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Abstract—The power consumption rate and bandwidth gain technique of recursive call has been further depadoto

are the two major design criterions considered infte sensor  extend to the imbedded system [17-18] applications.
The conventional morphological image processing is

networks, since the sensor nodes in the network anesually

with limited capabilities in terms of processing pwer and processed by a pixel vs. pixel basis with the pagstored

bandwidth availability. These two criterions are usially
contradictory to each other. However, the efficienies of power
consumption rate and bandwidth gain are achieved

in the matrix form. In contrast, the proposed meoipbical
processing in the quad tree data structure carrdeegsed

simultaneously in the image processing on sensor tmerk ~ OY @ block vs. block basis. The pyramid approaah loe
proposed in this paper. This is made possible by @chnique  also class_|f|ed as f_ast bI_ock basis processmg/\tuhbut the
innovation: image processing in the compressed formit is compression consideration due to the pyramid lafevery

noted that in the conventional approach the compresed image  resolution in matrix form. The proposed approacmasel

must be decompressed first to be processed. Thisnmvation to achieve fast morphological processing jointlyhwimage

makes the compression and processing a joint desigiot two  compression.

separate processes as before.
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INTRODUCTION

The power consumption rate and bandwidth gaintege t
two major design criterions considered in the senso
networks, since the sensor nodes in the networkisually
with limited capabilities in terms of processingwss and
bandwidth availability. These two criterions areualsy

Signal processing and data compression should pePntradictory to each other. However, the efficieacof

considered together as a whole to make totallyciefii.

power consumption rate and bandwidth gain are =eHie
simultaneously in the image processing on senstwank

More specifically, we propose in this paper to haignal
processing and data compression suitable for baivaye,

to make a decision. We accomplish this purpose &limg
data compressed and signal processed both funityione.,
being able to be accessed and processed to aisjatefest.
More clearly, the data is compressed in the hibreat data
structure processed by morphological image proogssi
Most importantly, we implement our morphologicalage
processing on the hierarchical data structure [Bigfpad of

IMPLEMENTATION CONCEPTS WITHWORKING

proposed in this paper. This is made possible teclnique
reasoning and thus convenient for the sensor nktjlep] ~ Innovation: image processing in the compressed .férns
noted that in the conventional approach the conspres
image must be decompressed first to be procesdsd. T
innovation makes the compression and processingna j
design not two separate processes as before.

on the pixel matrix. Therefore, the signal procegsand
compression are joined together. To our knowledbs,

joint processing concept is newly proposed. ! \  nusaut
The morphology processing has long been applieéhe whole image can be accomplished by dilatingviddal

It is noted that by the quadtree decomposition, laimgary
image can be decomposed into black and white square
blocks with some fixed size of power of 2. Thudatibn of

successfully to industry auto-inspection and madivage ~deécomposed square blocks. White square blocks tieeeal
processing [5-6]. There are many efforts on hardwardilation, black square bloqks take a simple dilatly the
implementation to facilitate the morphological pessing {rée pattern copy operations. The tree patterns tlee
[7-10]. Neural network consideration was also itigeged  dilation results of black square blocks and cardraputed
in [11]. Morphological processing has recently baeplied @S patterns in advance for preparation. It is comfoovery
to video coding in sensor network by shape compimsa Many dilated block to share the same tree patterns.
[12], and cognitive sensing [13-14]. The quad toka Therefore, the implementation concepts can be suineth
structure has been well applied to the field of pater @S two strategies: block vs. block processing ugatjern
vision such as image segmentation and compress®a§]. method and efficient transformation from sequerdiatess

The quad tree with its hierarchical data structige String format to direct access pointer format. Arkiog
computationally efficient. The quad tree is basedtoe €xample is illustrated in Fig. 1.

principle of recursive decompositions of space. The
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Fig. 1. Working example of dilation by the treetpat copy operations.

I1l.  EXPERIMENTSON SENSINGAPPLICATION

For sensing need, the workout example is a cortiimua
to our research on low bit-rate video coding fonsse
network. This continuation extends video codingtdmet
tracking. The goal of this working example is todfiobject
“boat”, which is also set for the performance corgmn.
The boat obtained from the best resolution is mgas the
benchmark as in Fig. 2. The boats obtained fromldiver o .
resolutions appear image quality degradation asvshia . .
Fig. 3. Accordingly, the quality degradation can be ‘
interpreted as “distortion”, which is further nuricatly - -
defined as the error count from the error imagereafced to
the benchmark for every resolution. The error insagees ©
shown in Fig. 4.
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(d)

Fig. 2. Intermediate results of working example farget tracking using
four resolutions: only the highest resolution h®wn in this figure (a) the
original 512*512 grey picture (b) the 512*512 bipaicture (c) eroding b
by structuring element 4*4 square (d) dilating ycsbructuring element 4*4
square

(© (d)

Fig. 3. Final results of working example: erodidgating using different
resolutions compared to Fig. 5 (but Fig. 5d repkhtre as Fig. 6a) (a) the
highest resolution: 512*512 original picture withkdélement (b) the
second resolution: 256*256 original picture wittd4element (c) the third
resolution: 128*128 original picture with 2x2eslent (d) the fourth
resolution: 64*64 original picture with 2x2 elente

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-279-0

@ (b)

(© (d)

Fig. 4. Error results of working example: The tdrgeor is referenced to

the target obtained by the highest resolution ¢n 6a as the benchmark (a)
the first resolution is a blank picture becauseethe no error at all (b) the

second resolution (c) the third resolution (d)fierth resolution.

