
Traffic Evaluation of a Claim-based Single Sign-On System with Focus on Mobile

Devices

Mateusz Khalil

Fraunhofer Fokus

 Berlin, Germany

Mateusz.khalil@fokus.fraunhofer.de

Simon Hohberg

Fraunhofer Fokus

Berlin, Germany

Simon.hohberg@fokus.fraunhofer.de

Yacine Rebahi

Fraunhofer Fokus

Berlin, Germany

Yacine.rebahi@fokus.fraunhofer.de

Pascal Lorenz

University of Haute Alsace

Colmar, France

Lorenz@ieee.org

Abstract— The work on Web services security is not that new;

however, the provided solutions either are not efficient, or

applicable only to some special cases. As an example, the

standardization group OASIS specified a huge amount of

standards, which are unofficially called WS-*. Unfortunately,

not all of these standards are implemented by modern

frameworks and their applicability to mobile Web services is

also questionable. As the WS-* technologies are very useful in

realizing single sign on (SSO) solutions, we discuss, in this

paper, an implementation prototype for a single sign-on system

with WS-* standards and evaluate the resulting network traffic

while focusing on mobile devices. To be more precise, two

implementations (one based on NetBeans and another one

developed by the authors themselves) were achieved and their

corresponding results were compared. It appears that the

authors’ implementation performs better that the NetBeans

one and reduces the traffic generated from 85% to 50%.

Keywords-Web traffic; Single Sign-On; Mobile devices;

SOAP; OASIS; WS-*.

I. INTRODUCTION

A crucial benefit for the emerging Web services’

architectures is the ability to deliver integrated,

interoperable and secure solutions. Ensuring the protection

of Web services from attacks and misuse through the

enforcement of comprehensive security models is critical.

The work on Web services security is not that new,

however the provided solutions either are not efficient, or

applicable only to some special cases. In the literature, there

are some suggested security mechanisms, namely, Security

Assertion Markup Language (SAML) [1], which is an

XML-based standard for exchanging authentication and

authorization data between security domains, that is,

between an identity provider and a service provider. SAML

was specified by the OASIS [2] Security Services Technical

Committee and was intended to solve the Web Browser

Single Sign-On (SSO) problem. Single sign-on solutions are

abundant at the intranet level (using cookies, for example)

but extending these solutions beyond the intranet has been

problematic and has led to the proliferation of non-

interoperable proprietary technologies.

The standardization group OASIS [2] specified a huge

amount of standards, which are unofficially called WS-*[3].

Unfortunately, not all of these standards are implemented by

modern frameworks and their applicability to mobile Web

services is also questionable. As the WS-* technologies are

very useful in realizing single sign on (SSO) solutions, we

discuss, in this paper, two implementation prototypes (one

based on the NetBeans [16] technology and the other one

not) for a single sign-on system with WS-* standards and

evaluate the resulting network traffic while focusing on

mobile devices.
The outline of the rest of this paper is as follows. Section

two provides an overview of the techniques needed by the
subsequent parts. Section three discusses the proposed
approach and section, four presents the experimental results.
Finally, section five concludes the paper.

II. BACKGROUND

A. Single Sign-On

Single sign-on (SSO) is an identity management model

where the user needs to provide his credentials only once

and will stay authenticated against the realm, which may

include multiple services within the concerning Circle of

Trust. There are many different implementations of SSO

with prominent representatives like Kerberos [4] or OpenID

[5]. Main parts of a SSO system in a decoupled claim-based

scenario are Client (C), Relying Party (RP) providing a

service and Identity Provider (IdP) in the role of a STS.

Usually, the first step is a service request of C to RP. Then

RP forwards the Client’s request to a trusted IdP, because

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

RP requires identity information from C in order to check a

defined authorization policy. To prove authorization C

needs to provide a service token to RP. This service token is

provided by the IdP when C authenticates using its

credentials. Figure 2 shows a sequence how such a service

token is requested. In the sequence in the figure, C first

requests a security context token (SCT) sending a request

security token (RST) message containing C's credentials.

