
The Forwarding on Gates Architecture: Merging IntServ and DiffServ

Florian Liers, Thomas Volkert, Andreas Mitschele-Thiel

Integrated Communication Systems Group

Technical University of Ilmenau

Ilmenau, Germany

e-mail: {Florian.Liers, Thomas.Volkert, Mitsch}@tu-ilmenau.de

Abstract—Quality of Service (QoS) will be a major enabler for

Future Internet applications and services. However, today’s

Internet provides no suitable QoS support for end-to-end

connections due to several drawbacks of IntServ and DiffServ.

Therefore, this paper proposes the “Forwarding on Gates”

architecture, which uses a new network protocol designed to

handle IntServ and DiffServ in an integrated way. The

architecture supports resource reservations for QoS

guarantees, like in IntServ scenarios, and prioritized traffic,

like in DiffServ scenarios. Furthermore, a combination of both

is supported. This paper introduces the architecture and

defines the network protocol used to implement these features.

The evaluation includes theoretical descriptions of the network

configuration for the different scenarios and simulation results

concerning the protocol overhead in large-scale networks. Our

new architecture is able to support QoS in a scalable way, since

it allows a network providing QoS to move states and delegate

decisions about the QoS usage to the entity using the QoS.

Keywords—Future Internet; network protocol; architecture;

QoS.

I. INTRODUCTION

The Future Internet will be faced with much more
applications requiring Quality of Service (QoS). Among the
first, Internet video streaming is already stressing today’s
Internet. Forecasts predict that in 2015 about 62% of the
traffic will be video [1]. For live video streams, as required
for remote medical operations or for football games, QoS is
required. Due to the large number of end hosts on the
Internet and the large number of connections between them,
scalability is a major concern of QoS provisioning.

IP only provides a best effort service. Therefore, IntServ
and DiffServ were developed to handle QoS on the Internet.
However, both have pros and cons. The IntServ approach [2]
with its signaling protocol RSVP provides end-to-end QoS
by introducing states in each intermediate router a flow
passes through. According to [3], the Resource Reservation
Protocol (RSVP) has to handle states for classification,
scheduling and signaling. The classification states define
how incoming packets are mapped to flows. With RSVP,
such a state consists of a source address, a destination
address and a protocol number (and optionally port
numbers). Scheduling states define how flows are handled.
For example, a flow can be mapped to the queue of an
outgoing hardware interface with a priority for a scheduler.
Finally, signaling states represent management information
like authentication information and timers. For each flow, an

intermediate node requires one set of these states. Due to
memory limitations, such an approach causes scalability
problems for scenarios with many flows [4].

DiffServ [5] aims at solving the scalability issue by
introducing a small set of QoS classes used inside networks.
Each QoS class defines a type of service and requires
scheduling and signaling states. Thus, the number of states
does not depend on the number of connections. However,
DiffServ is not able to provide guarantees, since it is not
aware of each individual flow. Edge routers of a network
contain the classification states of a DiffServ network, in
order to map incoming packets to the internal QoS classes.
The classification states represent the rules for this mapping.
Since most interfaces with incoming traffic will transport
multiplexed flows, like multiple TCP connections over one
Ethernet link, the classification is mainly done by (more or
less deep) packet inspection. For example, port numbers or
packet sizes can be used for classification.

IntServ and DiffServ can be combined to leverage the
advantages of both approaches. IntServ provides the
signaling for flows between ingress routers and DiffServ
provides a set of QoS classes used inside networks [6, 7].
However, the scalability problem of IntServ now appears at
the ingress routers. They have to store classification states
per flow. Since the number of scheduling and signaling
states remains limited due to the DiffServ classes, the
classification states are the main problem. In order to
maintain the states, signaling is required. The processing
load of handling these messages increase the burden on a
network. In the past, proposals focused on reducing the
number of flows, e.g., through aggregation [3].

Our key contribution is the proposal of an orthogonal
strategy: move the classification states away from ingress
routers to routers handling smaller amounts of flows.
Furthermore, some decision-making authority is delegated
from the QoS provider to the entity using QoS in order to
reduce the required signaling overhead. As discussed in more
detail in Section IV, today’s network protocol IP is not able
to support both in all use cases. Therefore, this paper
presents a new network protocol enabling the movement of
classification states and the delegation of decisions between
routers. Our solution is suitable for IntServ and DiffServ
scenarios and is able to handle combinations of both. Its
main feature is the flexible placement of the classification
states according to the network graph and the load in the

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

system. It enables the handling of both QoS approaches in a
single mechanism.

The remainder of this paper is structured as follows:
Section II describes our system architecture. Section III
introduces the protocol and how its header is processed.
Afterwards, in Section IV, the implementation of the use
cases based on our architecture and protocol are presented.
Section V shows evaluation results from a protocol
simulation. Section VI discusses related work. In the end, the
main results of this work are summarized and an outlook to
future work is given.

