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Abstract—Quality of Service (QoS) will be a major enabler for 

Future Internet applications and services. However, today’s 

Internet provides no suitable QoS support for end-to-end 

connections due to several drawbacks of IntServ and DiffServ. 

Therefore, this paper proposes the “Forwarding on Gates” 

architecture, which uses a new network protocol designed to 

handle IntServ and DiffServ in an integrated way. The 

architecture supports resource reservations for QoS 

guarantees, like in IntServ scenarios, and prioritized traffic, 

like in DiffServ scenarios. Furthermore, a combination of both 

is supported. This paper introduces the architecture and 

defines the network protocol used to implement these features. 

The evaluation includes theoretical descriptions of the network 

configuration for the different scenarios and simulation results 

concerning the protocol overhead in large-scale networks. Our 

new architecture is able to support QoS in a scalable way, since 

it allows a network providing QoS to move states and delegate 

decisions about the QoS usage to the entity using the QoS. 

Keywords—Future Internet; network protocol; architecture; 

QoS. 

I.  INTRODUCTION 

The Future Internet will be faced with much more 
applications requiring Quality of Service (QoS). Among the 
first, Internet video streaming is already stressing today’s 
Internet. Forecasts predict  that in 2015 about 62% of the 
traffic will be video [1]. For live video streams, as required 
for remote medical operations or for football games, QoS is 
required. Due to the large number of end hosts  on the 
Internet and the large number of connections between them, 
scalability is a major concern of QoS provisioning. 

IP only provides a best effort service. Therefore, IntServ 
and DiffServ were developed to handle QoS on the Internet. 
However, both have pros and cons. The IntServ approach [2] 
with its signaling protocol RSVP provides end-to-end QoS 
by introducing states in each intermediate router a flow 
passes through. According to [3], the Resource Reservation 
Protocol (RSVP) has to handle states for classification, 
scheduling and signaling. The classification states define 
how incoming packets are mapped to flows. With RSVP, 
such a state consists of a source address, a destination 
address and a protocol number (and optionally port 
numbers). Scheduling states define how flows are handled. 
For example, a flow can be mapped to the queue of an 
outgoing hardware interface with a priority for a scheduler. 
Finally, signaling states represent management information 
like authentication information and timers. For each flow, an 

intermediate node requires one set of these states. Due to 
memory limitations, such an approach causes scalability 
problems for scenarios with many flows [4]. 

DiffServ [5] aims at solving the scalability issue by 
introducing a small set of QoS classes used inside networks. 
Each QoS class defines a type of service and requires 
scheduling and signaling states. Thus, the number of states 
does not depend on the number of connections. However, 
DiffServ is not able to provide guarantees, since it is not 
aware of each individual flow. Edge routers of a network 
contain the classification states of a DiffServ network, in 
order to map incoming packets to the internal QoS classes. 
The classification states represent the rules for this mapping. 
Since most interfaces with incoming traffic will transport 
multiplexed flows, like multiple TCP connections over one 
Ethernet link, the classification is mainly done by (more or 
less deep) packet inspection. For example, port numbers or 
packet sizes can be used for classification.  

IntServ and DiffServ can be combined to leverage the 
advantages of both approaches. IntServ provides the 
signaling for flows between ingress routers and DiffServ 
provides a set of QoS classes used inside networks [6, 7]. 
However, the scalability problem of IntServ now appears at 
the ingress routers. They have to store classification states 
per flow. Since the number of scheduling and signaling 
states remains limited due to the DiffServ classes, the 
classification states are the main problem. In order to 
maintain the states, signaling is required. The processing 
load of handling these messages increase the burden on a 
network. In the past, proposals focused on reducing the 
number of flows, e.g., through aggregation [3]. 

Our key contribution is the proposal of an orthogonal 
strategy: move the classification states away from ingress 
routers to routers handling smaller amounts of flows. 
Furthermore, some decision-making authority is delegated 
from the QoS provider to the entity using QoS in order to 
reduce the required signaling overhead. As discussed in more 
detail in Section IV, today’s network protocol IP is not able 
to support both in all use cases. Therefore, this paper 
presents a new network protocol enabling the movement of 
classification states and the delegation of decisions between 
routers. Our solution is suitable for IntServ and DiffServ 
scenarios and is able to handle combinations of both. Its 
main feature is the flexible placement of the classification 
states according to the network graph and the load in the 
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system. It enables the handling of both QoS approaches in a 
single mechanism. 

