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Abstract—In this paper, the frequency offset estimation 
schemes robust to the non-Gaussian noise for orthogonal 
frequency division multiplexing (OFDM) systems are 
addressed. First, a maximum-likelihood (ML) estimation 
scheme in non-Gaussian noise is proposed, and then a simpler 
estimation scheme based on the ML estimation scheme is 
presented. Numerical results show that the proposed schemes 
offer robustness and a substantial performance improvement 
over the conventional estimation scheme in non-Gaussian noise 
channels.  
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I. INTRODUCTION 
Due to its immunity to multipath fading and high spectral 

efficiency, orthogonal frequency division multiplexing 
(OFDM) has been adopted as a modulation format in a wide 
variety of wireless systems such as digital video 
broadcasting-terrestrial (DVB-T), wireless local area 
network (WLAN), and worldwide interoperability for 
microwave access (WiMAX) [1]-[4]. However, the OFDM 
is very sensitive to the frequency offset (FO) caused by 
Doppler shift or oscillator instabilities, and thus, the 
frequency offset estimation is one of the most important 
technical issues in OFDM systems [1], [5]. Specifically, we 
are concerned about the FO estimation based on training 
symbols, which provides a better performance than that 
based on the blind approach [5]. 

Conventionally, the FO estimation schemes have been 
proposed under the assumption that the ambient noise is a 
Gaussian process [6]-[8], which is generally justified with 
the central limit theorem. However, it has been observed that 
the ambient noise often exhibits non-Gaussian nature in 
wireless channels, mostly due to the impulsive nature 
originated from various sources such as car ignitions, 
moving obstacles, lightning in the atmosphere, and 
reflections from sea waves [9], [10]. The conventional 
estimation schemes developed under the Gaussian 
assumption on the ambient noise could suffer from severe 
performance degradation under such non-Gaussian noise 
channels. 

In this paper, we propose robust FO estimation schemes 
in non-Gaussian noise channels. First, we derive a 
maximum-likelihood (ML) FO estimation scheme in non-

Gaussian noise modeled as a complex isotropic Cauchy 
noise, and then, derive a simpler estimation scheme with a 
lower complexity. From numerical results, the proposed 
schemes are confirmed to offer a substantial performance 
improvement over the conventional scheme in non-Gaussian 
noise channels.  

The rest of this paper is organized as follows. Section II 
introduces the related works on the FO estimation, and the 
signal model is described in Section III. In Section IV, two 
FO estimation schemes are proposed for OFDM systems in 
non-Gaussian noise environments. Section V demonstrates 
the numerical results. Section VI concludes this paper. 

II. RELATED WORKS 
Several schemes [6]-[8] have been proposed to estimate 

the FO of OFDM signals assuming the Gaussian noise 
environments. The FO estimation scheme in [6] uses a 
training symbol with two identical halves to estimate the FO 
within the sub-carrier spacing. Then, using the other training 
symbol containing a pseudonoise (PN) sequence, the scheme 
corrects the remaining FO that is a multiple of the sub-carrier 
spacing. The scheme in [7] uses the best linear unbiased 
estimation (BLUE) principle requiring only one training 
symbol with more than two identical parts. Moreover, its 
estimation performance is quite close to the Cramer-Rao 
lower bound (CRLB). In [8], joint ML FO estimation scheme 
was derived when the training symbol is repeated multiple 
times. Specifically, the scheme in [8] exploits the correlation 
of any pair of repetition patterns providing optimized 
performance in the OFDM systems.  

III. SIGNAL MODEL 
The thk  OFDM sample ( )x k is generated by the inverse 

fast Fourier transform (IFFT), and can be expressed as     
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for = 0,1, , 1,k N −  where mX is a phase shift keying 
(PSK) or quadrature amplitude modulation (QAM) symbol 
in the thm  subcarrier and N is the size of the IFFT. Then, 
the cyclic prefix (CP) of the OFDM symbol is inserted, 
whose length is generally designed to be longer than the 
channel impulse response, to avoid the intersymbol 
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interference (ISI). Assuming that the timing synchronization 
is perfect, we can express the thk  received OFDM sample 

( )r k  after removing the CP as 
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for = 0,1, , 1,k N −  where ( )h l is the thl  channel 
coefficient of a multipath channel with length ,L  ε  is the 
FO normalized to the subcarrier spacing 1/ ,N  and ( )n k is 
the thk  sample of additive noise. 

