
A Resource Management Architecture for Mobile
Satellite-based Communication Systems

Philipp Drieß, Florian Evers, Markus Brückner
Integrated Communication Systems Group

Ilmenau University of Technology
Helmholtzplatz 5

98693 Ilmenau, Germany
Email: {philipp.driess, florian.evers, markus.brueckner}@tu-ilmenau.de

Abstract—Today’s Quality-of-Service (QoS) architectures for
packet switched networks, especially reservation-based architec-
tures such as IntServ, strongly depend on transmission systems
with link characteristics that do not change over time. In wireless
network access technologies however, this requirement makes
implementation of QoS challenging as links change due to
effects such as shadowing or fading caused by node mobility.
In this paper, a novel cross-layer reservation-based QoS system
is presented. It is able to deal with changing link conditions
and notifies the affected applications with the help of feedback
messages. This allows graceful degradation in compliance with
the requirements of the applications. The architecture presented
in this paper focuses on a satellite-based network for rescue teams
during a disaster scenario. Based on a geostationary satellite and
highly mobile ground stations, this network is characterized by
long transmission delays and small, changing link capacities. The
system offers a resource reservation scheme on the physical layer
which is integrated with the approach presented here to design
a cross-layer resource management architecture. This results in
a reservation system for high-latency, low-capacity and unstable
links.

Index Terms—quality of service; satellite communication; mo-
bile communication; IntServ; signaling

I. INTRODUCTION

In contrast to wire-based transmission systems such as
Ethernet, the transmission conditions of wireless systems are
considered unstable. This is especially true if nodes become
mobile: laptops that are carried around experience different
kinds of fading effects, and mobile satellite terminals are
constantly affected by trees, clouds and other obstacles that
impair the line-of-sight transmission to the satellite.

Such links with changing conditions can not be avoided,
which leads to problems regarding support for Quality-of-
Service (QoS). Reservation-based schemes like “Integrated
Services” (IntServ [1]) depend on networks with stable links
for their capacity management, which fails if the available
capacity is a dynamic parameter. In contrast, “Differentiated
Services” (DiffServ [2]), an architecture that is based on the
differentation of traffic into classes with specific properties,
does not offer reservations at all and thus is not able to offer
guarantees to the applications.

Depending on the intended use case having guarantees
might be a requirement. In the research project “Mobile
Satellite Communications in Ka-Band” (MoSaKa, see [3] for

an introduction), a satellite-based communication system is
developed to support rescue teams in disaster scenarios. In
such a system, voice communication is one very important
application, ideally in combination with video. As satellite
resources are scarce, not all communication attempts can
be admitted. However, continuous communication streams
like voice conversations are not the only traffic in disaster
communication systems. They are also used for all kinds of data
traffic like digital maps, status reports, and position information.
Therefore, a packet-switched approach based on a protocol
suite like TCP/IP is the most flexible approach to build such a
network. To serve important applications like voice reliably, a
reservation-based scheme that assures QoS can be implemented,
causing the aforementioned problem regarding the unstable
characteristics of the link to the satellite. The availability of a
QoS system coping with those limitations will be a key factor
for being able to use packet-based satellite communication
systems as backbones, especially in disaster scenarios.

In this paper the MoSaKa QoS system, a novel reservation-
based QoS architecture that is able to cope with unstable
links, is presented. The focus is on satellite-based networks.
This empowers rescue teams to communicate in environments
without communication infrastructure, which is the research
area the MoSaKa project is looking at. However, the algorithms
shown in this paper could also be applied to other QoS-enabled
wireless transmission systems, such as IEEE 802.11e.

The remainder of this paper is organized as follows: Sec-
tion II describes the environment for which the presented
solution was designed. From this the system requirements are
derived in Section III. Section IV gives an overview over the
related work. Following this Sections V and VI present the
proposed architecture and the test environment which is being
built to evaluate the approach. The paper finishes with an
outlook to future work and a conclusion.

