities but with aspects such as high availability,
scalability, high performance, reliability and resiliency. The
open issues of the aforementioned OpenFlow controller guided
current efforts, including FloodLight [30], Onix [31] and more
recently, OpenDaylight project [32] and ONOS [33].

FloodLight was created as a fork of Beacon, where the
focus is to build a commercial controller with enterprise class.
The open source version does not offer resiliency or scalability
such as the commercial version, called Big Network Controller
[34], which is based on a clustered servers in a HA deployment
and uses in its core FloodLight.

Motivated by the inability in satisfying neither reliability
nor scalability, the NOX creators proposed Onix, which is a
distributed system over the network control plane that offers a
global view of the network and defines an API that can use this
information to build new control plane services and addresses

such requirements. Onix was the basis for the software offered
by Nicira [35] and its approach is used by the Modern SDN
Stack [36] project.

The OpenDaylight project [32] aims to create a common
architecture that can be exploited by the industry to create
new and innovative services which use SDN abstractions.
This architecture comprises several layers, one of them being
the Service Abstraction Layer (SAL) that could interact with
different protocols that would be exposed by plug-ins. Another
layer is the Controller Platform [32] that controls the network
devices, such as routers and switches, and defines a common
API that will be used by the upper layer applications. One of
the objectives of OpenDaylight project is to create a carrier
grade architecture [37].

Another open source controller that currently is under
development is ONOS (Open Network Operation System)
[33], which aims at providing an architecture focused on fault
tolerance and distribution of the state in various controllers,
and providing a graphical high-level abstraction of the network
status. According to ON.LAB, these features make ONOS a
good alternative for service providers and also large WAN
operators. A prototype was presented by OnLab at ONS 2013
and also at 2014 indicating that ONOS is still on the way to
reach its goals [38].

Big Network Controller and also Onix are not available as
open source and thus the SDN community is not able to run
experiments using these particular solutions. OpenDayLight
project and also ONOS have a road ahead.

Moreover, all these SDN controllers do not offer by
default an integration with other signaling approaches used
by telecommunications operators, such as: Session Initiation
Protocol (SIP) [39]; DIAMETER [40]; Extensible Messaging
and Presence Protocol (XMPP) [41]; Media Gateway Control
Protocol (MGCP) [42]; among others.

This scenario indicates some open issues and this work
contributes to bridge this gap.

III. CARRIER GRADE OPENFLOW CONTROLLER

The network infrastructure itself has no value. The value is
in the applications and services that can be created on top of
this infrastructure. SDN abstractions enable the deployment
of new and innovative services and even completely new
network architectures [43]. However, these abstractions are
being deployed at this moment and the SDN community is
still in pursuit of a carrier grade platform.

The work presented here is deployed on top of the JAIN
[13]. The JAIN is a set of APIs [44] dedicated to creating
voice and data convergent services. The goal of these APIs is
to abstract the underlying network, so those services can be
developed independently of network technology. This approach
couples with SDN abstractions.

The JAIN SLEE [14] defines a component model that sup-
ports event driven applications suitable for carrier-grade envi-
ronment concerned with requirements such as high throughput,
low latency, scalability [15] and availability [17]. Currently,
several telecom operators have services deployed by using
JAIN SLEE. JAIN SLEE is available as commercial products,

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

Figure 1: JAIN SLEE Architecture Main Components.

such as Rhino [18] and also open source, such as the Mobicents
platform [19].

The main components of JAIN SLEE are presented in Fig.
1. The component model consists of two different layers: the
application layer that represents the services which run at the
JAIN SLEE Application Server and the Resource Adaptation
Layer which abstracts underlaying protocol stacks and adapts
them to the JAIN SLEE model. The Service Build Block
(SBB) contains the application and service logic. Each SBB
can be composed of one or more children SBBs and they are
organized as a graph. A Service is a deployed and managed
artifact which specifies its root SBB and the default event
delivery priority. A registered SBB is able to capture and fire
events. An Activity is a related stream of events, such as a
phone call, that are captured by SBBs entities. The state of
these entities can be replicated in a clustered deployment.

According to the JAIN SLEE specification, a Resource
represents a system that is external to the JAIN SLEE. The
Resource Adaptation layer (depicted in Fig. 1) enables several
control plane protocols, currently used at the telecommunica-
tion protocol stack, to plug in at the JAIN SLEE component
model, thus fostering the development of new services and
applications that can exploit SDN benefits.