In this paper, we adopt the complex isotropic symmetric 
α stable (CIS S)α  model for the independent and identically 
distributed noise samples 1

=0{ ( )}N
kn k −  this model has been 

widely employed due to its strong agreement with 
experimental data [11], [12]. The probability density 
function (pdf) of ( )n k is then given by [11]  
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where {}ℜ ⋅ denotes the real part, the dispersion > 0γ is 
related to the spread of the pdf, and the characteristic 
exponent (0, 2]α ∈  is related to the heaviness of the tails of 
the pdf: A smaller value of α indicates a higher degree of 
impulsiveness, whereas a value closer to 2  indicates a more 
Gaussian behavior. 

A closed-form expression of (3) is not known to exist 
except for the special cases of = 1α (complex isotropic 
Cauchy) and = 2α (complex isotropic Gaussian). In 
particular, we have 
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Due to such a lack of closed-form expressions, we 
concentrate on the case of = 1:α  We shall see in Section V 
that the estimation schemes obtained for = 1α  are not only 
more robust to the variation of ,α  but they also provide a 
better performance for most values of ,α  than the 
conventional estimation scheme. 

IV. PROPOSED SCHEMES 

A. Maximum-likelihood FO Estimation Scheme 
In estimating the FO, we consider a training symbol 

1
=0{ ( )}N

kx k − with two identical halves as in [6], i.e., 
( ) = ( /2)x k x k N+ for = 0,1, , /2 1.k N −  From (2), we have 

         ( /2) ( ) = ( /2) ( )j jr k N r k e n k N n k eπε πε+ − + −       (5)  

for = 0,1, , /2 1.k N −  Observing that ( /2) ( ) jn k N n k e πε+ −  
obeys the complex isotropic Cauchy distribution with 
dispersion 2γ  (since the distribution of ( ) jn k e πε− is the 
same as that of ( ),n k  and assumed that the noise samples of 
CIS Sα  model are independent as in [13]), we obtain the pdf 
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of /2 1
=0= { ( /2) ( ) }j N

kr k N r k e πε −+ −r  conditioned on .ε  The 
ML estimation is then to choose ε̂  such that 
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where ε  denotes the candidate value of ε and the log-
likelihood function ( ) =εΛ  

{ }2/2 1 2
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log ( /2) ( ) 4N j
k
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+ − +∑  is a periodic 

function of ε  with period 2 :  The minima of ( )εΛ  occur at 
a distance of 2 from each other, causing an ambiguity in 
estimation. Assuming that ε  is distributed equally over 
positive and negative sides around zero, the valid estimation 
range of the ML estimation scheme can be set to 1 < 1,ε− ≤  
as in [6]. The estimation scheme (7) will be called the 
Cauchy ML estimation (CMLE) scheme. 

B. Low-complexity FO Estimation Scheme 
The CMLE scheme is based on the exhaustive search 

over the whole estimation range (| | 1),ε ≤  which requires 
high computational complexity. Thus, we propose a low-
complexity FO estimation scheme with the reduced set of the 
candidate values. 

In order to obtain the reduced set of the candidate values, 
we exploit the property that *= 1/ { ( ) ( /2)}x k x k Nε π∠ + =  

*1/ { ( ) ( /2)}r k r k Nπ∠ + in the absence of noise. Based on this 
property, we obtain the set of the candidate values  

*1( ) = { ( ) ( )}, for = 0,1, , 1.
2 2
N Nk r k r k kε

π
∠ + −   (8) 

Exploiting the set of the candidate values in (8), the FO 
estimate ˆLε  can be obtained as follows 

    
( )

ˆ = arg ( ( )), for = 0,1, , 1.min 2L
k

Nk k
ε
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In the following, (9) is denoted as the low-complexity 
CMLE (L-CMLE) scheme. Using only /2N candidate values, 
the L-CMLE scheme can offer an almost same performance 
as the CMLE scheme with the exhaustive search, the 
performance verified by numerical results in Section V. 

