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Abstract—Spectrum sensing in wideband regime requires huge
amount of samples. The observed frequency spectruns
usually sparse. Compressed sensing technique proesl a
viable solution to reconstruct the sparse signald'he observed
wideband spectrum can be reconstructed using compssive
sensing technique. Inherent constraints of the commpssed
sensing algorithms hinder the flexible implementatin of
spectrum sensing process. The structure-based Baias sparse
recovery algorithm is used in this paper to implemst
spectrum sensing process. Spectrum sensing perforcheising
the Bayesian estimation approach resulted in better
performance compared to the results based on commssed
sensing technique.
considering the amount of information available for the
observed frequency band. Spectrum sensing performedsing
the Bayesian algorithm showed improvement of morehan 5
dB in all cases.
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l. INTRODUCTION

Various cases have been discasse

signal is done at the Nyquist rate. In the widebeagime,
this means acquisition of colossal amount of samled
respectively high sensing time. In this paper sotuto the
wideband spectrum sensing problem is discussed) ukim
sub-Nyquist rate sampling technique.

Over the years, many algorithms (based on the Nyqui
rate sampling criteria) have been developed foisgeetrum
sensing process. Among them are the energy detdutised
sensing, wave form based sensing, cyclostationeayufe
based sensing and match filtering based sensingétising
a wideband signal using these techniques requirge la
amount of time. The compressive sensing (CS) tecieni
provides reconstruction of the sparse signals sesnal less
than the Nyquist rate [5].

Over the last few years some algorithms have been
proposed that perform spectrum sensing using the
compressive sensing technique. Some of these tilgwriare
discussed in this paragraph. In 2007, Tian and rizikis [6]
proposed the idea of performing spectrum sensingguke
compressive sensing technique. As the observedlsign
sparse in frequency domain, its frequency spectwas

The ever-increasing high data rate services and neveconstructed using the compressive sensing teetnithe

wireless service providers require more frequempgcsum

than available. This appetence of more frequenegtspm

has raised a concern of spectrum scarcity. Theuémey

spectrum is a limited natural resource. Measuresnbate
shown that the current spectrum scarcity is a reguinder-

utilization rather than the unavailability of sperh.

According to Federal communication comission [Hje t
spectrum utilization varies from 15% to 85% withgli
variance in time and space. These statistics pugstipn on
the appropriateness of current regulatory autlesritiTo

overcome this problem, Mitola and Maguire [2] imloced

the cognitive radio device in 1999. The cognitiadio (CR)

provides an adequate solution to the observed conak
spectrum scarcity. The CR avails opportunistic sede the
frequency bands that are not used by the licenseds at a
particular instance or space [2].

This paper focuses on performing spectrum sensing
wideband regime. The spectrum sensing processrés afo
the CR system. It enables the CR to scan range
frequencies and utilize any vacant ones. This m®des
many challenges associated with it. One key probldaies
to the sensing of a wideband signal. Perpetualiypdiag of

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-279-0

estimates of various frequency band locations (withe
observed spectrum) were generated using the waedtgt
detection technique. The presence or absence oifrarny
user within each frequency band was determined
observing the corresponding power spectral der{Bi§D).
In 2009, Polo et al. [7] used the analog to infdioma
Converter (AIC) instead of the analog to digitaheerter
(ADC) at the receiver. An AIC can be conceptualigwed
as an ADC operating at the Nyquist rate followed thyg
compressive sampling mechanism. In 2009, Chen. 9Jal
improved the work proposed in [6]. A multi-branched
spectrum sensing structure was proposed. Each Horanc
repeats the same procedure proposed in [6], @eonstructs
the frequency spectrum of received signal and Gitlesi the
PSD within each band. The results from all branches
combined to generate a final estimate. In 2010sblagt al.

i[8] assumed a fixed number of frequency bands m th
observed spectrum. The wideband filters were used t
gfcquire energies from some frequency bands. As the
complete energy vector of the observed spectruspasse in
nature, it was recovered using the compressiveirgens
technique. In 2010, Sundman et al. [10] modifieéd th
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proposed work of [7]. The autocorrelation vectdniaged in  discrete sequengee CM. In (1) whenM = N the Nyquist
[7] deals with the wide-sense stationary (WSS)agonly. rate uniform sampling is performed whereas seting N
However, the signal at the output of AIC is non-W38e  performs the reduced rate sampling scheme or the su
autocorrelation vector was modified in order toldeth the ~ Nyquist rate sampling [6].

