
A Distributed Power Management Algorithm for a

Self-optimizing WiFi Network

Abheek Saha

Hughes Systique Corp.

Gurgaon, India

Email:abheek.saha@hsc.com

Abstract—In this paper, we propose a fully distributed algo-
rithm for a dense unplanned self-optimizing network of 802.11
access points. As opposed to the traditional method of having
a centralized controller to collect information from all access
points, our algorithm runs independently on each AP to create a
cooperative network of access points, with no explicit inter-node
communication. We present simulation and actual laboratory
data which shows how our algorithm can significantly improve
network performance in a robust and scalable manner.

Keywords—Self optimizing networks; distributed algorithms;
cooperative games; femtocells

I. INTRODUCTION

A self optimizing network (SON) of wireless nodes rep-
resents a collection or network of co-located network nodes
which can jointly set their own operating configuration so
as to maximize network performance using suitably chosen
parameters. SON controllers for WiFi Access Points (APs)
have been launched by Aruba [1], Ruckus [2] and others.
The CISCO suite of Wireless LAN (WLAN) applications
includes the Cisco Unified Wireless Network module, which
incorporates various SON features. In the LTE domain, SON
has been included into the 3gPP specifications [3] and is being
actively pursued by Nokia Networks, Ericsson, AT&T and
others.

In a typical self-optimizing network, we are interested
in optimizing some global performance metric, subject to
constraints in another global metric, by controlling specific
operational parameters at each individual node in the system.
For example, a SON can try to minimize handovers in the
network as a whole, subject to average call drop probability
being above a certain threshold; both of these are global,
user-visible metrices. The optimization is achieved by setting
certain policy parameters in each network node; for the above
example, it may be the Signal and Interference to Noise Ratio
(SINR) threshold at which a handover is triggered.

In the standard self-optimizing networks as discussed in
[4]–[7], the SON function resides in a central entity (or
cluster of entities) called the controller. The controller receives
feedback from the network nodes (base-stations, access points,
or node B, depending on the Radio access technology) and in
turn computes and sends configurations to the network nodes;
hence translating global network state information to local
control values for each network node. We call this the central
control model.

The object of this paper is to propose an alternate, dis-
tributed model for self-optimizing algorithms in modern wire-

less systems. Our work is on the same lines as [4] [8] but
our model and technique vary significantly. We take a fully
distributed approach to our problem by borrowing elements
from the most successful distributed control applications that
we are aware of. The result is a simple, scalable algorithm,
which works in a multitude of conditions. We have simulated
this and implemented it in real life using a network of WiFi ac-
cess points, by using the basic interface provided by the Linux
hostapd application. With the recent release of the Femto API
by the small cell forum, we believe that SON applications
can be implemented very easily on the network cell nodes
themselves. A fully distributed algorithm is a significant step to
solving the problems of connectivity, scalability and robustness
which limits centralized algorithms.

The rest of this paper is organized as follows. In Section
II, we describe the details of transmit power control in a WiFi
network. In Section III, we describe the problem to be solved
in the context of the network topology and network node
properties, for which our algorithm is presented. In Section
IV, we describe the basis for the distributed algorithm and
its adaptation for our particular problem. In Section V, we
describe the design of the test-bed and the validation of the
algorithm. Finally, in Section VI, we conclude our analysis
and areas of future work.

II. SETTING TRANSMIT POWER IN A WIFI NETWORK

While there are many wireless network management func-
tions which are suitable for SON applications, a commonly
used one is interference and transmit power management. This
single function covers a great deal of ground; by adjusting
beacon power, we can adapt coverage, by adjusting traffic
channel power, we can adjust SINR and throughput and finally,
by a combination of the two, we can also adjust handoff
performance.

A. The impact of transmit power setting

What are the implications of adjusting transmit power?
A network node broadly transmits three kinds of waveforms.
First is the beacon and/or pilot channel. This transmission is
necessary for mobile devices in the idle state to detect the
presence the network node and associate with it - thus, the
pilot/beacon power controls the coverage or reach of the signal.
This signal is also used by user terminals during handover
as a way of identifying the relative strength of a network
node compared to the one it is currently camped on. Pilots
are typically at significantly higher power than the rest of the
transmission, but occupy a relatively small part of the overall

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

power budget, because they occupy a small portion of the
available spectrum.

