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Abstract—Motivated by a polarization approach to construct ~ of such improvements. As the present work progressed, it is
code sequences related to Reed-Muller (RM) codes with gen- shown that polar-code sequences have much in common with
erator matrix G- Of size 2" x 2" 1o increase the cutoff rate,  peed-Muller codes [6]. Indeed, recursive code constractio

we consider a problem of systematic constructions of polar q ) llati d di hich i
codes as splitting threefold input binary discrete memoryéss and successive cancellation decoding, which are two es-

channels (B-DMC) for generator matrix Gs». The polarized ~ Sential characters of polar coding, appear to be introduced
channel achieves the symmetric capacity of arbitrary binay- into coding theory. It has a relationship to existing work
input discrete memoryless channels under a low computation by noting that polar-code sequences can be made to be
complexity of successive cancellation decoding strateggrfany multilevel in terms of generator matrices,. originating

core matrix Os, which is a submatrix of generator matrix . -
Gi = 02 ® Os. In principle larger matrices G with fast from Plotkin’s constructions [7]. Therefore, Polar codhms

construction algorithms can be used for constructions of plar a strong resemblance to Reed-Muller coding, and hence may
code sequences that tend to polarize with respect to the rate be regarded as a generalization of Reed-Muller codes since
and reliability under certain fast combining and spliting  poth coding constructions start with a generator matrix for

operations. The proposed polarization code scheme has a , r416 one code and obtain generator matrices of lower rate

salient recursiveness feature and hence can be decoded with . o .
a belief propagation (BP) decoder, which renders the scheme codes by expurgating rows of the initial generator matrices

analytically tractable and provides a powerful low-compleity ~ While in this paper, we would like to point out that polar-

coding algorithm. code sequences that have the same structure as Reed-Muller
Keywords-polar codes; binary discrete memoryless channels; ~ c0des have a sparse factor graph representation and can be
channel coding; fast algorithm. fast decoded with BP decoder for superior performance [3],

(8l
I. INTRODUCTION

The channel polarization may be consisted of code se- Since polar-coding, which may be considered as a gener-

quences using a belief propagation (BP) decoder with sym:gllization of Reed-Muller coding, is an approach employed to

metric high rate capacity in given binary-input discrete ONstruct capacity-achieving codes with certain symrestri

memoryless channels (B-DMC) [1]. It is a commonplace’® demonstrate the performance advantages of several polar
phenomenon that is almost impossible to avoid as lon .ode sequences under BP decoder with respect to symmgt-
as several similar channels are combined in a sufficient® ¢aPacity and Bhattacharyya parameter. The symmetric

density with certain elegant connections. The investigati capacity is the highest rate achievable subject to using the
input alphabets of B-DMC with equal probability. Polar-eod

of channel polarization not only has become an interestin(%f] : ; O . :
theoretical problem, but also have lots of practical agplic S the first provably capacity achieving code with low coding
complexity [9].

tions in signal sequence transforms, data processingalsign

processing, and code coding theory [2], [3]. According to construction of polar-code sequences, we
Motivated by a fascinating aspect of Shannon's chanygnsider a generic B-DMC denoted By : X — Y

nel coding theorem that shows the existence of capacityyiih input alphabetst = {0, 1}, output alphabety, and

achieving code sequences [4], we show a novel constructiofansition probabilitiesV (y|z) for z € X',y € Y. There are

of provably capacity-achieving sequences with low codingyyo channel parameters [1], i.e., the symmetric capacity
complexities with BP decoders. This paper is an attempt to

meet this elusive goal for B-DMC, which is an extension of 7(yy) = Z Z lW(ylx) log - W(y|$f) Q)
work where channel combining and splitting were used to to 2 W (y[0) + s W (y[1)
improve the sum cutoff rate [1]-[3]. In a recent investigati

the above-mentioned rate has been generalized for differef nd the Bhattacharyya parameter

forms of polar-code constructions [5]. However, there i fe Z(W) = Z VW (y|0)W (y|1). )
recursive method suggested there to reach the ultimate limi yey

reX yey
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The two parameters are much useful as measures of rate o
and reliability of the B-DMC, i.e., the Shannon capacity % Wé W X 1% N
I(W) is the highest rate at which reliable communication is - /M
possible using the inputs with equal frequency, adl’) is LT A - 2l W ¥
an upper bound on the probability of maximum-likelihood WO %/
(ML) decision error. U {7 5 MW Y3