II. THE MOSAKA RESEARCH PROJECT

The MoSaKa project funding the research presented in this
paper aims at developing a complete satellite communication
stack from the antennas up to the QoS management, including
antenna tracking systems and a decentralized resource allo-
cation scheme. In this paper, the main focus is on the QoS
system as it is seen by the higher layers. Layer 2 and below are

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Headquarter Disaster Area

Fig. 1. Typical use cases for MoSaKa entities: fixed, nomadic and mobile
terminals

only mentioned insofar as they are required to explain design
decisions taken in the higher layers.

Figure 1 shows a typical usage scenario: some nomadic and
mobile terminals deployed in a remote area use the satellite link
to communicate with their headquarter. Each terminal uses a
dynamic set of services resulting in individual traffic demands.
The communication link from each terminal to the satellite
is considered unstable: the link quality fluctuates with the
movement of the terminal and changing environment conditions.
Most of these fluctuations are short, but some may persist for
a longer time span.

Large-scale disaster recovery operations cause a huge de-
mand for communication. Satellite links are a – comparatively
– scarce resource with only a small capacity and long delays
(for geostationary orbits at a height of ≈ 36 000 km the
time-of-flight is already more than 100 ms for one direction).
These two effects have to be considered if a system-wide QoS
infrastructure is implemented.

III. REQUIREMENTS

Based on the scenario given in Section II, a set of require-
ments that a QoS infrastructure has to fulfill can be derived.

Efficient handshakes
The main issue in designing an efficient signalization scheme

for QoS requirements is the long transmission delay introduced
by the satellite link. With a round trip time of ≈ 400 ms,
complex handshakes with multiple messages travelling back
and forth are imposing an unacceptable overall latency.

Efficient handling of link instability
Today’s QoS systems assume stable links with static re-

sources that can be utilized for reservations. This assumption
is no longer valid in mobile, satellite-based communication
systems or even in mobile communication systems in general.
Over the time, the propagation conditions are subject to change.
The QoS infrastructure presented in this paper must be able to
cope with unstable link conditions.

Cross-layer link usage optimization

Satellite-based communication with multiple terminals takes
place on a shared broadcast medium. To enable parallel
transmissions via one single satellite the MoSaKa physical
and MAC layers have to distribute the available link spectrum
to all terminals that compete for resources. This happens
with respect to the individual resource demands of each
terminal. Beforehand these resource demands have to be derived
from higher-layer QoS requirements that originate from the
applications.

Due to the long delay of the broadcast medium the resource
assignment procedure takes place in a distributed manner
without central coordination and without any point-to-point
negotiation. If the link share decreases the higher layer
reservations may not fit anymore. In that case, the QoS
system has to evaluate all admitted reservations based on their
properties to keep as many of them as possible active.

A resource management system suitable for mobile satellite
communication has to address those requirements. Existing
solutions fall short in one or the other aspect prompting the
development of a new architecture for the MoSaKa project.

IV. RELATED WORK

QoS architectures such as IntServ [1][4][5] or DiffServ [2][6]
are well known and have a wide range of acceptance. Never-
theless, they have a variety of issues regarding unstable link
conditions.

IntServ

IntServ is an architecture that offers hard guarantees regard-
ing QoS parameters. Applications request reservations via a
signaling protocol such as the “Resource Reservation Proto-
col” (RSVP [7]) or “Next Steps in Signaling” (NSIS [8][9][10])
to announce their individual traffic requirements. On each node
along the transmission path an IntServ entity manages and
monitors the traffic regarding the requested resources.

Applying IntServ upon an unstable link leads to problems if
the link capacity starts decreasing. This results in a situation
where the sum of all accepted reservations does not fit into the
link budget anymore and the reservations are violated. As no
feedback mechanism is available, the system has to withdraw
reservations. Affected applications can only deal with this
situation by reserving a new path with different parameters
or ceasing communication altogether. Signaling new paths
causes additional message load on the already limited link,
contributing further to the congestion.