The second power level is that used for transmission on the
traffic channels; this is spread over embedded pilot, data and
control bits. Typically, the embedded pilot bits are transmitted
at a certain level above/below that of the traffic bits , since
they have to be received reliably in order to do accurate
channel estimation. A power budgeting function is used to
allocate energy per bit so as to maintain these relative ratios
as per network configuration. Control bits are usually protected
through coding, rather than power setting and thus are at the
same power level as data bits. The quality of the service that a
given user terminal receives is a function of the SINR on the
data channels (subject to the signal level itself being above the
receiver sensitivity threshold; but this condition is very mild
thanks to the astonishing sensitivity of modern receivers). As
the SINR rises, the individual bit error rate (BER) drops, and
consequently the user terminal can increase the transmission
rate (by reducing protection and/or using more aggressive
modulation schemes); this is known as adaptive modulation
and coding. It should be noted, however, that the relationship
between SINR and transmission rate is not linear. For example,
at a given coding rate and scheme, the block error rate (BLER)
is only affected by the SINR once the number of bits in error
per block cross a certain threshold value known as the free
distance of the coding scheme. While there are many studies
on this topic, a log-linear curve has been shown to hold true
in a number of cases [9].

III. ALGORITHM CONTEXT

We place our algorithm in the fairly generic context of
a network of ’network nodes’, ’mobile/user devices’ and an
allocated set of frequencies, which are the shared physical
resource. The purpose of the network is to allocate frequencies
to individual nodes, so as to offer the maximum quantum of
service (measured both in terms of throughput and QoS) to
active users. The number of frequencies available is typically
fixed, whereas the network can scale indefinitely, both in terms
of network nodes and in terms of actual users. Gupta and
Kumar point out in [10] that in this kind of capacity limited,
interference constrained network, the aggregate throughput can
at best scale at

√
n, whereas the throughput per user will

actually scale at 1√
n
. We wish to find an algorithm to achieve

this target.

A. Properties of network components

We use the term network node to describe eNodeB/Access
Points. The common characteristics of these nodes are:

• They transmit a mix of pilot and data signals on the
downlink.

• The total power required for data traffic is determined
by the mix of users they are supporting and their
distances from the node itself

• The network nodes use a fair allocation scheduler, so
that the traffic transmission is not dominated by the
best placed user devices, but the average.

• The network node is aware of its own position.

• The utility of the network node is determined by the
average bit-rate it supports and the average number of
active users.

• The network node has a transmit power level ui which
allocates the combined power for each resource it is
using. It is power-limited in the sense that the value
ui must be less than some maximum power level Pu.
This comparision may be done instantaneously, i.e.,
ui(t) ≤ Pu∀t or averaged over a slot or a frame. A
power allocation of zero for a given network node
indicates that the node is switched off.

• The network node has fine grained control over its
transmit power level, i.e., it can adjust transmit power
on a frame by frame basis [11] and allocate variable
power to control and data frames; however, it has also
been pointed out that this has limitations based on the
technology and realization thereof [12]. The network
node is free to manage the individual allocations to
frames/users/channels as long as the overall power
budget is maintained.

We further make the following reasonable assumptions
about the topology

• The network nodes are randomly placed in a ’dense’
environment, i.e., theoretically, any of the clients may
attach to any of the nodes

• Each network node is assigned one channel on startup;
more channels can be allocated depending on avail-
ability

Each network node has a set of users (WiFi clients) to
whom they are offering data transport services. The user
population is assumed to have the following general principles

• The user devices are located randomly in the area; for
simplicity’s sake a given user device can pick absolute
any network node in this area, subject to operational
constraints, i.e., sufficient RSSI and SINR

• The user devices are homogenous; they are charac-
terized by a data generating process with common
properties

We say that a network node is backlogged if at least one of
its users is continuously backlogged, i.e., has a non-zero queue
for the duration of the measurement T . In practical terms, if a
network node has no backlogged users then it should reduce its
traffic load, because it is possibly offering more service than
its users are demanding. Given the set of backlogged users,
we assume that the network computes a target SINR value τi
which represents the ensemble of backlogged users. The utility
for the network is given by the function

U(ui) = Eke
−[(si,k−τi,k)

2] (1)

As we can see in Fig. 1, the utility function for a given network
node is quasi-concave.