non-WSS signals. They also proposed memory based The sparse signalcan be modeled as

spectral detection, which resulted in the ovemrdluction of

computational complexity. In 2010, Liu and Wan [15ed x = x50x; 2
the a priori knowledge of spectrum distribution and

proposed a mixed,/l; norm de-noising operator. They where® represents dot multiplication between the two
suggested to attain the primary user frequency bandectors,x; is an independent and identically distributed
information from the regulatory authorities. Tlepriori  (i.i.d) Bernoulli random variable and the entrigscan be
knowledge of the band gaps and the block sparsitylted  drawn from any distribution. This model sfprovides a

in better performance when compared to the stantiateld  sparse signal. The sparsity information is indulggdthe

l,/1; norm de-noising operator. Bernoulli random variable and the amplitudes ofséhe
Though compressive sensing algorithms reconsthet t observations are drawn from some other distributl@j.
sparse signals with good probability, they do suffem If the support of x is known it can be written as
some deficiencies. They are computationally compbix
not use the structure of the sensing matrix andadaise the y=0x+n
a priori statistical information about signal support and =PdWPx 4+ n
noise. These algorithms are bottlenecked by thebeurof y|S = Ogxg + ng (3)
observations. Increasing the number of observatmeds to
the better performance and vice versa. In ordevaycome O is the sub-matrix formed fror® containing only
these shortcomings the structure-based Bayesiamsespathose columns represented $hyThe maximum a posteriori
recovery algorithm (SBBSR) is proposed in [12]. (MAP) estimate of observed sigmeals given as [12]
This paper focuses on utilizing the SBBSR algoritmd
performing spectrum sensing at the sub-Nyquist. rate Ryap = arg maxs p(y/S) p(S) )

SBBSR algorithm allows flexible implementation iontrast

to the compressed sensing based algorithms. Theofes wherep(S) is the probability of a given support. Assuming

paper is organized as follows. Section Il descrities e signal model of (2), the probability of suppoan be
spectrum sensing process performed using the SBBSRitten as [12]

algorithm. Section Il exploits the flexible implemtation of

SBBSR algorithm to improve performance. Simulations ) = pS(1 —p)V-S 5
results are shown and discussed in section IV.ideat p(S)=p1-P) ®)
provides conclusion to this paper. Now, the problem of calculating MAP narrows down to

. SPECTRUMSENSINGUSING THESBBSRALGORITHM  the calculation op(y/S). In this paper it is assumed that
] ] i primary user data has Gaussian distributigf,is Gaussian,
The SBBSR algorithm provides reconstruction of spar then y|S will also be Gaussian with zero mean and

signals using the Bayesian estimation approach.léWhi covariances;. Corresponding probability is calculated as
reconstructing the signal it uses theoriori statistical and [12]

sparsity information and the sensing matrix strectu

Assume the sensing timing window is defined tas exp(—a—:lzy”):s'ly)

[0, NT,] (whereT,represents the Nyquist sampling rate). p(y/S) = (6)
According to the Nyquist theorem¥, samples are required to det(Zs)
reconstruct the original signal without aliasingpeTsampling where covariance matrix is given as
process at a digital receiver can be expressed as
2
y=0x+n & Is =1+ 756,0" )
wherex represents thd x 1 length sparse vecto@ is an To perform the spectrum sensing process using SBBSR

M x N projection matrix (or sensing matrix, which is algorithm following steps are opted. These stefs aiso
incoherent with the domain in whiahis sparse) ane is the  described in Fig. 1.