DiffServ

One of the problems of IntServ in large-scale networks is its
bad scalability. Due to the state kept in every intermediate node,
IntServ installations do not scale to Internet-sized networks.
This prompted the development of DiffServ which is based
on differentiation of traffic into classes which can be treated
differently by the network. This allows the assignment of
transmission priorities to distinguish different types of traffic.

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Terminal

Router

Domain 2 Domain 3Domain 1

Router

Terminal

Router

RouterRouter

Fig. 2. The network of a scenario where the MoSaKa QoS architecture is
deployed

As DiffServ does not support the reservation of a communi-
cation path, it does not offer any guarantees. Excessive traffic
in a single class might exceed the link capacity, causing packet
loss for all affected applications.

For use in mobile satellite environments, both approaches
lack certain desirable features. This prompted the development
of a new approach based on IntServ. While the scalability of
IntServ to large networks might be a problem, this will not
be an issue in the system at hand. However, the guaranteed
reservation of communication paths as offered by a reservation-
based system is crucial in a disaster scenario. MoSaKa aims
at solving the challenges arising from unstable links while
keeping the reservation features of IntServ.

V. THE QOS ARCHITECTURE OF MOSAKA

One part of the MoSaKa project has the goal to build a
reservation-based QoS architecture that is able to cope with
unstable link conditions. Therefore, an IntServ-like approach
was chosen, which introduces management entities on each
intermediate node as well as on each end system. These entities
are aware of all reservations that pass the respective node. In
the depicted scenario, static routing in the backhaul is assumed,
which ensures that each packet of a flow always takes the same
route through the network.

The resulting topology is depicted in Figure 2. The central
component is the satellite-based communication system with a
geostationary satellite and multiple terminals as ground stations.
The satellite link is considered to be a bottleneck with high
latency. The terminals act as routers for the IP protocol, and
attach local networks to the satellite network.

The result is a QoS architecture without a central coordinator.
Unfortunately, this approach inherits two issues of IntServ: it
has scalability problems and might fail if the links are unstable.
The former can be neglected with the depicted use case in
mind, but the latter will be discussed in this paper.

A. Software components

The components introduced by the MoSaKa QoS architecture
are depicted in Figure 3. There are two main components: the

Native App

QoS Agent

QoS Library

Dispatcher

QoS Agent

MoSaKa

Signaling

Protocol

IPC

a) Client b) Router

Fig. 3. Two kinds of nodes exists in the MoSaKa network: clients and routers.

QoS Agent and the Dispatcher.
1) The QoS Agent: The QoS Agent is a management entity

that exists on each node of the network including routers
and clients. This entity is aware of all ongoing reservations
that pass the node and has an overview of the transmission
resources of each interface that the node possesses. This allows
the QoS Agent to decide whether a subsequent reservation
can be admitted or has to be rejected. For the purpose of
transmitting reservation request, a signaling protocol such as
RSVP or NSIS is required. The QoS Agent intercepts protocol
messages and interprets them as necessary. On the satellite
terminal, it also communicates with the lower layers to detect
if the link deteriorates.

QoS components like traffic metering and shaping are highly
dependent on the underlying operating system of a node. It is
the task of the QoS Agent to adapt the high-level reservations
to the QoS primitives available on the host to allow a wide
deployment of the architecture in heterogeneous networks.
Each agent, therefore, consists of a generic part handling the
signaling and admission control and a system-specific part
configuring the underlying operating system services.

2) The Dispatcher: The Dispatcher is an optional component
that is only required if a given node has applications running
on it, making it a client. A dispatcher acts as a broker
between the applications running on the client and the QoS
system in the network. The applications talk to the Dispatcher
using “interprocess communication” (IPC). The Dispatcher
handles all QoS-related interaction with the network relieving
the application from doing so. Additionally it serves as an
entry point for requests and notifications from the network,
decoupling the local application structure and the state saved
along the communication path. From the network point of view
the Dispatcher is the entity that holds a reservation and renews
it as necessary.