By using clustering, JAIN SLEE supports high availability
and fault tolerance. The fault tolerance mode works with state
replication and thus a cluster can be viewed as only one virtual
container which encompasses all nodes that are active in that
cluster. This way, all activity context and SBB entities data
are replicated across the cluster nodes. While all the internal
components of the JAIN SLEE are fully fault tolerant, the
resource adaptors at border with the JAIN SLEE container and
the outside environment are not replicated by default, but they

Figure 2: Openflow Resource Adaptor.

can be created to be cluster-aware by using the Fault Tolerant
Resource Adaptor API.

Considering all these features, JAIN SLEE is a platform
suitable to handle carrier-grade throughput, latency and fault
tolerance requirements over a general purpose IT infrastructure
[16].

A. OpenFlow Resource Adaptor

The OpenFlow protocol and a controller are resources to
the JAIN SLEE. To interact with its component model, these
resources need to be adapted to its component model, what
is accomplished by a Resource Adaptor (RA). A RA receives
messages from this external system by using a protocol and
submits them as events that are produced inside the RA. The
RA may, also, consume events created by the services running
inside the JAIN SLEE.

The JAIN SLEE specification defines a Resource Adaptor
Type that basically consists of a set of interfaces that represents
common characteristics that must be implemented by a RA of
that type. Moreover, the Resource Adaptor type references the
Events that a Resource Adaptor will produce and consume. By
using this approach, different resources can be plugged into the
JAIN SLEE components.

Usually, resources such as SIP, DIAMETER, XMPP and
MGCP protocol stacks have a RA already defined [19].
Regarding OpenFlow there is no Resource Adaptor already
defined, being this definition one of the contributions of
this work. The OpenFlow Resource Adaptor (OpenFlowRA),
presented in Fig. 2 is responsible for the interaction with the
services that run inside JAIN SLEE. The events are captured
by the SBB entities according to the service configuration.

The OpenFlowRA implements an OpenFlowRe-
sourceAdaptorType. This resource type references all the

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

events that might be fired from the OpenFlow stack. In this
case, to each message type defined within the enum ofp type
at the OpenFlow 1.0 specification [5] an Event that will be
sent and also received from the JAIN SLEE was defined.

When the OpenflowRA is actived by the JAIN SLEE,
it starts the FloodLight Controller [30]. After this point, all
OpenFlow Messages are converted into Events that are sent
to the JAIN SLEE. In the same manner the services that
run inside JAIN SLEE can dispatch events to the Open-
FlowRA that corresponds to OpenFlow messages such as
OFPT FLOW MOD and OFPT PACKET OUT that will be
received the OpenFlowRA and then will be forwarded to an
OpenFlow Switch by the Controller as OpenFLow Messages.

The implementation uses MessageEvent, a JAIN SLEE fea-
ture. Each message received by OpenFlowRA is converted to a
JAIN SLEE event. For instance, when a OFPT PACKET IN is
received by OpenflowRA, it is converted into a MessageEvent
of type PacketIn, and it is sent to Abstraction Layer. After be
treated by RA, all messages are sent to the Abstraction Layer.

To decouple the services (SBBs) from the signaling control,
a default SBB named NEConnector is created. This SBB will
be responsible to retrieve the OpenFlow related events, inspect
them and fire the corresponding events related to the service
that is being created inside a set of SBBs. By using this
approach, the NEConnector is the only SBB that needs to care
of OpenFlow events. This design enhances further compatibil-
ity with new OpenFlow protocol versions, such as OpenFlow
1.3, thus contributing to a low coupling between OpenFlow
protocol and other SBBs. The NEConnector abstraction allows
the architecture to support several protocols but, if necessary,
other SBB can be created to handle other requirements, thus
providing a flexible architecture that supports different sig-
naling protocols from the telecommunications world and also
from the computer networks world.

IV. CASE STUDY

This case study highlights how the abstraction proposed
by this work can be used to integrate OpenFlow with other
infrastructure control protocols enabling the deployment of
new services and architectures.

The proposed approach was used to integrate OpenFlow
with the MIH protocol [20]. The main purpose of the IEEE
802.21 standard for MIH is to facilitate and optimize inter
technology handover processes by providing a set of primitives
for obtaining link information and controlling link behavior.

The IEEE 802.21 standard offers an abstraction of the con-
trol of wireless access links and in this case, an IEEE 802.21
resource adaptor was also created. The extensible component
model defined by JAIN SLEE, enabled the integration with
this protocol by defining a new resource adaptor. Considering
that this RA was not available before, the RA built during this
work is also an important contribution to the community that
builds JAIN SLEE based services.