The STS (IdP) answers by sending a request security token

response (RSTR) containing the SCT if C could be

authenticated. Now C can use this valid SCT to request the

service token from the STS (IdP) in the next step. Hereon,

the STS validates the SCT and provides the service token

and any requested attributes. With this service token and the

attributes C is able to request the service (RP), so that the

service token is validated successfully and the service policy

is fulfilled. Finally, the service (RP) responds to the request.

The SCT's and the service token’s integrity are

commonly protected by a signature. In some solutions the

token is not forwarded by C, but is delivered directly from

STS (IdP) to the service (RP). Because there is no need for

C to authenticate again after C has received a SCT from

STS (IdP) until it has expired and C can use this SCT for

further requests to STS (IdP), this mechanism is called

single sign-on.

B. Related Work

WS-* [3] contains many specifications defined by the

standardization group OASIS. The specifications deal with

security issues as well as reliability, transactions and others.

In this paper, we focused on the key security-related

specifications WS-Security, WS-Trust, WS-

SecureConversation and WS-SecurityPolicy [2]. These

specifications describe how SOAP-messages [6] need to be

built with the objective to maintain interoperability. In an

SSO system: C, RP and IdP may be developed

independently but can interact because of the defined

languages specified in WS-*.

Figure 1: WS secure conversation

WS-Security defines how authentication and

authentication information can be stored in the SOAP-

Header. Basically other standards and specifications can be

embedded into WS-Security.

WS-Trust is a specification which can be regarded as a

Web service definition which may validate, create, renew or

delete tokens. This Web service is commonly called

Security Token Service (STS). The token is used as a proof

of authentication (and may be limited in time). It may also

contain authorization information.

SOAP is stateless which leads to inefficient usage of

bandwidth if all security information needs to be transmitted

in every SOAP-message. This problem is solved by WS-

SecureConversation which provides methods for creating

and protecting security sessions. Once a security context has

been established, tokens, claims and key information can be

stored within the concerning security context.

WS-SecurityPolicy describes a language for the

definition of security requirements. For instance a valid

security policy may require that the SOAP-body needs to be

encrypted using a certain algorithm, expected token types

and how the response message needs to be secured. The

main benefit is that this policy can be published, which

means that the consumer may adapt himself to the

requirements. Another aspect of the policy driven

development is its readability and efficiency concerning

development effort.

Finally, the XML security recommendations consisting

of XML-Encryption and XML-Signature, which were

introduced by W3C [7], specify how to encrypt and sign any

elements within an XML document. This implies that XML-

Encryption and XML-Signature can be applied in SOAP-

messages as well.

III. OUR APPROACH

Web services have many benefits and can be used in

various scenarios. Nowadays, most security dependent Web

services are secured by SSL only. For instance we may have

a production chain where many producers participate in.

Assuming that parts of the SOAP message are confidential

and have to be readable by one certain producer. SSL

encrypts on transport level but an encryption on message

level is required. This is where WS-* and XML security

standards come into play. These technologies are also very

useful in order to realize a single sign on (SSO) system.

Especially in the production chain example, identity

management of all participating parties has to be considered.

As not all of these standards are implemented by modern

frameworks, a description of critical features provided in

Apache Axis2, Apache CXF and Glassfish Metro is crucial.

A. Frameworks

Apache Axis 2 [8], Apache CXF [17] and Metro Glassfish

[9] are popular Web service frameworks. They act as SOAP

engines and have additional libraries which provide security

functionalities. We have summarized which specifications

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

and features are supported by these frameworks. In our

opinion Metro Glassfish in combination with NetBeans is

the most effective choice (we refer to Table 1). NetBeans

[16] is an extensible integrated development environment

(IDE) providing necessary tools for developing desktop,

enterprise, Web and mobile applications. Metro is simply an

open source Web service stack that is a part of the Glassfish

project.

B. Use Case

We created a simple Web service with NetBeans which

was secured by WS-* technologies using Metro Glassfish.