Each network node transmits at a level ui(t), which is the
control variable for our algorithm. The signal received by the
kth user of the ith network node thus becomes

Sk,i =
uiF (dk,i,i)

σi +
∑

j 6=i γi,jujF (dk,i,j)
(2)

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

(a) AP 1 (b) AP 2

Figure 1. Utility functions for two access points

where dk,i,j is the distance between the kth user of the ith
Access Point from the jth access point and F () represents the
fading. γa,b is the interference coupling between access points
a and b. If the two are using orthogonal frequencies, it is 0,
if the two are using the same frequency, it becomes 1. For
a given network node, we assume the existence of a metric
function G(i) = g (S1,i, S2,i, . . .), which is monotonic in each
of its elements. A simple metric function is the average or
infimum.

B. Formulation of the standard problem

We start with the easiest form of the problem. Assume
that αi,j represents the marginal impact of increasing trans-
mit power uj for the ith Access Point. Therefore αi,j =
Ek (γi,jF (dk,i,j)). The formulation in (2) can be rewritten as:

Si = Ek (Si) =
αi,iui

ni +
∑

j 6=i αi,juj

= uiκi (3)

For an equilibrum solution, we need to solve
∂Ui(ui)

∂ui
= 0∀0 ≤

i < n. To do this, we note that

∂Ui

∂ui

=
∂Ui

∂si

∂si

∂ui

= −2.0(si − τi)e
−(si−τi)

2 αi,i

ni +
∑

j 6=i αi,jui

(4)

(5)

This has one solution where si = τi∀i. We can write the
resultant set of equations as a matrix equation

u0

u1

· · ·
un−1

α0,0 −τ0α0,1 · · · −τ0α0,n−1

−τ1α1,0 α1,1 · · · −τ1α1,n−1

· · · · · · · · · · · ·
−τnαn−1,0 τn−1αn−1,1 · · · α1,n−1

=

n0τ0

n1τ1

· · ·
nn−1τn−1

The optimization problem as formulated in (6) is solvable
under some basic conditions; specifically, the matrix has to
be invertible. However, this solution requires the solver to
have full state information of pi and si for all network nodes.
This can be acquired by querying individual network nodes,
but requires a robust communication channel, scaling with the
number of access points. A bigger challenge is to compute the
values of α0≤i<n,0≤j<n and the values of the individual noise
terms. In fact, there is no possible way to compute n, the noise
terms and the values of αi,j , even under the fairly reasonable
assumption that αi,j = αj,i, since we have a total of 2 ∗ n
readings and nC2

+ n2 + n unknowns. Most of the available
solutions assume that the values of the noise term are known
by external means [5].

Is it possible to compute the value of αi,j using external
means? Note that αi,j consists of two terms, one being the
attenuation caused by distance and the second being the
coupling. For the latter we need to know the channels allocated
to each node and how much ACI/CCI is being generated -
this is relatively easy to get. However for the former, we
need a channel model which captures the relationship between
geographical position and the attenuation and other channel
model parameters specific to that particular environment and
geography. OFDM traffic models are complex and sensitive
to environmental artefacts and this typically requires a lot
of intervention from the user/administrator. In commercial
models, the relative coupling between nodes are typically
embodied in the ANR and are based on a combination of
channel modeling and continuous measurements.

A second challenge is to compute a value of τi for
each access point. Clearly, an excessively low value of τ
will cause bad service, whereas an excessively high value of
~τ = {τ0, τ1, . . . , τn−1} means that the matrix given in (6) is
no longer positive definite, hence the program isn’t solvable.
In a centralized environment, we will be able to set ~τ to the
maximum set of values so as to allow a solution to (6). This
is a semidefinite programming problem and is not very easy
to solve either. Alternate game theoretic formulations have the

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

same results and similar issues.