Reservations are always triggered by an application. The
Dispatcher merely acts as a proxy. Therefore applications are
a part of the MoSaKa QoS architecture as well and need to
be modified to take full advantage of the system. One has to
distinguish QoS-enabled applications, legacy applications and

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Native App

Dispatcher

QoS Agent

Wrapper

Legacy App

Config file
QoS LibraryQoS Library

Dispatcher

QoS Agent

MoSaKa

Signaling

Protocol

IPC IPC

MoSaKa

Signaling

Protocol

a) Native App b) Legacy App c) Translator

Dispatcher

IPC

MoSaKa

Signaling

Protocol

QoS Agent

TETRA to IP

QoS Library

Fig. 4. Three kinds of applications are distinguished: Native, legacy and
translator applications.

translator applications.
QoS-enabled applications: As shown in Figure 4 a, a

QoS-enabled architecture includes the MoSaKa QoS library.
This library offers an high-level API to interact with the
QoS architecture and allows the programmer to easily request
transmission resources or to be notified if an active reservation
fails or deteriorates. Such an application is aware of its traffic
demands and is able to request the appropriate amount of
resources before it starts transmitting. Additionally, it is aware
of the fact that feedback messages may arrive that indicate
that the reservation is affected by the current transmission
conditions.

Legacy applications: All IP-based applications that exist
today are considered as legacy applications. They are not aware
of an API to request transmission resources, resulting in traffic
that is not known to the local QoS Agent. Two approaches are
possible: this traffic can be considered as “best effort” traffic,
which may or may not pass a bottleneck in the network, or
it can be reserved with the help of a “wrapper application”
(Figure 4 b).

Such a wrapper loads a predefined set of QoS requirements
from a configuration file, initiates the reservation process and
then, if successful, executes the legacy application. In that
case, the application does not need to know anything about the
QoS system, but benefits from it nevertheless, as the required
resources are reserved.

The reservation is held all the time even if the application
does not emit traffic. Even worse, to initiate a reservation, the
endpoint must be named, which limits the application to a
given set of predefined peers. However, such a wrapper can be
seen as an intermediate solution until the affected applications
implement the QoS scheme.

Translator applications: As a third kind of applications,
a translator application, acts as a gateway to other kinds
of reservation schemes or networks such as circuit-switched
telephony systems. Such an entity is a special case of a QoS-
enabled application (Figure 4 c).

In disaster scenarios, connections with other network types
such as “Terrestrial Trunked Radio” (TETRA [11]) may be

required. A dedicated gateway node with a TETRA base station
and a translator application installed on it can interconnect both
networks, allowing TETRA terminals to make telephone calls
to the headquarter via the satellite. The translator application
is aware of the required resources of a TETRA channel, as the
traffic requirements of the codecs involved are known. This
allows it to send suitable reservation requests into the MoSaKa
network.

B. The QoS-enabled network

The network consists of two kinds of nodes: intermediate
nodes are referred to as routers, and end systems are referred
to as clients.

As routers have no applications running on them, the only
entity required here is the QoS Agent. The routers that are
connected to the satellite system are referred to as terminals.
On such a terminal the QoS Agent is equipped with additional
capabilities to manage the link to the satellite.

Clients, as they are considered as user equipment, have appli-
cations running on them additionally requiring the Dispatcher
as a bridge to the network.

On each network node the QoS Agent has to configure
the local packet forwarding entity of the operating system to
stop misbehaving applications from congesting the outgoing
interfaces. It should be impossible that traffic, that exceeds
the capacity of the outgoing link, causes packet loss for flows
that have been negotiated before. This is achieved relying
on platform specific mechanisms to control traffic flow like
“Traffic Control” (tc) and “Netfilter” on Linux or the MoSaKa
MAC scheduler on the satellite terminal.