Throughout this paper, we use the notatighto denote a W %Wu) X,
row vector(ay,--- ,ay). Given such a vectos), we write iy . o« » W Vs
a] to denote the subvectds;, - - - , a;). Moreover, we write w;:/% W t
a4 to denote the subvectdn; : i € A C {1,2,--- ,N}). S e . o W Vs
We write aj , to denote the subvector with odd indices y w,” A X
(a;:1<i<j, iodd), anda], to denote the subvector ° [* ¢ W Y
with even indices(a; : 1 < i < j, ¢ even). Similarly, U m/ R X,
we write aj , to denote the subvector with the indices L W Y1
(a; : 1 <i<j, i=pk+1). We wriite WY to denote the ,, |%) 0 X,
channel corresponding t§ uses of B-DMCW, and hence, S I i W Y
W XN YN with WN (yNxN) = [T, W (yilz:). u W 3,

; . . R . o W Yo

This paper is organized as follows. In Sec.ll, generation
matrices of polar codes are presented via the channel com- W
bining and splitting. In Sec.lll, according to the propestbf !
polarization constructions, a decoding algprithm is sstE _ Figure 1. Transformation ay = (O3 ® I)(Is @ Os).
for the Gy-coset codes. Finally, conclusions are drawn in
Sec.lll.

Il. POLARIZATION CONSTRUCTION Taking block lengthN = 3", the channel combining

In this section, we derive fast constructions of polar-eode Pased on core matri@; of order3 includes3™ copies of a

based on Arikan’s construction [1]. We begin by giving 9'VeN B-DI?/_I)CW in a recursive manner to produce a vector
3 . . . .

an explicit algebraic expression of generator ma@ix of ~ channelVs. foranyl <i < 3".In a similar way , the first
polar-code, which has been defined in a schematic form. Thigvel of the recursion combines three independent copies of
algebraic form of7y point at an efficient implementation of "W @s shown in Fig. 1 and achieves the combined channel
coding operationi¥ G . In analyzing the coding operation, W3 with the transition probabilities described as
\[/\g]a exploit its relation to fast transforms in signal procegs Wa(y3[ud) = W (1| @3y w)W (yolu2) W (yslus),  (3)

We carry out the construction a@f y-coset codes before Wh3ere3 tr;e mappingWW; is defined asWs(yilx}) =
specializing polar-codes. Recall that individu@ly-coset W°(yiluiOs), where the core matrix

codes are identified by a parameter vedtd, K, A, p.4¢) 1.0 0
[1]. In the following analysis, we fix the shorted parameter Os=11 1 0
vector (N, K, A) while keeping freeu 4. to take any value 10 1 ’

over YN—K as frozen bits. In other words, the analysis of
polar-code sequences will be over the ensemblg pfcoset  is sub-matrix of0, = 057, i.e.,
codes with a fixed parameter vectoN, K,.4) based on O 03x1
several families of generator matric@sy = (9?", where® 0O, = ( 11s 1X ) )
denotes keronecker produet,is a positive integer.

Constructions of polar-code sequences based on generatherel;,s = (1,1,1) and0s,; = (0,0,0)”.
matricesGs~ are derived from the radi®v = 3™ channel For the second level of the recursion, we combine three
polarization, which is an operation by which one manufac-independent copies d#3, as shown in Fig. 2, to generate
ture out of N independent copies of a given B-DMW the channelV;: with transition probabilities

ields a second set aV channels{IW3; : 1 <i < N} that

)s/how a polarization effect in ass{enge that,MsbeE}:omes Waz (viuh) = Wa(yi| @iy wi, Si_qui, ©7=qui)
large, the symmetric capacity ternig(Wi,) : 1 < i < N} W (yglug, us, ug)Ws(y7|us, us, ug).  (4)
tend toward9® or 1 for all but a vanishing fraction of indices
i. This operation consists of a channel combining phase an
a channel splitting phase. Bo(u}) = (u1,ug, ur, uz, us, ug, us, U, ug). (5)

Hefine the permutation operatiddy = Ry, i.e.,
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Therefore, we obtains the mappin§ — x3 from the input Wg(?\f_l)(y?N 3i’2|U31 1)
of Wy to the input of W* such thatx! = ulGy, where o 33 o
Gg = BgGg = BgOgy = 39(9;3,@2- = Z Wy (v, @ 7 1Up; | ®j—o usi—j)

U34

W(l) (YN+1au§lz 3|U3i71)W( )(y2N+17 U?Z?, 3|U3i)

Generally, we get the extensive form of the recursion W(3l>(
while three independent copies &¥;.-1 are combmed

. W(Z)( @ 3i— 3|®2 . )

to produce the channels.. The input vectoru; is = 3N W Wi=t j=0 U3i—j

transformed tas$” such that

y 3i_1|U31)

'Wz(vl) (YN+1au§lz 3|U3i71)W1(v (Y2N+17u1 3 |U31)-

a2 o o
$3i-2 = TjooUsi—j;  S3i-1 = Usi—1, 830 = Usi The transformatiorEs. is not only rate-preserving but also
for 1 < i < 3"!. The operatorRs. is a permutation reliability-improving, i.e.,
operation defined as

n n an an 31 7) (4)
Roul') = () Z TV ) =31Wy)
= (Ul,"' ,Ugn —2,U2,*** ,U3n_1,U3, " " * ,’ngn).
n n ) (3i—j) (3)
It is obvious that the mapping®” — x3" from the input of Z Z(Wyy ") <3Z(Wy).