We would thus like to avoid any solution which depends
on static analysis or pre-configuration to compute the above
values; ideally, our algorithm would be an iterative solution,
capable of using empirical measurements to fine tune its esti-
mate of the network state. If we can design an algorithm that
only uses empirical measurements from individual network
nodes, it lends itself to distributed implementation. In our
experience, a distributed algorithm will typically score over
any centralized solution in terms of scalability (the ability
to handle larger and larger numbers of nodes), robustness
and flexibility. The classic paper by Kleinrock and Tung
[13] demonstrates a elegant and remarkable solution to what
seems to be an intractable optimization problem. On the other
hand, distributed algorithms need to be carefully designed
so as to be stable and converge sufficiently quickly to the
appropriate solution. Convergence time for different categories
of distributed algorithms is an enormous research topic in its
own right.

IV. A DISTRIBUTED ALGORITHM FOR POWER CONTROL

We propose a distributed power control algorithm loosely
modeled on the well-studied TCP congestion control algo-
rithm. There are some crucial similarities and some crucial
differences, as we shall demonstrate in the subsequent sections.

A. TCP congestion control as a distributed optimization algo-
rithm

The TCP congestion control algorithm is a extremely
well studied and widely deployed example of network wide
congestion control [14]. It has been extremely succesful in
practice, and has benefited from many years of continuous
refinement and innovation (TCP New Reno, TCP Vegas, TCP
Westwood, Eifel and TCP CUBIC). Its strengths lie it its
flexibility (starting from switched links of 56kb/s, it has
been deployed in every concievable environment, including
wireless, gigabit Ethernet, terabit optical fiber and satellite),
its scalability (literally thousands of individual nodes and tens
of thousands of connections) and its robustness. It is also easy
to deploy, requiring practically no intervention or configuration
from the user. Based on our own extensive experience of TCP,
we find its success arises from three factors.

• It constantly switches between stability and network
probing. This ensures that it never enters a sub-optimal
local equilibrium and can also automatically adjust to
changes in global conditions (network load, network
bandwidth availability, etc.)

• It acts aggressively before it discovers congestion
and conservatively on discovering congestion (fast
attack/slow retreat). This allows new TCPs to enter
and adjust rapidly to existent network conditions

• It constantly updates its estimates of the two critical
parameters in the algorithm; the round trip latency (to
avoid loop gain) and the congestion buffer size. There
are no fixed or externally programmed thresholds.

TCP works by transmitting a number of packets into the
network destined to a peer TCP and waiting for a set amount

of time. If the packets are positively acknowledged within that
time, it assumes that there is bandwidth/buffering available in
the network and transmits a few more packets, this time a
slightly higher number. If the pre-set time expires, it assumes
that the transmitted packets were lost due to congestion in the
network. So it reduces its transmission rate and tries resending
the packets. Each TCP computes its own estimate of the
network measures independently and applies its congestion
algorithm independently of the others in the same shared
network. The implementation is completely distributed; no
TCP needs to exchange any information with any other TCP.
Yet the system performs stably and scales, due to the features
built into the algorithm itself.

B. A brief review of TCP

Leaving aside congestion avoidance for the moment, there
are two variables which govern a particular TCP instance.
The first is the transmission rate, measured by the number of
packets to be injected into network per roundtrip time. TCPs
call this variable cwnd; it is the internal estimate of the amount
of buffering available in the network. The higher the cwnd, the
faster the TCP transmits. The second is the estimate of round-
trip time, which is a statistical measure r̂tt = µrtt + 2σrtt,
constantly updated by the measured timegap between a packet
being transmitted and the acknowledgement being received
for it. The variables represent the tension in the system; if
the TCP underestimates the round trip time, it will time out
prematurely and inject unnecessary packets into the network,
adding to congestion. If the TCP over-estimates the round trip
time, its reaction to network conditions and ability to recover
from congestion is diminished.

There is a further purpose to the round trip measurement;
it allows the TCP to estimate a baseline round trip time,
below which the TCP cannot possibly expect feedback. This
is the base latency of the network, the actual time taken for a
packet to traverse the empty network. In addition, a component
of the baseline rtt is the latency induced by background
network traffic; network traffic which is independent of the
actions of this TCP. TCP algorithms such as VEGAS [15] use
variations of the measured round trip time, in conjunction to
the knowledge about the baseline delay to detect congestion.

Further, the TCP congestion control algorithm uses Ad-
ditive Increase and Multiplicative Decrease. Even though
multiple TCPs may be transmitting in parallel, each TCP reacts
to a congestion signal as if it was the sole contributor for this
congestion and executes a multiplicative decrease of its traffic
rate; this bypasses the distributed coordination issue. Empirical
data shows that this conservatism is as the heart of TCP’s
success in maintaining network stability.