In particular WS-Security (UsernameToken Profile) WS-

Trust, WS-SecureConversation, WS-SecurityPolicy and

WS-MetadataExchange are used. The identity management

applied the described decoupled claim-based SSO

architecture. In our experiment, we assume that a user

authenticates himself by supplying his username and

password token to the identity provider (IdP) (see Figure 2),

who will create a SAML-Assertion describing the

authentication status of the user and hand out a symmetric

key which will be used to secure the connection to the

Relying Party (RP). Finally, this assertion token is used to

call a policy-constrained Web service.

Furthermore, we implemented ourselves a SSO system in

the Ubipol project (see section V) using the WS-*

technologies. In this project, we used the same architecture

as already described.

Figure 2: WS secure conversation

IV. EXPERIMENTAL RESULTS

We have analyzed the traffic which was generated by

decoupled claim-based scenarios. First of all, a simple

application has been employed, which makes use of the

Metro Web service stack implementation (Metro 2.1.1).

WSIT is part of Metro and provides methods for creating

reliable, transactional and secure Web services using

standards specified by the standardization group OASIS.

Second, we created our own implementation and

compared the traffic of both scenarios.

No compression is used for the traffic analysis in order to

inspect the distribution of the traffic regarding the Web

service security standards. We will distinguish between the

first and second (or further) Web service call made by the

client. All packets which are necessary for succeeding the

request are regarded as one package. This may involve

additional traffic to other recipients, in particular IdP. All

Web service security relevant XML elements were

considered and their generated traffic has been assigned to

the related standard based on the qualified name which itself

and only its content from the same standard are part of the

counted size.

In the first scenario, the first user's Web service call is

accompanied by 4.5 times more traffic than the further ones

(see Figure 3). This is caused by bootstrapping the Web

service, which contains the policy and WSDL retrieval, but

also the token request to the IdP needs to be done. The

former aspect explains, why WS-Trust and WS-

MetadataExchange are not represented in following Web

service calls, because they are part of the initial token

exchange process.

All further requests to RP require less traffic, because all

relevant keys have been established and put into a security

context. As defined in WS-SecureConversation, derived

keys are used for protecting the transported content. In the

first request, the security standards use 85% of the traffic.

This reduces in any further requests to 33%.

In the second scenario, where we analyzed the traffic of

our own implementation, the traffic of the first request is

also much higher than in any subsequent requests. Anyhow,

the overall package size is much smaller since our

implementation does not use any Metadata-Exchange and

also the transferred data of WS-Security is slightly lower.

Therefore the ratio between security data and payload

transported is much better. In the first request, the security

data creates 54% of the total package size and in further

requests lowers to only 8% (see Figure 4).

Even though modern mobile networks (3G and 4G) solve

bandwidth problems, high-latency issues still exist. In the

bootstrapping process the client request is forwarded to the

IdP, which implies an additional expensive Web service

call. When dealing with low traffic Web services the initial

waiting time may be inconvenient due to the collateral

traffic and the mentioned further forward to the IdP.

V. SECURITY IN MOBILE BASED EPARTICIPATION

eParticipation refers to the ICT mechanisms for the

citizens to express their opinions in order to influence

political, economic or social decisions. Recently, the rapid

advance in mobile computing technologies also facilitated

the emergence of mParticipation (mobile participation) to

allow citizens to be involved in Policy Making Processes

(PMPs) even on the move. The UbiPOL project [10] aims to

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

develop a new governance model in which citizens can

participate in policy making processes in the middle of their

everyday life overcoming spatial and time barriers. The core

of the governance model is a ubiquitous participation

platform that motivates its users to be involved in PMPs.

Depending on the status of the relevant policies, the citizen

may add his own opinion on his handheld device which will

deliver the opinion to the opinion base of the relevant

government agency. The collected citizen opinions for each

site objects will be connected with relevant policy objects to

be used for policy making process.