The signaling scheme

On each client QoS-enabled applications communicate with
the local Dispatcher via an API offered by the MoSaKa
QoS library. Through this API the application informs the
QoS System about the amount of resources it requires for a
transmission to a well-defined peer. The Dispatcher creates a
reservation request signaling message that it sends to its peer
entity, the Dispatcher on the destination node. All signaling
messages are intercepted by each QoS Agent along the path to
the destination, allowing them to decide whether to accept
or to deny the reservation request. If such a reservation
has to be denied because of insufficient remaining link
resources, a negative acknowledgement is sent back to the
initiating Dispatcher. This results in a deletion of the pending
reservation on all intermediate nodes and leads to a negative
acknowledgement to the application via the QoS Library.

In case of success, the QoS Agent on the destination node
informs the local Dispatcher of an incoming reservation request.
This Dispatcher may be aware of local applications as they
are allowed to register to it beforehand. Nevertheless, it sends
an acknowledgement back to the originator. This message is
intercepted by all QoS Agents again and results in an orderly
created reservation along the whole path.

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

C. Feedback mechanism

To deal with changing link conditions, MoSaKa adds a
feedback mechanism to the signaling protocol. Such feedback
messages originate from an QoS Agent observing a deteriorat-
ing link on its outgoing interfaces and are sent to all applications
that hold reservations affected by this degradation.

On each node, the link hardware is monitored by the
local QoS Agent. Additionally, this entity is aware of all
active reservations that involve this link, allowing it to decide
whether the remaining capacity is still high enough to serve
all reservations. If the capacity falls below the amount of
reservations, the QoS Agent starts to optimize. Optimization is
done by building a set of allowed reservations starting from the
one with the highest priority. Reservations are incrementally
added to the set if there is still capacity available. This simple
optimization algorithm is suited well for highly hierachical
communication environments like desaster recovery operations.

After optimization the QoS Agent has a list of reservations
that still have enough resources and a list of reservations that
do not fit into the link anymore. Instead of cancelling these
reservations as architectures such as IntServ would have to do,
the QoS Agent of MoSaKa is able to put affected reservations
“on hold”. Such a reservation is still known to the whole path,
but can not be utilized for the moment. If the link recovers
shortly later, the reservation is reactivated by another feedback
message. As the MoSaKa scenario states that link degradations
are short in nature, this approach allows a reservation scheme
with a low amount of signaling messages. Applications do
not need to actively poll the network for free resources which
would introduce a high signaling load. Nevertheless, if the link
stays degraded for a longer time span, the QoS Agent may
cancel the reservation to prevent congesting the network with
reservations that cannot be served anyway.

In the MoSaKa QoS architecture, signaling messages are
usually exchanged between Dispatchers on two peer nodes,
and are intercepted by all QoS Agents on each intermediate
node including the end nodes that run the Dispatchers. If
a given reservation has to be suspended, the QoS Agent
creates signaling messages and sends them to both Dispatchers,
allowing all other QoS Agents to notice that this reservation
is currently “on hold”.

If a signaling message arrives at a Dispatcher, it relays it
to the respective application which triggers a trap in the QoS
library informing the application about an accepted, suspended,
resumed or cancelled reservation.

This feedback scheme is new and allows a graceful degra-
dation of communication. To underline this, one of the most
important applications of the MoSaKa scenario is analyzed:
Video chat.

D. Impact on Video chat

If a user starts a video chat session with the headquarter, the
video chat application tries to reserve resources for the video
data and for the audio data separately. As a video chat session
is bidirectional, the reservation requests resources for both
directions at the same time, allowing the signaling handshake

to complete fully after just one round trip. If the reservation
handshake is completed without rejections from intermediate
systems the path is active and can be utilized.

If the satellite link deteriorates, this is noticed by the QoS
Agents on the satellite terminals. They start the optimization
process which results in the less important video streams
to be put “on hold” to keep the audio streams active. A
feedback message is sent to the Dispatchers at both ends of
the path, resulting in the deactivation of the video stream in
the application. If the link recovers, another feedback allows
the video stream to be resumed. Applications may provide a
visual indication based on the network state to make the proess
transparent and increase user satisfaction. If the link fails to
recover the reservation is cancelled by the network. This frees
resources permanently for reuse by other applications.