the synthesized chann@ls. to the input of the underlying J=0

raw channelg¥3" is linear and hence can be representedn addition, the channel splitting moves the rate and réiab
with a generator matrixis-» so thatx?" = u}"G3.. Thus ity away from the center. Namely, we obtain the following
the relation of transition probabilities (Wgn andW?" are  results
described adVs. (y3" [u” w3" u3" Gsn), where i i i i
e G~ GJ@ B HOWE) < IV <1V < 1(wE3)
3"-order permutation matrix defined bz» = Rsn (I3 ® ZWS > z2Win N> 2w > 2w,

By=t). The afore-mentioned reliability terms further satisfy the

following constrained conditions

recordin 1 the oreviowsl defod . ZWin ) <32(Wy) — 223 (W)
ccording to the previously defined processing for chan- (3i—1) (3i)y _ (i)\3

nel combining and spllttmg which transforrisndependent ZWy ) = 2(Woy') = Z(Wy')". ©)
copies of ¥ into W3 for 1 <i < 3, we get the foIIowmg
one-to-one mapping to describe the relatioriiofand W3

W W) (W(l) @ W(g)) where To illustrate the process of polarization on the basis of
. ’ ) 3 3 3

core matrixQ3 for a given N = 3", each input sequence

N can be encoded through using an encoder
Wé”(yﬂul) = 3 Wl Oy w)W (el W (gslus) ™ on feng
u2,U3 Xiv = uj GN7 (7)

Wi (v s |uz) = ZW (1] @7y u)W (yalu2)W (yslus)  whereGy = ByOS™ is the generator matrix of orde¥

and By is a permutation matrix (operation) defined in the
WA (v, us) = 3T (1 5y )W (yafua) W (ysfus).  FECUTSIOn way as

In a similar way, forN = 3" we ach|eve the generalized By = Ry (I3 ® Ryys) -~ (Inys © ). (8)
mapping to establish the relation (WN and WB(N) as  We note thalO3 - O3 = I3 and By = Ry(I3 ® Byys).
follows

i (W](Vi),WJ(Vi),WJ(Vi)) — (Wé%iz),Wéf\ffl),Wéf\f)), Actually, it is easy to prove thaRy(G3 ® In/3) =
(In/s ® O3)Ry. Therefore, one has

Gn = (Iny3 ® G3)Rn (I3 ® Ryy3),

which can be rewritten as

where
Wi 2y ud P ugis)

= > gWJ(\;)(y{V@? Wy @7 usij)

U35—1,U34 Gy = RN(OB & C7YN/3)
'WJ(\;) (YN+17 u?lQ 3|u3i71)W](V)(y2N+la uy! 3 *uszi) = Bn(l3® RN/3)(O§§2 ® Gnys2)- ©)
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DenoteGy = og‘?”. Then one achieves Zgng, < Zzny forany 1l < j < k < 3" The
generator matrixGp (3™, K) of a (3", K) polar-code can
In = On3®0s be constructed from the sub-matrix ¢fs5. with indices
T ‘ R - {i1,--+ ,ig} C {1,---,N}. According to the polarization
- 1:[1(]3"71 ® 038 Iy) = ngN’ (10) of channel with generator matric&s;s., it is obvious that
_ i i the computational complexity of this processing2is3= .
where Gy = Izn-s ® G3 @ I3i-1 and G = Os. Conse-  However, the computational complexity of the direct ap-

quently there areV' row's permutation matrice#; (i) and  proach isn3", which shows an advantage of the proposed
N column’s permutation matrice®s (i) of G4 such that construction.

PR (i) - Pg(i) = P{(i) - P§(i). Then we show that the

A Example 1: Taking the matrixGy = 05 for recursion in
factorizations have equal factors as follows

Eq.(13), we have

PLGNP = HQ}V = (I3n-1 ® O3)", (11) Zy = (0.857,0.034,0.034, 0.034,0.001, 0.001,
i=1 0.034,0.001,0.001),  (14)
whereGy, = Py (i) - Gy - PR (i) which gives the permutatioms = (9,8,6,5,7,4,3,2,1)
Moreover, we consider another channel combiningfor rows of the generator matrig,. Exploiting the po-
scheme based on core matrix larization of channel with generator matric€sg, the code
10 0 (9,5,{9,8,6,5,7},(0,0,0,0) can be constructed with the
Os=[ 0 1 0 encoder mapping as follows
L x] = uiGy
to generate a vector channm'éfl), where the core matrix 110110000 100000000
O, is sub-matrix of0,; = 02, iie., 101101000 110000000
O, — 1 03}1 110110110 000100000
T\ 1lis O3 )0 101010101

wherel; s = (1,1,1), 05,1 = (0,0,0)7, andO3-O5 = I5.  For a source block1,1,1,1), the coded block isx] =
In this case the first level of the recursion combines thred1,1,1,1,1,0,0,0,0). It is necessary to note that this code
independent copies & that achieves the combined channelis an (N, K) = (9,5) Reed-Muller code with the generator