The remainder of this paper is structured as follows: 
Section II describes our system architecture. Section III 
introduces the protocol and how its header is processed. 
Afterwards, in Section IV, the implementation of the use 
cases based on our architecture and protocol are presented. 
Section V shows evaluation results from a protocol 
simulation. Section VI discusses related work. In the end, the 
main results of this work are summarized and an outlook to 
future work is given. 

II. FORWARDING ON GATES ARCHITECTURE 

The “Forwarding on Gates” (FoG) architecture splits 
forwarding and routing into two logical components. Both 
encapsulate specific tasks. The forwarding component is 
responsible for relaying packets between routers and hosts. It 
handles the resource management and enforcement of 
resource reservations in order to take non-functional 
properties such as delay and bandwidth into account. The 
routing component is responsible for calculating paths 
through the network with respect to non-functional 
requirements given by applications [8]. Both are linked via a 
route definition. The routing component specifies a route and 
the forwarding component forwards packets along the route. 
The authentication component is the third logical component 
of FoG. It checks the authentication of signaling messages in 
order to secure access to the management functions. The 
authentication is the basis for authorization decisions and 
accounting of QoS. In this paper, we use the term flow in a 
more abstract manner than connection. However, a flow can 
be a connection between end hosts. 

For the following discussion, we introduce the term QoS 
function, which generalizes QoS provisioning regardless of 
the QoS architecture. A QoS function represents the setup 
required to send packets with QoS constraints. Examples of 
QoS functions are setups implementing a DiffServ class or 
an IntServ reservation. QoS functions can provide guarantees 
ranging from “hard” with fixed limits over “soft” with 
probabilistic QoS guarantees to vague goals like “optimized 
for delay” or “best-effort”. A QoS function comprises its 
scheduling and signaling states. The classification states are 
not included. 

In addition to the separation of routing and forwarding 
[9], our architecture has some more features. Examples are 
reduced forwarding table size [10], enabling routers to 
choose their address format [11], enabling applications to 
specify their requirements [8], hiding addresses from 
applications and support for various intra-network 
techniques. However, they are shared with other approaches 
from literature and are not the focus of this paper. 

A. Forwarding Component 

Today’s Internet operates over interfaces of routers and 
hosts and links in between. FoG’s forwarding component 

uses a virtual representation of the network, which has the 
form of a graph. Host and routers are represented by one or 
more vertices, which are called forwarding nodes. Edges 
between forwarding nodes are called gates and represent uni-
directional links between them. In order to support QoS, 
multiple edges between adjacent nodes are allowed. An edge 
is equivalent to a link with a QoS function between two 
routers or hosts. Each outgoing gate of a forwarding node is 
assigned a gate number, which is unique in the scope of this 
forwarding node. Each FoG packet has a header, which 
contains the order of gates to pass through explicitly. Details 
about the route and how the forwarding node processes it are 
given in Section III.  

Gates are set up with a FoG-specific management 
protocol. The forwarding nodes process the signaling 
messages of that protocol and modify the graph of 
forwarding nodes and gates as requested. In order to secure 
this management, signaling messages are signed via the 
authentication service by the sender. The receiver uses the 
authentication service to verify the signature.  

The forwarding component informs the routing 
component about available gates and forwarding nodes to 
enable route calculations based on them. However, gates not 
intended for other flows can be hidden in order to exclude 
them from the routing calculations.  

B. Routing Component 

The routing component is responsible for route 
calculations based on the information received from the 
forwarding component. Based on a starting forwarding node 
and a destination address, it calculates a route through the 
graph of gates and forwarding nodes. QoS requirements 
serve as constrains for the calculation. If all gates to the 
destination are known, an explicit route is the result. If some 
gates are not known, the route is only a partial one. A partial 
route contains the destination address or the address of an 
intermediate node. During the forwarding process, the 
missing part of the route will be calculated based on this 
address.  

In common scenarios, the subset known to a routing 
instance is a connected graph, which represents the “area” of 
the network itself and its surroundings. The knowledge about 
the parts outside of this subset is more abstract. A routing 
component knows about the connectivity but does not know 
the gate numbers required to specify the route explicitly. 
This is comparable with the situation known from the Border 
Gateway Protocol (BGP). A BGP entity knows about the 
existence of a route (and its cost) but does not know the 
outgoing ports of the intermediate routers which have to be 
used. 