It is important to understand the parallels between TCP
and our situation. As in TCP, we also have the loop time,
which is basically the time taken for the rest of the network
to detect and respond to any unilateral changes in power;
its value depends on the frequency of measurement updates
and the averaging period for the other Access Points in the
network. The analogue to the congestion window is of course,
the transmit power setting of the network node.

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

C. A local algorithm for power adjustment

The algorithm that we have devised is a mixture of the
approaches suggested in the various TCP algorithms. As in
NewReno, we use a congestion signal for backing off trans-
mission power; in our case, the congestion event occurs when
the measured noise is greater than the baseline noise by a fixed
∆ amount. Like New Reno, we use ’bandwidth hunting’, by
constantly trying to adjust transmit power onwards. We have
used some of the ideas in TCP CuBic to make the algorithm
self timing.

There is an important issue to be solved, however, which is
not addressed by New Reno. This is the problem of background
noise - noise which is independent of the network nodes
transmission levels or those of its neighbours. In our New
Reno analogy, this is akin to having an additional amount
of packet drops which operate independent of network node
induced congestion. The assumption in New Reno is that all
packet drops are caused by congestion - a valid assumption in
normal wired networks, but one which causes some issues in
high delay wireless networks [16].

In our case, baseline noise exists and it varies over time
and networks. A network node, on entering the system, has
to be able to detect baseline noise dynamically and adjust
to it. An analogy exists in TCP Vegas, which works by
mapping congestion to variations in round-trip delay. For this
to work well, the Vegas algorithm needs to be able to estimate
the base delay in the network. We adapt the same to our
system, except we measure baseline noise. The measurement
of baseline noise has an interesting ramification - specifically,
the higher the estimate of baseline noise, the more aggressive
an endpoint is going to be. This gives an additional incentive
for network nodes to minimize their transmission power ;
otherwise, network nodes which enter (or re-enter) the system
are going to over-estimate the baseline noise initially and act
more aggressively. This effect has been noted in Mo et al [17].

Secondly, there is no directly analogue of a utility function
for a TCP connection - at least, one which is explicitly
built into the algorithm. Rather a TCP connection attempts
to maximize throughput, subject to a complex set of rules.
However, there have been many studies of what utility function
TCP is effectively using [18], [19]. It is obvious, that TCP
pays more attention to the bandwidth delay product, than pure
bandwidth; however, packet drops also impact it. In our case,
we are attempting to maximize an explicit utility function
U(., τi), which is driven by our set point SINR target.

In the following, ui is the transmit power of the ith
network node, and ri,k and si,k are the RSSI and SINR
reported by the ith backlogged mobile. We have chosen these
two metrices because they are directly available from most
existing WiFi chipsets; in some cases SINR is replaced by
the channel quality, which can, however be converted back
to SINR units. The noise as measured by the node is given

by Ni =
∑

k si,k−ri,k∑
k
Isi,k>τi

The state transition diagram is given in

I. The values ∇, Ts are user provided and can be adjusted
depending on the type of the network. As can be seen here,
the states Stable, Ramping and Backoff are rough analogues
of the different phases of the TCP connection. A separate
procedure is implemented for measuring the ’background’
noise threshold; in our case, we simply measured the average

signal energy of the system when the AP wasn’t transmitting.
However, specific air interfaces may support direct noise
measurement; in defined guard periods, for example, which
provide a good approximation of the current system noise.

V. DESIGN AND VERIFICATION

A. Simulation results

Initially, the algorithm was verified in a customized simu-
lation environment. The simulation setup allows us to test the
algorithm with a very large number of network node and UE
combinations. N network nodes cater to U user devices placed
randomly in a fixed area; each network node has a dynamic
transmission range of 1dBW to 20dbW and a startup transmit
power of 10dbW. User devices attach to the network nodes
using measured RSSI and then receive downlink data. The
data transmission rates are derived from the measured SINR,
so as to cause a BER of 0.01%. Each user equipment receives a
random amount of data drawn from a Pareto distribution. Once
the data queue goes idle for a user, it can select a new device
to campon using either RSSI measurements or a combination
of load and SiNR measurements. The setpoint τi is configured
externally.