W3 with the following transition probabilities matrix

110110000
Wa(yiud) = W(yi uy & us)W (y2lug © us)W (ys|us), (12) 101101000
where W is defined asivs(y?|x?) = W3(y?[u30y). To Gr = TR
design the second level of the recursion we obtain the 101010101

combined channdl’;: in Fig. 2 with transition probabilities

IIl. DECODING ALGORITHM
W2 (Y?|u?) = Wg(y§’|u1 ® us, us O ug, u7 O uy)

6 3 6 9 9
Wa(uil Siza i Bizstti: Sigtts) Walyrus, o, uo). In this section, we consider the decoding algorithm of
To construct polar-code sequences of block length the proposed polar codes. As in the previous section, our
based on the polarization of channel with generator matricecomputational model will be a single processor machine
G3~ for core matrixOs of order3, we should compute the With a random-access memory. We consider the decoding
reliability channel polarization in terms of the vector of Gy-coset codes with parametefs/, K, A, <) for a
given block lengthV = 3™.
Recall that the source vectar¥ consists of a random part
through using the recursion 4 and %frozen part 4- such thatnl = {u4Up.c}. This
. vectoruy' is transmitted acrosd/y and a channel output
32y; =24y 5, forl<j<k; yVis obltained with probability/[/]\zzv(yﬂu{v). The decod%r

Z(3n) = (Z3n717 23"727 N 7237l73n)

- 3 1
Z3k,j = gg,j—k’ ]:8: 12€k++11S<] ,§<2§}€ (13) observegy!, u4-) and generates an estimatg of ul".
kg =2k =7 =0 If i € A°, the elementy; is known, and thus the-th
for any k = 1,3,3%,---,3""! starting with Z; ; = 1/2. decision element igi; = u;. However, ifi € A, then the
After that we generate a permutation operation. = i-th decision element waits until it has received the presiou
(i1, ,i3n) With respect to the setl,---,3") so that decisionsi}~'. Upon receiving them, the decoder computes
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Lg\z;’i—z)( N ﬁ?i—3):WN(y{Vaﬁ§Z:73|O)
7 Wy (yN, 4y ?|1)

i N/3 .30 i
L§v)/3(y1 / 7@?:11’-?4 3)L( )

N
N/3(y2N/3+17 U3

2N/3

03 ) LN (Va0 ) + 1]

N/3

=~ TG i 2N/3
ORE: @ 2N/

(1) 2N/3  ~3i—3y\r7 (%) N/3
Livys(Vnysin Wiz ) Lyys(va j

373 (1)
By ) + Lz\lr/3(yévzv/3+1v uj 3

. 3;—3 ~3i—3 (1)  3i—3
7@?:1“12‘ )+ LN/S(yN/3+17 uyy ) + Lz\zr/g(yévjv/sﬂa ay;7) +1

A3i73)]

N/3

% 2N/3
L§v)/3(}’1 ;

L(3i—1)( N ~3i—2 _WN(Y{Vaﬁ?i_2|O)

N y1,077 )= N ~3i—2
WN(yl y U |1)

2N/3 ( N/3

(1) ~3i—3y7 (4)
_ LN/B(yN/B-'rl’ul,? )[LN/3 J

3 n3i—3
Y1 ’ 69j:lu'l j

R0 Lo (bt 01 °) + LY)a (3 e, 015 7) 41

1_%3172[’5\1/)/3(3’51\//3“7 ﬁ?fgg) +1]

(@) - 3i—3 (@)
Ls(Yan3e1: 015 0) + Liv s (1

Wy (y1', a4 |0)

- Wy, ai )

37 A 37—
L) (yN, a3

_ @) (/3

N/3(y1 1,

the likelihood ratio (LR) as follows
W(yi', 4 '0)

LY (yV,ai ) = 2L (16)
M e ey
and generates its decision through using
G; = 0, if Lg\zr)(_}’{vaﬁiil) > 1 (17)
1, otherwise,

which is then sent to all succeeding decision elements. This

, 69?:1ﬁ3i—3)172(ﬁ3i72@ﬁ3i71)L‘(Z\?/B

I TR
2N/3  ~3i—3\1—20s,_ i) N ~3i—3
)T 1L%/3(Y2N/3+1au1?3) (15)

Yn/3+10 1,2
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