If there are insufficient gates to form an end-to-end route, 
a routing component can request the setup of new gates by a 
forwarding component. In particular, routing components 
can request gates with specific QoS capabilities in order to 
satisfy the QoS requirements of a particular route request. 
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C. Authentication Component 

The authentication component is used to generate 
signatures for signaling messages and to check such 
signatures. Based on the authentication check, authorization 
decisions and accounting are done. It is mainly used by the 
forwarding component to secure gate management. 
Furthermore, applications can use the authentication in order 
to sign data packets. Thus, the authentication has an impact 
on the packet structure described in the next section. 
However, due to the QoS focus of this paper, the 
authentication component is not described in more detail. 

III. NETWORK PROTOCOL AND ITS PROCESSING 

The FoG packet structure is shown in Figure 1. It starts 
with a header comprising all information required to decide 
the next hop. This enables a router to make a forwarding 
decision before the packet is fully received. The packet ends 
with a trailer containing all information that can be added to 
a packet after receiving it completely. The trailer is optional 
and can be omitted. The header and trailer elements are 
defined as follows: 

 Header 

o Length of the header in bytes: This field is 
required to access the payload as 
subsequent versions of the FoG protocol 
can add new header fields between the 
header fields defined in this paper and the 
payload. 

o Flag field which indicates 

 if the reverse route in the trailer is 
present, 

 if the packet is a signaling 
message, and 

 if the authentication information in 
the trailer is present. 

o Modification counter to prevent routing  
loops due to invalid gate setups 

o Length of the payload in bytes 

o Forward route for the packet 

 Trailer 

o Length of the authentication information in 
bytes 

o Authentication information itself 

o Revers route for answers 

Each route starts with a length field followed by a stack 
of route segments. There are two types of segments: 

 The explicit route segment is a stack of gate 
numbers, defining explicitly a sequence of gates to 
travel through. 

 The destination route segment contains a destination 
name or address and the requirements for the 
remaining route to this destination. 

Each forwarding node processes the route of a packet as 
shown in Figure 2. If the route is empty, the packet has 
reached its destination. If the signaling flag is set, the packet 
contains signaling information dealing with the setup of 
gates and connection establishment between applications. 
The signaling message is handled by the host or router, and it 
updates the gate and forwarding node graph accordingly. If 
the signaling flag is not set and the forwarding node has a 
socket attached to it, it removes the FoG header and trailer 
and stores the payload in the receive buffer of the socket. If 
the route is not empty, the forwarding node processes the 
topmost segment. If it is an explicit route segment, it 
removes the topmost gate number and uses it to lookup one 
of its outgoing gates. If there is an outgoing gate with this 
gate number, the packet is handed over to this gate for 
further processing. If the explicit route segment is empty, it 
is removed from the route and the procedure restarts. If the 
topmost segment is a destination segment, the forwarding 
node has to contact the routing component in order to get the 
next explicit route segment. 

Route 
empty?

Segment 
type?

Process 
locally

Call routing:
r = routing(this, S)

Insert r to route 
of packet

yes

no

Destination

Explicit route

Pop gate number 
and determine 

next gate

Gate 
numbers?

Forward 
packet to 

gate

Update reverse 
route

Pop 
segment

Pop segment S and 
mod. counter--

yes
no

yes

no

Extract 
payload

yes no

Signal-
ing?

yes

Drop 
packet

Mod. 
counter 

> 0
no

Trace 
reverse 
route?

 
Figure 2. Forwarding node procedure without error cases. 
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Figure 1. FoG protocol packet structure. 
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The routing component calculates a route from the 
forwarding node to the destination. The requirements given 
in the destination segment are used as requirements for the 
route. The route returned by the routing component is added 
to the route of the packet and the procedure is restarted. 

The modification counter is decremented if the route is 
changed in a way that loops might occur. It is used to avoid 
routing loops. 

The reverse route of a packet is recorded if the reverse 
route flag in the packet header is set. A forwarding node has 
to derive the reverse gate number from the gate chosen for 
the forward direction. The reverse route does not need to be 
symmetric to the forward route. Furthermore, an 
intermediate forwarding node, which is not able or allowed 
to record the reverse route using explicit route segments, can 
insert a destination segment to the reverse route. The reverse 
route can be used by the receiver of a packet to reply to the 
sender. The main benefit of using the reverse route instead of 
an address is twofold. First, routing requests for reply 
packets are avoided and second, addresses for sending nodes 
are not required. The latter is useful for hosts acting only as 
clients. A server can reply by using the reverse route without 
forcing the client to have an address. If a reply with a traced 
backward route is received by a client, it knows the route the 
request packet has traveled. In most cases, this route contains 
less destination segments and more explicit route segments. 
Therefore, the client can use this route for subsequent 
packets in order to reduce the routing overhead and the delay 
for its packets. 