The “on hold” state allows the system to bridge short link
degradations that are common in mobile satellite communi-
cation without reconfiguring the whole path causing large
signaling effort. The feedback mechanism allows applications
to intelligently react to those changes in the network. Especially
for satellite links with long delays and a low capacity, such a
scheme is essential to operate as desired.

E. MoSaKa Satellite Terminals

To check whether all active reservations fit into the current
link capacity, the QoS Agent has to obtain this information. For
that purpose, technology-dependent functionality is required to
interact with Ethernet, IEEE 802.11e or the MAC- and PHY
layers of the MoSaKa satellite terminals.

The MoSaKa satellite link offers QoS-enabled lower layers.
From the physical layer point of view the satellite link is always
a shared medium. Each terminal can be received (although not
necessarily decoded due to signal quality issues) by every other
terminal via the satellite. Therefore it is necessary to allocate
parts of the link spectrum to specific sender terminals to prevent
collisions. To accommodate for changing link conditions this
allocation is not static but takes place every 250 ms. Each
active terminal is assigned a short time slot on the lower layer
(L2) signaling channel in this period and broadcasts its resource
request to all other terminals. Based on this information, each
terminal applies the same resource assignment procedure and
comes up with the same resource allocation vector for the
next 250 ms data transmission frame. A reservation on the
lower layers is valid for only one slot, and has to be renewed
continuously by using the L2 signaling channel.

If the link between one terminal and the satellite deteriorates,
the QoS Agent on this terminal gets informed about a lower
amount of transmission resources that this terminal got assigned
for the next data transmission frame. This allows the QoS
Agent to check whether high-level reservations and available
link share still match and take appropriate actions if they do
not.

VI. EVALUATION

The presented architecture will be implemented as a proof-
of-concept for the Linux operating system. To evaluate the

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

VDE Wirefilter

(simulation of the satellite link)

VDE-Switch
VDE-Switch

VDE-Switch

VDE-Switch

VM Router

+

QoS Agent

VM Router

+

QoS Agent

VM Client 1 VM Client 2 VM Client 3

Sat Terminal

+

QoS Agent

Sat Terminal

+

QoS Agent

VDE-Switch VDE-Switch

Fig. 5. The MoSaKa virtual testbed based on QEMU/KVM and VDE

implementation a virtual network environment based on
QEMU/KVM [12] is currently set up. Different Linux-based
guest systems are interconnected using “Virtual Distributed
Ethernet” (VDE [13], by Virtual Square). Heart of the testbed
is the satellite link emulated by wirefilter, a part of VDE that
allows to set up virtual Ethernet connections with various
parameters such as the data rate, delay or the packet loss rate.
At each end of the emulated link resides a Linux-based guest
system acting as a the MoSaKa satellite terminal. Connected
to them are networks of different structure depending on the
scenario. A possible scenario is shown in Figure 5. Each part
of the network contains an additional QoS Agent as well as a
set of clients acting as signaling and traffic sources.

In parallel to this virtual testbed designed to test the high-
level parts of MoSaKa, the complete stack including the
terminal hardware is currently being implemented. This “real
world” setup will allow tests of the whole communication path
developed during the project. The resulting architecture will
include all layers, from the QoS-enabled applications down to
the antenna. The system is based on a virtual satellite placed on
a tower. A motion emulator and a channel simulator provide
the infrastructure to simulate the influence of mobility on
the Ka-band channel. A directional antenna on a 3D rotor
acts as the mobile terminal. The motion emulator is driven
by data from measurement campaigns carried out earlier to
create a communication environment as it is expected “in
the wild”. Using this realistic emulation environment close-to-
real measurement results on all layers are expected from this
implementation.