The graph in Fig. 2 below shows a comparision of the
same system for different combinations of N and U ; in one
case active interference management is being carried out using
the algorithm described above and in the other, there is no
interference management. Each line shows the percentage
improvement in average throughput for a given number of
network nodes (depicted by the variable Nn) for the SON
algorithm, versus the baseline average throughput when no
algorithm is used. The X-axis shows the number of user
terminals (distributed randomly over a unit square space) for
a given simulation with a particular value of Nn. The Y-axis
shows the percentage difference in throughput. We can see that
the interference management algorithm easily outperforms the
baseline when the system is relatively uncrowded and gradu-
ally degenerates to the baseline performance as the number of
user devices per network node increases.

B. Real life results

We subsequently have implemented and tested our algo-
rithm on a laboratory setup comprising of 8 access points
and 16 Wifi clients, all operating on a single WiFi channel
in a closed and sanitized laboratory environment. The WiFi
network nodes were Linux workstations with attached WiFi
cards; the SON algorithm was implemented in an application
which controlled the WiFi driver (for power measurements and
power settings) using the standard Linux interface. The user
terminals were a mixture of commercially available laptops
and WiFi enabled mobile phones; the test was carried out
in a controlled lab atmosphere and loading was generated
using a mixture of artificially generated traffic and smartphone
applications, such as web-browsing and game apps. The overall
network was monitored using a mixture of inhouse tools and a
commercial tool called Ekahau, which dynamically measures
network RSSI and SINR from multiple positions.

The results are captured in the graphs in Fig. 3a and Fig.
3b. Since the network setup was fairly dense and the APs
were power capped, the average throughput for APs in the

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

TABLE I. Congestion management - state/event matrix

Current State Measured event Action New State

Stable Noise measurement is stable or reducing for

Ts time periods

tx pwr increases by ∇ Ramping

Stable Noise measurement is crosses threshold Reduce tx power to last known stable value Backoff

Stable Noise baseline has changed Adjust tx power accordingly Stable

Backoff Noise measurement is stable or reducing for

Ts time periods

Save current tx power as last stable tx power Stable

Ramping Noise measurement changes by less than ∇ Adjust tx power Stable

Ramping Noise threshold changes Adjust tx power Stable

Ramping Noise measurement crosses threshold Reduce tx power to last known stable tx pwr Backoff

Figure 2. Simulation output; throughput improvement using distributed SON algorithm

(a) AP 1 (b) AP 2

Figure 3. Real life - setup and results

SON and no SON environment were very similar. However, the
APs in the network with SON active ran at substantially lower
transmit power, a full 3-6 dB below the ones with no SON;
even though both sets of APs started at the exact same transmit
power settings. This arises from the conservative behaviour
of the SON algorithm (borrowed from the original TCP). As
the number of APs are reduced, the contention drops and
individual APs start scaling their power adaptively, leading to

substantial improvements in average throughput.

A further observation was that the set point τi plays
a very important role in the stability of the algorithm. A
high value of τi actually acts as a damping factor, because
all network nodes tend to converge slowly towards this. On
the other hand, a low set point allows network nodes to be
more responsive to load conditions (since all network nodes
achieve the set point easily), at the cost of network fairness;

175Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

there is substantial variations in the mean throughput achieved
by different network nodes. A second metric is the relative
percentage of time a network node spends in stable state; it
can be seen that there are substantial variations in this when
τi is reduced and it reduces as the value of τi increases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have formulated a simple, yet robust and
generic distributed algorithm for network wide optimization of
transmit power levels for a self-optimizing network of WLAN
APs. The principles can, in general, be translated to other
networks such as LTE - in fact, any network which is power
limited can use the algorithm. Simulation and real life results
show that our algorithm provides significant improvements
over the unmanaged network.

Our laboratory experiments show that the algorithm is
adaptive to network conditions, but can lead to unstable
equilibria at times. It also suffers from the reverse of the
Stackelberg phenomenon; late starting access points tend to
drive the equilibrium of the algorithm away from an optimal
equilibrium. Future work focuses on mechanisms to limit this,
perhaps using supervisory mechanisms.