The destination segment is not necessarily the last 
segment in a route. As shown by the use cases in the next 
section, it might define only an intermediate node of the 
route, due to missing knowledge about gate numbers. 
Theoretically, multiple destination segments in one route are 
possible, which would emulate loose source routing. Due to 
security considerations [12], policies might restrict that. 

IV. USE CASES 

Based on the FoG architecture and its network protocol, 
we will now investigate three different use cases showing the 
provisioning of QoS functions ranging from IntServ to 
DiffServ to a combination of both. For simplicity, the same 
example network is used in each case. Only the gate setup 
and the responsibility for the classification states (CS) differ. 

Figure 3 and 4 show three networks with network 3 
providing QoS functions in the form of gates to network 1 
and 2. Gates are depicted as straight lines between the 
forwarding nodes (FNi), which are shown as dots. The dotted 
lines represent connectivity through some other network, 
where the gate numbers are not known. Known gate numbers 
are depicted with small letters. Each network has not only 
the forwarding component but also the routing component as 
defined by the architecture. It is depicted as an extra box 
with its known components inside. 

A. IntServ gates 

In Figure 3, networks 1 and 2 have requested QoS 
functions from network 3. Network 3 has set up one gate for 
each request and network 1 and 2 have informed their 
routing component about these gates. For example, each gate 
represents a (virtual) link providing 100 MBit/s. The router, 
which is represented by FN3, has to store the scheduling and 
signaling states required to provide and enforce these QoS 
functions. However, the classification states are not stored by 
FN3 but have been moved to network 1 and 2, respectively. 
Their routing components know about gates b and c, 
respectively, and handle the decision about which flows are 
mapped to these gates. 

If network 1 would like to establish a flow, the entity 
responsible for flow creation (e.g. one of the control nodes or 
the network edge) starts sending a signaling message with a 
route, which just contains a destination segment with the 
address of the destination and the requirements for the route, 
e.g., a minimum bandwidth of 10 MBit/s. In this example, 
the destination is FN4. The packet with the route 
[[address(FN4)]] is inserted into the forwarding component 
FN1, which proceeds as described in Section III. Since the 
topmost segment of the route is a destination segment, it 
contacts the routing component R1. In the given case, R1 
knows a route with all gate numbers to the destination. We 
assume that R1 did not map too many flows on these gates 
and that therefore there is enough remaining capacity. R1 
maps this new flow on the gates a and b and updates its 
classification states. It returns the route [[a, b]] containing 
only one explicit route segment. FN1 removes the destination 
segment from the packet and inserts this new route into the 
route field in the packet. FN1 restarts the procedure with the 
explicit route segment as topmost segment. It pops the gate 
number a from the gate number stack and looks it up in its 
list of outgoing gates. Then, it hands over the packet to gate 
a. The gate transports the packet to the next hop via a link 
layer, e.g., Ethernet. The packet arrives at FN3 with the route 
[[b]]. It pops b from the stack and hands over the packet to 
gate b. FN4 receives the packet with an empty route and 
processes the packet locally. 

Network1

Network3
FN1

FN3

a

R1

FN4

FN1 FN4

Network2

FN2

FN3

b

a

R2

FN2 FN4FN3

b

c

c

CS

CS

R3
100MBit/s link

100MBit/s link

FN5

d

d

FN5

 
Figure 3. Gates representing IntServ reservations. 
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For network 2, the process is similar. However, there is a 
difference in the route required to reach FN3. R2 calculates a 
route with three route segments: [[d], [address(FN3)], [c]]. In 
contrast to the route calculated by network 1, one more 
request to the routing component has to be done. FN5 
receives a packet with [address(FN3)] as topmost segment, 
which triggers the remaining route request. 

B. DiffServ gates  

In Figure 4, network 3 provides one gate with a high 
priority and a best effort gate with a low priority. The latter 
is included in the scenario to demonstrate the integration of 
non-QoS links in FoG. The routing components of network 1 
and 2 have slightly different views on this situation. R1 only 
knows about e and R2 knows about both e and f. The reason 
might be that R1 decided to omit f or network 1 did not 
request a best-effort gate from network 3. Moreover, R1 and 
R2 have different strategies for tracking the flows mapped to 
these gates. R1 stores the classification states as in the 
previous scenario. However, the criterion for using gate e 
differs. Instead of bandwidth as in the previous example, R1 
might use a cost metric (e.g. money to pay to network 3) to 
decide which flow is important enough to justify the usage of 
gate e. R2 does not limit the usage of gate e nor f and does 
not store any classification states. 