VII. CONCLUSION AND FUTURE WORK

This paper presented a novel QoS architecture called
“MoSaKa QoS” for mobile satellite communication links.
Existing approaches like IntServ are not suited for such an
environment with unstable, long delay links. The optimistic,
bi-directional signaling architecture of MoSaKa QoS with the
included feedback mechanism supports reaction to link changes
while minimizing the number of messages exchanged. Cross-
layer resource optimization spanning layers 1 to 3 enables a
better usage of the currently available channel, maximizing the
user experience.

Future research should investigate into the possibilities

opened up by the MoSaKa feedback mechanism. Modern audio
and video codecs offer various output profiles with different
data rates and quality settings. An integration with the QoS
system might provide further options for graceful degradation
of the link.

From the architecture point of view further research might
look into alternative QoS models based on probability dis-
tributions instead of hard thresholds. Equally interesting are
novel reservation models which provide more powerful ways
to express requirements, enabling the system to adapt better to
changing conditions without consulting the application. Another
open question is the extension of the optimization algorithm
to more general use cases without a strong hierarchy among
communication paths.

At the moment MoSaKa uses a static IPv6 routing setup. In
the future the system should adapt to various routing protocols
to enable network-level node mobility.

One final research direction is the integration of legacy
applications into the system. Applications that cannot be
adapted to the MoSaKa system could be integrated using
translator applications/application-level proxies or DiffServ-
like classification approaches.

REFERENCES

[1] J. Wroclawski, “The Use of RSVP with IETF Integrated Services,” RFC
2210, September 1997.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475, December 1998.

[3] M. Hein, A. Kraus, R. Stephan, C. Volmer, A. Heuberger, E. Eberlein,
C. Keip, M. Mehnert, A. Mitschele-Thiel, P. Driess, and T. Volk-
ert, “Perspectives for Mobile Satellite Communications in Ka-Band
(MoSaKa),” in EuCAP 2010: The 4th European Conference on Antennas
and Propagation, Barcelona, Spain, 04 2010.

[4] J. Wroclawski, “Specification of the Controlled-Load Network Element
Service,” RFC 2211, September 1997.

[5] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed
Quality of Services,” RFC 2212, September 1997.

[6] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,”
RFC 2474, December 1998.

[7] A. Mankin, Ed., F. Baker, B. Braden, S. Bradner, M. O‘Dell, A. Romanow,
A. Weinrib, and L. Zhang, “Resource ReSerVation Protocol (RSVP) –
Version 1 Applicability Statement Some Guidelines on Deployment,”
RFC 2208, September 1997.

[8] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch, “Next
Steps in Signaling (NSIS): Framework,” RFC 4080, June 2005.

[9] J. Manner, G. Karagiannis, and A. McDonald, “NSIS Signaling Layer
Protocol (NSLP) for Quality-of-Service Signaling,” RFC 5974, October
2010.

[10] E. G. Ash, E. A. Bader, E. C. Kappler, and E. D. Oran, “QSPEC Template
for the Quality-of-Service NSIS Signaling Layer Protocol (NSLP),” RFC
5975, October 2005.

[11] E. Re, M. Ruggieri, and G. Guidotti, “Integration of TETRA with
Satellite Networks: A Contribution to the IMT-A Vision,” Wirel.
Pers. Commun., vol. 45, pp. 559–568, June 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1363306.1363328

[12] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41–41. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1247360.1247401

[13] R. Davoli, “VDE: Virtual Distributed Ethernet,” in Proceedings of the
First International Conference on Testbeds and Research Infrastructures
for the DEvelopment of NeTworks and COMmunities. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 213–220. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1042447.1043718

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

http://dl.acm.org/citation.cfm?id=1363306.1363328
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1042447.1043718

	Introduction
	The MoSaKa Research Project
	Requirements
	Related work
	The QoS architecture of MoSaKa
	Software components
	The QoS Agent
	The Dispatcher

	The QoS-enabled network
	Feedback mechanism
	Impact on Video chat
	MoSaKa Satellite Terminals

	Evaluation
	Conclusion and future work
	References