One of the main objectives of UbiPOL is to develop a

framework that

1. Ensures citizens privacy in filtering citizen

opinions

2. Secures the communication between the mobile

device and the Ubipol platform

3. Ensures the anonymity of the user in case of

opinion casting. This means the association

between the opinions records and the user identity

must remain unknown

4. Prevents multiple opinions casting

5. Manages the Ubipol platform users identities and

regulates the access to it according to the user role

In the UbiPOL project, Fraunhofer Fokus is in charge of

the items (2), (3), (4) and (5). Contrary to the work

discussed in the literature about anonymous voting ([11],

[12]) where some complex algorithms are suggested, we

came out in this project with a simple Web-based

architecture that addresses the above issues while taking

into account the limitations of the mobile devices. The

architecture is already specified and is being implemented

and tested on Android capable mobile devices. For the time

being, simple credentials (user name, password) are used for

authentication and voting tickets acquisition. In the near

future, we will enhance the framework with the use of the

new German eID cards.

VI. CONCLUSION AND FUTURE WORK

This paper provided an introduction in state of the art

specifications for securing Web services. Then a scenario

has been described where these technologies were used in

order to implement a single sign-on system. Based on two

implementations (one using NetBeans and another one

developed by the authors), a traffic analysis has been

performed and showed that WS-* technologies can produce

high overhead (more than 85% of the entire bandwidth) in

low-traffic Web service especially when using Metadata-

Exchange. In the future, we will further optimize our

realization for mobile devices by investigating the security

standards and group them into profiles that can be used for

appropriate scenarios.

ACKNOWLEDGMENT

This work was achieved within the UbiPol project [10].

UbiPol is supported by the European Community under the

FP7 ICT Work Programme (call: ICT-2009.7.3 (a)).

REFERENCES

[1] SAML, “Security Assertion Mark-up Language”. Link

http://saml.xml.org/saml-specifications, Access: March 2012

[2] OASIS: “Advancing open standards for the information society”,
link: http://www.oasis-open.org/, Access: March 2012

[3] WS-Trust, link: http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-
trust.html, Access: March 2012

[4] KERBEROS: The Network Authentication Protocol, link:
http://Web.mit.edu/kerberos/, Access: March 2012

[5] OpenID, link: http://openid.net/foundation/, Access: March 2012

[6] SOAP messages, link: http://www.w3.org/TR/soap/, Access: March
2012

[7] W3S, link: http://www.w3.org/, Access: March 2012

[8] Apache Axis 2, link: http://axis.apache.org/axis2/java/core/, Access:
March 2012

[9] Metro Glassfish, link: http://en.wikipedia.org/wiki/GlassFish_Metro,
Access: March 2012

[10] The Ubipol project, link: http://www.ubipol.eu/, Access: March 2012

[11] A. Y. Lindell, “Anonymous Authentication”, Aladdin Knowledge
Systems Inc, Bar-Ilan University, Israel, 2006. Link:
http://www3.safenet-
inc.com/blog/pdf/AnonymousAuthentication.pdf, Access: March
2012

[12] K. Sako; S. Yonezawa; and I. Teranishi; "Anonymous
Authentication: For Privacy and security“, NEC Journal of Advanced
Technology, Special Issue on Security for Network Society, Vol. 2,
No. 1, 2005.

[13] Project U-Prove, link:
http://www.fokus.fraunhofer.de/de/fokus_testbeds/secure_eidentity-
lab/projekte/u_prove/index.html, Access: March 2012

[14] Is Microsoft’s U-Prove the answer to better online privacy, link:
http://www.networkworld.com/community/blog/microsofts-u-prove-
answer-better-online-priva, Access: March 2012

[15] NetBeans IDE integration, link:
http://glassfish.java.net/public/netbeans/index.html

[16] NetBeans, link: http://en.wikipedia.org/wiki/NetBeans

[17] Apache CXF, link: http://cxf.apache.org/, Access: March 2012

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Table 1: Comparison of the different framework

Figure 3: WS-* Compared total data

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Figure 4: Our WS-* implementation compared to total data

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