The routes calculated are similar to the previous scenario. 
The main difference is in the policy for selecting gates in R1 
and R2. In addition to the previous scenario, R2 shows the 
benefit of knowing a broader set of gates available for a link. 
Depending on the requirements for a route, R2 can decide to 
use e or f. For example, it can return the route [[d], 
[address(FN3)], [f]] for flows with no QoS requirements. 
Gate e can be used by R2 without having to signal to FN3. 
Furthermore, FN3 does not have to know the details about 
flows and can just follow the gate numbers given in a packet. 
This reduces the load of the router providing FN3. 

C. Combined scenario 

Both gate types can be combined in a single scenario. 
Such a scenario can be constructed by merging the two 
scenarios shown before. This combined scenario has four 
gates between FN3 and FN4 representing different QoS 

functions. In such a scenario, R1 would have two options 
(since it does not know all gates) for a route from FN3 to 
FN4: 

 Gate b: The usage is limited by bandwidth already 
reserved by R1 for other flows. Through proper 
management of R1, a minimal bandwidth can be 
guaranteed. 

 Gate e: The usage is limited by the cost network 1 is 
willing to pay for a flow (if it is charged by network 
3). A certain amount of bandwidth cannot be 
guaranteed. However, the delay is minimized. 

Which gate to choose, depends mainly on the 
requirements for a flow and the requesting entity. 

D. Discussion 

Neither network 1 nor network 2 knows about the 
techniques used by network 3 to provide the QoS. These 
implementation issues are hidden by the abstract gate 
description for the routing and by the gate number used for 
the forwarding. 

In all scenarios, FN3 does not store any classification 
states and does not know which flows are mapped to its gates 
by network 1 and 2. It delegated the decision to these 
networks. However, the states required to enforce the 
characteristics of the gates remain in network 3. Thus, even 
though network 3 does not know which and how many flows 
are mapped to a gate, it can enforce that the combined traffic 
does not use better QoS than requested. Another benefit of 
this delegation is reduced signaling overhead. In particular, 
no signaling messages from network 1 or 2 are required to 
inform FN3 about a new mapping. 

The routes calculated by network 2 show an important 
case, which is not supported by MPLS and IP today. While 
the route [[d], [address(FN3)]] can be implemented with 
MPLS handling the explicit route segment and IP handling 
the destination segment, a subsequent explicit route segment 
([c] in the example) is not directly supported. In IP, the 
ingress router doing the IP forwarding has to have some 
classification states, which link a packet to the subsequent 
explicit route segment. However, FoG moves this state to 
other routers and thus reduces the number of states to be 
maintained by the ingress router. 

The main use case of FoG consists of a network that 
would like to sell some degree of QoS to its customers (its 
own end users and other networks). Thus, deploying FoG in 
order to implement a best effort network provides only 
limited advantages compared to IP. However, the degree of 
deployment is critical for QoS scenarios, too. The delegation 
of states and decisions cannot be done only by network 3, 
since it requires the support of network 1 and 2. 
Consequently, a partial deployment in today’s Internet might 
not benefit from these two features. However, the more 
networks support FoG, the better the exploitation of the 
advantages. A migration strategy for introducing FoG to 
existing networks depends mainly on the legacy systems, 
which should be supported. For example, MPLS might be 

Network1
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FN1

FN3

a

R1

FN4

FN1 FN4

Network2

FN2

FN3

e

a
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e
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d

d
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Figure 4. Gates representing DiffServ classes. 
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integrated by representing LSP as gates. However, suitable 
migration strategies are a subject for future work. 

V. IMPLEMENTATION & SIMULATION RESULTS 

We have implemented the FoG architecture in a Java-
based discrete event simulator. It can be switched to an 
emulator mode that handles events in real time. The FoG 
emulator includes interoperability solutions combining FoG 
and IP based networks [13]. FoG applications specify their 
QoS requirements directly via an interface and FoG reacts 
accordingly. The interface bases on the GAPI defined in [8]. 