As a summary of our experiments, three proceduees a
applied in our signal processings: () binarizeamfization,
(1) down sampling in resolution (lll) shape compation
by morphological operations. It is noted that #w@or
results are compared for different resolutions riocpdures
Il and 111

IV. RATE-DISTORTIONPERFORMANCEANALYSIS

Rate—distortion theory is a major branch of infotiora
theory about source coding, which provides the ritézal
foundations for lossy data compression; it addedbe
problem of determining the smallest compressioa Ritto
encode the source signal without exceeding a given
distortion D when reconstructed by the coded dét bhe
compression rate corresponds to the cost of detabd the
distortion represents the performance. To apply rtte-
distortion theory to our work, we first define tdestortion
as the error counts from the error images refeknocghe
target image computed by the best resolution. Sgowe
interpret the rate as the power consumption ragtead of
the original data rates.
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TABLE |

NODESINFORMATION FOR THEPICTURE “BOAT"

0.9%
0.8%
0.7%
0.6%
0.5%
0.4%
0.3%
0.2%
0.1% S

0.0% — ‘
0.0E+0  1O0E+5  2.0E+5

—&— the proposed
- 4 - direct

-
N\

5.0E+5

3.0E+5  4.0E+

6.0E+5

Gray Black White
Level9 1 0 0
Level 8 4 0 0
Level 7 16 0 0
Level 6 64 0 0
Level5 247 8 1
Level4 886 67 35
Level 3 2861 281 402
Level 2 7473 1277 2694
Level 1 13472 6795 9625
Level 0 0 26168 27720

TABLE Il
SPEEDEFFICIENCY COMPARISON
Methods i wiethod

Structuring

time (msec) Time(msec)

Element
2X2
square 4468 375
4x4 10764 313
sguare
8x8 31640 406
square
distributed 13483 1172
squares
0.9% :
0.8% m —&— the proposed
0.7% | N - 48 - direct
0.6% -
0.5% N
\
0.4% | \\
03% - n
0.2% \
0.1% <
0.0% e \ Sy
0.01 0.1 1 10 100

Fig. 5. The rate-distortion performance comparispnonsumption power
for two methods: the logarithm in the processingrigontal) axis is also
required because of too large deviation for the pnacessing power spent

in the respective methods.
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Fig. 6. The rate-distortion performance comparisoncommunication
bandwidth for two methods.

The transmission bandwidth in our analysis is rdygh
computed by the data bits of the testing image Umxdhe
bandwidth cost is proportional to the data bitegraitted in
transmission. It is straightforward to count theadhbits for
the direct method, in which the picture is storedthe
matrix form. In contrast, the data bits for the pgoesed
method are computed from the node information ibl& &

It is noted that the rate-distortion analysis fantwidth can
also be interpreted as the analysis for consumptitms for
transmission power since the transmission powesiglly
proportional to the data rates. The processing powe
approximated by the processing time, which is sympl
measured in average of 100 times and listed ineTHbAS

a summary, we can associate the processing timelated
bits with the concepts of power cost and bandwictilst
respectively and have the corresponding two cagbtdion
(rate-distortion) functions represented in Fignd &.

V. CONCLUSIONS

In this paper, three strategies are proposed taawvep
the bit processing rate. First, utilizing the setsagpecial
feature, which emphasizes on decision not for Visua
aesthetics or entertainment purpose. Second, &xrgicin
appropriate functional image processing such as the
morphological image processing, which providesféature
only (not the detail) for decision. Third, develogi an
image processing in the compressed form such aken
quadtree data structure, which is advantageousendw
resolution. Strategy 3 requires a technique inriomat
image processing in the compressed form. It ischdtat in
the conventional approach the compressed image baust
decompressed first to be processed. This innovatiakes
the compression and processing a joint design wot t
separate processes as before.

Morphological processing is suitable for fast medul
applications in sensor network because it is bupbn
simple logic operations with many extended funaion
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interpretations such as erosion, dilation, thinpirand [9]
pruning. The processing efficiency can be furtimeprioved
by being implemented in hierarchical data structwéh its
hierarchical data structure, the morphological pssing |1

can be applied to be focus on any specific blodkdse
conventional direct method for morphological image
processing is processed by a pixel vs. pixel baiis the
pictures stored in the array form. In contrast, the[ll]
morphological processing with a hierarchical datacture
can be processed by a block vs. block basis. Tdiigt |
processing concept is first time proposed in tlipgs. The
processing efficiency is also verified in our expemts. (12]
The rate-distortion theory is applied to our baruttvi
gain analysis by defining the distortion as theoegounts
from the error images referenced to the target emag
computed by the best resolution. Meantime, the-rate
distortion theory is further modified by us to sputhe
power consumption rate if the rate is simply intetpd as
the power consumption rate instead of the orighitatates.
As a summary, it is the efficiencies in both thenpoession
and the speed performance to make the proposedodheth[15]
outperform the direct method significantly in thate-
distortion analysis.

[13]

(14]

[16]
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