The approach envisaged by the OpenFlow was also applied
here. Thus the NEConnector is responsible to receive the
events generated and route them to the corresponding SBB
which is interested in this particular event.

Figure 3: IEEE 802.21 MIH Resource Adaptor.

Figure 4: DTSA Components based on JAIN SLEE Component Model.

The MIHRA, as depicted in Fig. 3, implements an MIHRe-
sourceAdptorType. This resource type references all the events
that might be fired from the MIH stack. Thus, there is one
different message type to each service primitive defined in the
IEEE 802.21 specification.

Moreover, by using the approach proposed in this work
and bringing together OpenFlow and also the MIH resource
adaptors, it was possible to create the main component of
a new network architecture, named Entity Title Architecture
(ETArch).

ETArch [45] is a clean slate network architecture, where
naming and addressing schemes are based on a topology-
independent designation that uniquely identifies an entity. This
designation is named Title. ETArch also defines a channel
that gathers multiple communication entities. This channel is
called Workspace. A key component of this architecture is
the Domain Title Service (DTS), which deals with all control
aspects of the network. The DTS is composed of Domain Title
Service Agents (DTSAs), which maintain information about
entities registered in the domain and the workspaces that they
are subscribed to, aiming to configure the network devices to
implement the workspaces and to allow data to reach every
subscribed entity.

The DTSA was created, deployed and tested using the
Mobicents JAIN SLEE. Fig. 4 presents the overall DTSA
architecture based on the JAIN SLEE component model pre-

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

sented in this work. The NEConnector decouples the DTSA
SBBs from the control protocols of the infrastructure, then,
the services expressed by the SBBs can also interact with the
infrastructure and adapt it, in this case do create the workspace
concept on top of a OpenFlow enabled infrastructure and also
to support seamless entity mobility by optimizing handover
using the IEEE 802.21 MIH protocol. Fig. 4 also presents
the SBBs that were created to implement the DTSA, each
one dealing with the main aspects of the architecture: the
control of entities (EntityManager); the workspaces supported
by the DTSA in a given moment (WorkspaceManager); mo-
bility procedures of entities (MobilityManager); and, the QoS
enforcement (QoSManager) inside the workspace in order to
meet specific communication requirements.

V. CONCLUDING REMARKS AND FUTURE WORK

SDN abstractions can enable new services and applica-
tions. Considering OpenFlow, the current materialization of
some SDN concepts, the controller is a central piece of the
architecture.

The currently available open source controllers are not
suitable to meet carrier grade requirements. This kind of
controller is a work in progress being conducted by the SDN
community through some projects.

This work proposes a new SDN controller architecture,
which is integrated with a carrier grade service level execution
environment, based on the JAIN SLEE specification. Such
controller can abstract several different protocol stacks and
provides a common component model where new services and
applications could be deployed. JAIN SLEE current implemen-
tations are adopted and being used, at plant floor ground, by
several telecom operators.

To foster this integration, this work created an OpenFlow
resource adapter which enables a cross layer approach where
services are able to control the network infrastructure during
run-time, by using the OpenFlow protocol.

To showcase the approach presented in this work, an IEEE
802.21 MIH resource adapter was also constructed. The MIH
protocol purpose is to abstract the control of wireless access
network infrastructure, thus enabling services that need to
handle mobility requirements.

By putting together OpenFlow and MIH protocols, the
presented case study uses JAIN SLEE SDN capable control
layer to deploy a clean slate network architecture named
ETArch. In this case, the adopted component model enabled
the evolution of the network architecture, enabling new ser-
vices to be gradually deployed and tested on top of it.

The resource adapters presented here are publicly available,
thus collaborating with the research which aims to define,
design and deploy next generation computer network archi-
tectures.

The carrier grade approach proposed in this work is aligned
with most current trends regarding a SDN control layer,but in
addition to other proposals, it enables an integration of the
protocols that control the network hardware, such as Open-
Flow, with the ones the control the applications, thus enabling
new types of network services. Moreover, the extensible model

can accommodate new protocols and future initiatives, thus
preserving investments and becoming an interesting outcome
that can be exploited by telecom operators.

As future work, the proposed and constructed carrier grade
SDN control layer will be tested under different scenarios in
order to demonstrate its fault tolerant and scalability. An Open-
Flow 1.3 compliant RA will also be deployed and plugged into
the architecture.