For evaluating FoG in the context of QoS management, 
the route length of explicit route segments is a specific 
concern. The more hops a packet has to travel, the more gate 
numbers are required and the longer the header. In order to 
estimate the FoG protocol overhead, the length of explicit 
routes for large-scale scenarios has been analyzed. 

The network used for evaluation should match the 
characteristics of today’s Internet but be smaller in size in 
order to reduce simulation time. Therefore, the network has 
been generated with the GLP algorithm implemented in 
BRITE [14] and the parameters derived in [15]. Therefore, 
the graph has similar characteristics to the real world Internet 
graph on the autonomous system level. The scenario consists 
of 5000 nodes and 12437 links between them. In addition, a 
different graph generated with the default parameters of 
BRITE (5000 nodes and 8974 links) was used for simulation. 
Since the results do not differ significantly, only the results 
from the first graph are presented. 

The analysis is based on the total explicit route lengths of 
6000 connections between randomly chosen FoG nodes. 
Figure 5 shows the cumulative distribution function of route 
lengths. Since each intermediate node uses three gate 
numbers and each end node uses two gate numbers in order 
to encode its routing decision, only specific route lengths 
such as 4 and 7 are possible. An end-to-end route contains 
12.1 gate numbers in average. If each gate number is 
encoded in one byte, 91% of all routes remain below the size 
of an IPv6 address. The average number of hops between 
two FoG nodes L = 3.7 matches the expectations for the 
Internet [16]. 

VI. RELATED WORK 

QoS for networks has a long research history. A survey 
about today’s approaches is given in [17]. As discussed in 
the introduction, IntServ [2] and DiffServ [5] can be used to 
provide QoS. However, they do not support the movement of 
states. 

MPLS uses routes comparable to the explicit route 
segment. In combination with IP, some use cases can be 
supported. However, Section IV.D points out important 
cases where the combination of IP and MPLS does not allow 
the movement of classification states. Furthermore, FoG 
does not require a standardization of gate numbers as 
required for IP’s TOS field values in an inter-network 
scenario [18]. 

Other forwarding approaches using a stack of locally 
valid numbers to describe routes, like PARIS [19], Sirpent 
[20] or Pathlet [10], already introduce the split between 
forwarding and routing. In PFRI [9] the numbers are even 
globally unique in order to enable the end host to specify a 
loose source route based on links. An entry in a forwarding 
table represents virtual [10] or physical [21] next hops. Some 
(esp. the older) approaches are more related to intra-
networks. Pathlet [10], the newest one, deals specifically 
with policy issues in inter-network routing. However, QoS 
and other application requirement aspects are not discussed 
in detail. Only Pathlet [10] mentions QoS but does not 
describe any details about how to integrate IntServ and 
DiffServ and a network protocol.  

QoS protocols, like RSVP or NSIS [22] are able to signal 
QoS requirements. Either of these protocols or similar 
approaches are suitable to signal the setup of gates.  

Other proposals for new inter-network architectures 
focus more on the overall architecture and do not address 
scalability of state information, e.g., NewArch [23], IPC 
[11], RNA [24]. 

VII. CONCLUSION AND OUTLOOK 

In this paper, we have presented the Future Internet 
architecture “Forwarding on Gates” (FoG). It uses a network 
protocol, which provides the capability to explicitly define a 
route, use the destination address plus requirements for a 
route or a combination of both. This enables the movement 
of classification states between routers. IntServ and DiffServ 
are merged by introducing QoS functions, which are 
represented by directed gates in the FoG architecture. Routes 
can be defined by using the gates without knowing about 
their implementation. The protocol enables the flexibility to 
move classification states from the router implementing a 
QoS function to other routers, which take over the mapping 
of flows to QoS functions. This delegation of the mapping 
decisions reduces the amount of required signaling 
messages. 

Based on three use cases, the setup of gates in IntServ, 
DiffServ and mixed scenarios is described. Although the 
route length is dynamic, the protocol overhead remains low. 
A protocol simulation in a large-scale network with 5000 

 

Figure 5. CDF of route lengths for scenario with 5000 nodes. 
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nodes showed that 91% of the routes are shorter than an IPv6 
address. The results presented in this paper show the 
flexibility of FoG in providing QoS in a scalable way. It 
indicates that the FoG architecture seems to be a promising 
basis for a Future Internet. 

In the future, we plan to develop deployment and 
migration strategies from today’s network to FoG. 
Furthermore, we will use route repair techniques known 
from MPLS to evaluate the robustness of FoG routes against 
link and node failures. 
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