complex additive white Gaussian noise ve€@df (0, o2,1). 1- The sub-Nyquist rate sampled sigpab correlated
The process defined in (1) can be explained as the with the sensing matri@.
conversion of a continuous domain sigeat C" into the 2- Based on the correlation resBltlusters are made.
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3- LetP. denote the maximum possible support size irfor various support sizes are not required. Onanasgt is
a cluster. For each cluster find the likelihoodsdt  calculated for each cluster.
support size starting froin= 1,2, ... P.. e Case 3 In addition to sparsity, assuming the
4- Within each cluster the MAP estimates of observed spectrum consists of variable length &aqu
corresponding likelihoods are calculated asbands.
explained in (4). Assume that in the observed spectrum, variabletteng
5- Decision regarding presence or absence of théequency bands are present. The length of thespidéncy
primary user on certain frequency band is maddands is assigned based on some probability disiip
based upon the MAP estimate. The indexes ofunction. Assume that thespriori length information is also
maximum valued estimates correspond to theknown at the receiver.
occupied locations by a user.
IV. SIMULATIONS
[ll.  EXPLOITING FLEXIBLE IMPLEMENTATION OF THE The sensing matrix in case of spectrum sensing is a
SBBSRALGORITHM partial inverse discrete Fourier transform (IDFTatrix and
The SBBSR algorithm is used to recover the locationis given as
where transmission has been done by primary user.

Numerous conditions can be imposed to enhanceetisrng 0=5"TFy,' (8)
ability of a CR. These conditions have been disigs this
section and will be used in the simulation part. wheres., is the identity matrix of siz& x M andFy !

+ Case 1 Considering only signal sparsity as anis the IDFT matrix of sizeN x N . In this case the
assumption for spectrum sensing. observation vector can be written as

. Case 2 In addition to sparsity, assuming the
observed spectrum consists of fixed (same) lengtuency y=S.TFy 'x+n (9)
bands.

Consider a scenario in whiehpriori information about n is the complex additive white Gaussian noise vector
the primary user frequency band is available. Appsed in €N (0,52,1). Here it is assumed that the wideband signal of
[11], regulatory authorities assign a certain fesuqzy band interest lies in the range of [0,1000]Hz, where A is
to a user following the static spectrum allocassheme. For frequency resolution. There are two primary useesgnt in
instance, the bands 1710-1755 MHz and 1805-1850 MEz the observed spectrum and are shown in Fig. 2obkerved
allotted to GSM 1800. This also provides a hintttha a  spectrum is sparse with a sparsity level of 6% poEbesses
certain frequency band the primary users will apfpeahe the same structure as described in [6]. This chofamodel
form of clusters. For the observed frequency spetthese is helpful in comparing the results of SBBSR algon and
details can be gatheradriori from the regulatory authority. the approach proposed in [6]. In [6], compressigassg
Here, it is assumed that on a given spectrum athgy  technique was used for the spectrum sensing process
users have been assigned known and fixed lengtisb@ne  Frequency spectrum was recovered from the sub-Nyqui
key advantage is the reduction of computationalglerity.  rate sampled observations using the minimization
Earlier calculation of the estimates for varioupmurt sizes  approach. In order to obtain the frequency bandeedg
[ =1,2,... B, was required. This resulted in calculation ofinformation the wavelet edge detection techniques wa
2Fc estimates. Now with the length knowledge, thengstie's ~ applied on the recovered spectrum. The PSD of each
frequency band is calculated and decision regangiiagence
or absence of the primary user is made. In simanati

Begin Gaussian wavelet is used for the edge detectidmigae.
Correlate Observation vector y with sensing matrix @

Form P semi-orthogonal clusters of length L each around the | | I | M
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Figure 1. Spectrum Sensing Using SBBSR Algorithm Figure 2. Assumed Wideband Signal-Flat PSD

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-279-0 93



AICT 2013 : The Ninth Advanced International Conference on Telecommunications

Aforementioned cases are considered and compared $pectrum. Thea priori knowledge of the frequency band
the compressed sensing approach of [6]. TableMiges the  (whether fixed or variable) helped to achieve bette
values required by the SBBSR algorithm for thedterdint  performance. Hence, the SBBSR algorithm improves th
cases and Table Il shows the corresponding wonkdnges performance of spectrum sensing process for thehsidd
for probability of detection greater than 0.9 footh signals and in addition overcomes the shortcomings
techniques. Fig. 3 shows the corresponding plots ofompressed sensing technique.
probability of detection versus signal to noiséoréSNR).
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