The innovative approach proposed under this work presents
to the research community a SDN control layer that is suitable
to meet carrier grade requirements and is a viable alternative
to bring SDN into the telecom infrastructure.

ACKNOWLEDGMENT

This work has been partially funded by the European
Community’s Seventh Framework Programme, under grant
agreement n. 258365 (OFELIA project), by the Brazilian agen-
cies: CAPES, CNPq and FAPEMIG and also by PROPP/UFU.

REFERENCES

[1] Open Networking Foundation. Software-defined network-
ing: The new norm for networks. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf [retrieved: May,
2014]

[2] G. Goth, “Software-Defined networking could shake up more than
packets,” IEEE Internet Computing, vol. 15, no. 4, Aug. 2011, pp. 6–9.

[3] M. Palmer. SDN market size to exceed $35b in 2018. [Online]. Avail-
able: http://www.sdncentral.com/sdn-blog/sdn-market-sizing/2013/04/
[retrieved: May, 2014]

[4] PLEXXI, LIGHTSPEED, and SDNCentral. SDN market sizing.
[Online]. Available: http://cdn.sdncentral.com/wp-content/uploads/
2013/04/sdn-market-sizing-report-0413.pdf [retrieved: May, 2014]

[5] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, Mar. 2008,
p. 6974, ACM ID: 1355746.

[6] FIBRE. FIBRE Project - Future Internet Testbeds Experimentation
Between Brazil and Europe. [Online]. Available: http://www.fibre-ict.
eu/ [retrieved: May, 2014]

[7] GENI. OpenFlow - GENI. [Online]. Available: http://groups.geni.net/
geni/wiki/OpenFlow [retrieved: May, 2014]

[8] OFELIA. OpenFlow in europe - linking infrastructure and applications.
[Online]. Available: http://www.fp7-ofelia.eu/about-ofelia/ [retrieved:
May, 2014]

[9] ALIEN. FP7 ALIEN project. [Online]. Available: http://www.fp7-alien.
eu/ [retrieved: May, 2014]

[10] S. Sezer et al., “Are we ready for SDN? implementation challenges for
software-defined networks,” IEEE Communications Magazine, vol. 51,
no. 7, Jul. 2013, pp. 36–43.

[11] I. T. UNION, The carrier grade open environment reference
model, ser. SERIES Y: Global Information Infrastructure, Internet
Protocol Aspects and Next-Generation Networks. International
Telecommunication Union, Dec. 2006. [Online]. Available: http:
//www.itu.int/rec/T-REC-Y.2901-200612-I/en

[12] TeleStax. TeleStax open source cloud communications - success stories.
[Online]. Available: http://www.telestax.com/case-studies/ [retrieved:
May, 2014]

[13] ORACLE. JAIN general Q&A. [Online]. Available: http://www.oracle.
com/technetwork/java/qa-137977.html [retrieved: May, 2014]

[14] D. Ferry. JAIN SLEE (JSLEE) 1.1 specification, final release.
[Online]. Available: http://www.jcp.org/en/jsr/detail?id=240 [retrieved:
May, 2014]

[15] M. Femminella et al., “Scalability and performance evaluation of a JAIN
SLEE-based platform for VoIP services,” in Teletraffic Congress, 2009.
ITC 21 2009. 21st International, 2009, pp. 1–8.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

[16] M. Gomez, E. Torres, J. Chamorro, T. Hernandez, and E. Mendez,
“On the integration and convergence of IN and IP mobile service
infrastructures,” in International Conference on Telecommunications,
2009. ICT ’09, May 2009, pp. 143–148.

[17] M. Femminella, R. Francescangeli, E. Maccherani, and L. Monacelli,
“Implementation and performance analysis of advanced IT services
based on open source JAIN SLEE,” in 2011 IEEE 36th Conference
on Local Computer Networks (LCN), Oct. 2011, pp. 746–753.

[18] OpenCloud. Rhino SLEE carrier grade system. [Online]. Avail-
able: http://www.opencloud.com/products/rhino-application-server/
carrier-grade/ [retrieved: May, 2014]

[19] MOBICENTS. Mobicents JAIN SLEE.
http://www.mobicents.org/slee/intro.html. [Online]. Available:
http://www.mobicents.org/slee/intro.html [retrieved: May, 2014]

[20] IEEE, “IEEE standard for local and metropolitan area networks- part
21: Media independent handover,” IEEE Std 802.21-2008, 2009, pp. c1
–301.