V. NUMERICAL RESULTS 
In this section, the proposed CMLE and L-CMLE 

schemes are compared with the Gaussian ML estimation 
(GMLE) scheme in [6] in terms of the mean squared error 
(MSE) by computer simulations using Matlab program and 
computational complexity. We assume the following 
simulation parameters: The IFFT size = 64,N  FO = 0.25,ε  
length 8 samples of CP, the interval of search spacing 0.001 
for the CMLE scheme, and a multipath Rayleigh fading 
channel with length = 8L  and an exponential power delay 
profile of 12

=0
[| ( ) | ] = exp( / )/{ exp( / )}L

l
E h l l L l L−

− −∑  for 
= 0,1, ,7,l  where [ ]E ⋅  denotes the statistical expectation. 

Since CISα S noise with < 2α has an infinite variance, the 
standard signal-to-noise ratio (SNR) becomes meaningless 
for such a noise. Thus, we employ the geometric SNR 

(GSNR) defined as 
2

1 2/ 2/

[| ( ) | ] ,
4
E x k
C α αγ− +  where 

=1

1= exp{ ( ln )}lim
m

m i
C m

i→∞ −∑  1.78  is the exponential 

of the Euler constant [14]. The GSNR indicates the relative 
strength between the information-bearing signal and the 
CISα S noise with < 2.α  Clearly, the GSNR becomes the 
standard SNR when = 2.α  Since γ can be easily and 
exactly estimated using only the sample mean and variance 
of the received samples [15], it may be regarded as a known 
value: Thus, γ  is set to 1  without loss of generality. 

Figs. 1-4 show the MSE performances of the CMLE, L-
CMLE, and GMLE schemes as a function of the GSNR 
when 0.5,1,1.5,α = and 2,  respectively. From the figures, 
we can clearly observe that the CMLE and L-CMLE 
schemes have a better estimation performance compared 
with that of the GMLE scheme for most values of ,α  except 
for = 2.α  Another important observation is that the 
estimation performance of the L-CMLE scheme is almost 
same as that of the CMLE scheme. From this observation, it 
is confirmed that the trial values for the L-CMLE scheme is 
reasonable. Numerical results show that proposed schemes 
not only outperform the conventional scheme in non-
Gaussian noise environments, but also provide similar 
performance in Gaussian noise ( = 2)α  environments. This 
can clearly explain a robustness of proposed schemes to the 
variation of the channel environments. In short, when the 
type of the noise is not known, the L-CMLE scheme can be 
an effective solution with robust performance to the noise. 

Table I shows the computational complexity of CMLE, 
L-CMLE, and GMLE schemes, where S  denotes the 
number of search spacing for the CMLE scheme. The GMLE 
scheme requires ( )3 2N −  real additions and ( )2 1N +  real 

multiplications only. On the other hand, the CMLE scheme 
requires ( )3 1SN N −  real additions and ( )5 / 2SN N  real 
multiplications by choosing the most likely candidate among 
the SN  candidates. Using / 2N  reliable candidates only, the 
L-CMLE scheme reduced the number of operations to 

( )/ 2 3 1N N N− +  real additions and ( )( )/ 2 1 5 / 2N N+  real 
multiplications.  

TABLE I.  COMPUTATIONAL COMPLEXITY OF THE FO ESTIMATION 
SCHEMES 

 CMLE L-CMLE GMLE 
Number of 
candidates SN  / 2N  - 

Real additions 3 1N −  per 
candidate 

3 1N −  per 
candidate + N  

3 2N −  

Real 
multiplications 

5 / 2N  per 
candidate 

5 / 2N  per 
candidate 
+ 5 / 2N  

2 1N +  

 

 
Figure 1.  The MSE performances of the CMLE, L-CMLE, and GMLE 

schemes as a function of the GSNR when = 0.5.α  

 
Figure 2.  The MSE performances of the CMLE, L-CMLE, and GMLE 

schemes as a function of the GSNR when =1.α  
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Figure 3.  The MSE performances of the CMLE, L-CMLE, and GMLE 

schemes as a function of the GSNR when = 1.5.α  

 
Figure 4.  The MSE performances of the CMLE, L-CMLE, and GMLE 

schemes as a function of the GSNR when = 2.α  

VI. CONCLUSION 
In this paper, we have proposed FO estimation schemes 

in non-Gaussian noise channels. First, an ML estimation 
scheme in non-Gaussian noise channel has been proposed, 
and then a simpler estimation scheme based on the ML 
estimation scheme has been presented. From the numerical 
results, it has been confirmed that the proposed schemes 
offer robustness and a substantial performance improvement 
over the conventional estimation scheme in non-Gaussian 
noise channels. 
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