REFERENCES

[1] “Aruba adaptive network management,” http://www.arubanetworks.
com/products/arubaos/adaptive-radio-management, [Accessed January
12, 2013].

[2] “Smartmesh networking,” http://www.ruckuswireless.com/technology/
smartmesh, [Accessed January 12, 2013].

[3] W. G. 3, “”3rd generation partnership project: Technical report: Self-
configuring and self-optimizing network: Use cases and solutions”,”
Tech. Rep., March 2003.

[4] N. Ahmed and S. Keshav, “Smarta: a self-managing architecture for thin
access points,” in Proceedings of the 2006 ACM CoNEXT conference,
ser. CoNEXT ’06. New York, NY, USA: ACM, 2006, pp. 9:1–9:12.
[Online]. Available: http://doi.acm.org/10.1145/1368436.1368449

[5] I. Viering, M. Dottling, and A. Lobinger, “A mathematical perspective of
self-optimizing wireless networks,” in Communications, 2009. ICC’09.

IEEE International Conference On, June 2009, pp. 1–6.

[6] B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki, and
C. Diot, “Self Organization of Interfering 802.11 Wireless Access
Networks,” INRIA, Rapport de recherche RR-5649, 2005. [Online].
Available: http://hal.inria.fr/inria-00070360

[7] S. Bhaumik, G. Narlikar, S. Chattopadhyay, and S. Kanugovi,
“Breathe to stay cool: adjusting cell sizes to reduce energy
consumption,” in Proceedings of the first ACM SIGCOMM workshop

on Green networking, ser. Green Networking ’10. New York,
NY, USA: ACM, 2010, pp. 41–46. [Online]. Available: http:
//doi.acm.org/10.1145/1851290.1851300

[8] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan,
“Load-aware spectrum distribution in wireless lans,” in Network Pro-

tocols, 2008. ICNP 2008. IEEE International Conference on, vol. 3,
no. 3, October 2008, pp. 137 –146.

[9] D. Divsalar, “A simple tight bound on error probability of block codes
with application to turbo codes,” Journal of Programming Languages,
November 1999.

[10] P. Gupta and P. Kumar, “The capacity of wireless networks,” Informa-

tion Theory, IEEE Transactions on, vol. 46, no. 2, pp. 388 – 404, March
2000.

[11] D. Qiao, S. Choi, and K. G. Shin, “Interference analysis and transmit
power control in ieee 802.11a/h wireless lans,” IEEE/ACM Transactions

on Networking, vol. 15, no. 5, pp. 1007–1020, October 2007.

[12] K. Kowalik, M. Bykowski, K. B, and D. M, “Practical issues of
power control in ieee 802.11 wireless devices,” in IEEE International

Conference on Telecommunications (ICT 2008), Proceedings of, June
2008.

[13] L. Kleinrock and B. Tung, “Distributed control methods,” in Pro-

ceedings of the 2nd International Conference on High Performance

Distributed Computing, July 1993, pp. 206 – 215.

[14] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behaviour of the tcp congestion avoidance algorithm,” SIGCOMM

Computer Communication Review, vol. 27, no. 3, July 1997.

[15] L. Brakmo and L. Peterson, “Tcp vegas: end to end congestion
avoidance on a global internet,” Selected Areas in Communication, IEEE

Journal on, vol. 13, no. 8, pp. 1465–1480, October 1995.

[16] H. Balakrishnan, V. PAdmanabhan, S. Seshan, and R. Katz, “A com-
parision of mechanisms for improving tcp performance over wireless
links,” Networking, IEEE/ACM Transactions on, vol. 5, no. 6, pp. 756–
769, December 1997.

[17] J. Mo, R. La, V. Ananthanram, and J. Walrand, “Analysis and compar-
ision of tcp reno and vegas,” in IEEE Infocom, 99. Eighteenth Annual

Joint Conference of the IEEE Computer and Communications Societies,
vol. 3, March 1999, pp. 1556–1563.

[18] S. H. Low, “A duality model of tcp and queue management algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, August 2003.

[19] S. Kunniyur and R. Srikant, “End to end congestion control schemes:
Utility functions, random drops and ecn marks,” IEEE/ACM Transac-

tions on Networking, vol. 11, no. 5, October 2003.

176Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