[21] N. Gude et al., “NOX: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, Jul. 2008,
p. 105110. [Online]. Available: http://doi.acm.org/10.1145/1384609.
1384625

[22] NOXREPO. About NOX. [Online]. Available: http://www.noxrepo.org/
nox/about-nox/ [retrieved: May, 2014]

[23] D. Erickson. Beacon. [Online]. Available: https://openflow.stanford.
edu/display/Beacon/Home [retrieved: May, 2014]

[24] Z. Cai. Maestro. [Online]. Available: http://code.google.com/p/
maestro-platform/ [retrieved: May, 2014]

[25] NTT Communications. Ryu SDN framework. [Online]. Available:
http://osrg.github.io/ryu/ [retrieved: May, 2014]

[26] H. Shimonishi, Y. Chiba, Y. Takamiya, and K. Sugyo. Trema
repository. [Online]. Available: http://trema.github.io/trema/ [retrieved:
May, 2014]

[27] Travelping. FlowER - erlang OpenFlow development platform.
[Online]. Available: http://travelping.github.io/flower/ [retrieved: May,
2014]

[28] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,”
in 2011 18th IEEE Workshop on Local Metropolitan Area Networks
(LANMAN), 2011, pp. 1–6.

[29] F. Tam, “On engineering standards based carrier grade platforms,”
in Proceedings of the 2007 workshop on Engineering fault tolerant
systems, ser. EFTS ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1316550.1316554

[30] Big Switch Networks. Floodlight OpenFlow controller.
http://floodlight.openflowhub.org/. [Online]. Available: http://floodlight.
openflowhub.org/ [retrieved: May, 2014]

[31] T. Koponen et al., “Onix: a distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, p. 16. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924968

[32] OpenDaylight. OpenDaylight technical overview. [Online].
Available: http://www.opendaylight.org/project/technical-overview [re-
trieved: May, 2014]

[33] ON.LAB. ONOS - open network operating system. [Online]. Available:
http://tools.onlab.us/onos.html [retrieved: May, 2014]

[34] B. S. Networks. Big network controller. [Online]. Available:
http://www.bigswitch.com/products/SDN-Controller [retrieved: May,
2014]

[35] NICIRA. Nicira. [Online]. Available: http://nicira.com/ [retrieved: May,
2014]

[36] O. Research. Modern SDN stack project. [Online]. Available: http:
//onrc.stanford.edu/research modern sdn stack.html [retrieved: May,
2014]

[37] C. Matsumoto. What OpenDaylight really wants to do. [Online]. Avail-
able: http://www.lightreading.com/blog/software-defined-networking/
what-opendaylight-really-wants-to-do/240152993 [retrieved: Apr.,
2014]

[38] ON.LAB. ONOS at ONS 2014. [Online]. Available: http://www.
slideshare.net/ON LAB/onos-at-ons-2014 [retrieved: Mar., 2014]

[39] E. Schooler et al. SIP: session initiation protocol. [Online]. Available:
http://tools.ietf.org/html/rfc3261 [retrieved: May, 2014]

[40] J. Arkko, E. Guttman, P. R. Calhoun, and J. Loughney. Diameter
base protocol. [Online]. Available: http://tools.ietf.org/html/rfc3588
[retrieved: May, 2014]

[41] P. Saint-Andre. Extensible messaging and presence protocol (XMPP):
core. [Online]. Available: http://tools.ietf.org/html/rfc6120 [retrieved:
May, 2014]

[42] B. Foster and F. Andreasen. Media gateway control protocol
(MGCP) version 1.0. [Online]. Available: http://tools.ietf.org/html/
rfc3435 [retrieved: May, 2014]

[43] F. de Oliveira Silva, J. de Souza Pereira, P. Rosa, and S. Kofuji,
“Enabling future internet architecture research and experimentation by
using software defined networking,” in 2012 European Workshop on
Software Defined Networking (EWSDN), 2012, pp. 73–78.

[44] ORACLE. JAIN API specifications. [Online]. Available: http://www.
oracle.com/technetwork/java/api-specs-137688.html [retrieved: May,
2014]

[45] C. Guimarães et al., “IEEE 802.21-enabled entity title architecture
for handover optimization,” in IEEE WCNC’14 Track 3
(Mobile and Wireless Networks) (IEEE WCNC’14 Track 3 :
NET), Istanbul, Turkey, Apr. 2014, unpublished article. [On-
line]. Available: http://www.facom.ufu.br/∼flavio/wcnc-2014/IEEE
802.21-enabled ETArch for Handover Optimization.pdf

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