II. FORWARDING ON GATES ARCHITECTURE

The “Forwarding on Gates” (FoG) architecture splits
forwarding and routing into two logical components. Both
encapsulate specific tasks. The forwarding component is
responsible for relaying packets between routers and hosts. It
handles the resource management and enforcement of
resource reservations in order to take non-functional
properties such as delay and bandwidth into account. The
routing component is responsible for calculating paths
through the network with respect to non-functional
requirements given by applications [8]. Both are linked via a
route definition. The routing component specifies a route and
the forwarding component forwards packets along the route.
The authentication component is the third logical component
of FoG. It checks the authentication of signaling messages in
order to secure access to the management functions. The
authentication is the basis for authorization decisions and
accounting of QoS. In this paper, we use the term flow in a
more abstract manner than connection. However, a flow can
be a connection between end hosts.

For the following discussion, we introduce the term QoS
function, which generalizes QoS provisioning regardless of
the QoS architecture. A QoS function represents the setup
required to send packets with QoS constraints. Examples of
QoS functions are setups implementing a DiffServ class or
an IntServ reservation. QoS functions can provide guarantees
ranging from “hard” with fixed limits over “soft” with
probabilistic QoS guarantees to vague goals like “optimized
for delay” or “best-effort”. A QoS function comprises its
scheduling and signaling states. The classification states are
not included.

In addition to the separation of routing and forwarding
[9], our architecture has some more features. Examples are
reduced forwarding table size [10], enabling routers to
choose their address format [11], enabling applications to
specify their requirements [8], hiding addresses from
applications and support for various intra-network
techniques. However, they are shared with other approaches
from literature and are not the focus of this paper.

A. Forwarding Component

Today’s Internet operates over interfaces of routers and
hosts and links in between. FoG’s forwarding component

uses a virtual representation of the network, which has the
form of a graph. Host and routers are represented by one or
more vertices, which are called forwarding nodes. Edges
between forwarding nodes are called gates and represent uni-
directional links between them. In order to support QoS,
multiple edges between adjacent nodes are allowed. An edge
is equivalent to a link with a QoS function between two
routers or hosts. Each outgoing gate of a forwarding node is
assigned a gate number, which is unique in the scope of this
forwarding node. Each FoG packet has a header, which
contains the order of gates to pass through explicitly. Details
about the route and how the forwarding node processes it are
given in Section III.

Gates are set up with a FoG-specific management
protocol. The forwarding nodes process the signaling
messages of that protocol and modify the graph of
forwarding nodes and gates as requested. In order to secure
this management, signaling messages are signed via the
authentication service by the sender. The receiver uses the
authentication service to verify the signature.

The forwarding component informs the routing
component about available gates and forwarding nodes to
enable route calculations based on them. However, gates not
intended for other flows can be hidden in order to exclude
them from the routing calculations.

B. Routing Component

The routing component is responsible for route
calculations based on the information received from the
forwarding component. Based on a starting forwarding node
and a destination address, it calculates a route through the
graph of gates and forwarding nodes. QoS requirements
serve as constrains for the calculation. If all gates to the
destination are known, an explicit route is the result. If some
gates are not known, the route is only a partial one. A partial
route contains the destination address or the address of an
intermediate node. During the forwarding process, the
missing part of the route will be calculated based on this
address.

In common scenarios, the subset known to a routing
instance is a connected graph, which represents the “area” of
the network itself and its surroundings. The knowledge about
the parts outside of this subset is more abstract. A routing
component knows about the connectivity but does not know
the gate numbers required to specify the route explicitly.
This is comparable with the situation known from the Border
Gateway Protocol (BGP). A BGP entity knows about the
existence of a route (and its cost) but does not know the
outgoing ports of the intermediate routers which have to be
used.

If there are insufficient gates to form an end-to-end route,
a routing component can request the setup of new gates by a
forwarding component. In particular, routing components
can request gates with specific QoS capabilities in order to
satisfy the QoS requirements of a particular route request.

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

C. Authentication Component

The authentication component is used to generate
signatures for signaling messages and to check such
signatures. Based on the authentication check, authorization
decisions and accounting are done. It is mainly used by the
forwarding component to secure gate management.
Furthermore, applications can use the authentication in order
to sign data packets. Thus, the authentication has an impact
on the packet structure described in the next section.
However, due to the QoS focus of this paper, the
authentication component is not described in more detail.

III. NETWORK PROTOCOL AND ITS PROCESSING

The FoG packet structure is shown in Figure 1. It starts
with a header comprising all information required to decide
the next hop. This enables a router to make a forwarding
decision before the packet is fully received. The packet ends
with a trailer containing all information that can be added to
a packet after receiving it completely. The trailer is optional
and can be omitted. The header and trailer elements are
defined as follows:

 Header

o Length of the header in bytes: This field is
required to access the payload as
subsequent versions of the FoG protocol
can add new header fields between the
header fields defined in this paper and the
payload.

o Flag field which indicates

 if the reverse route in the trailer is
present,

 if the packet is a signaling
message, and

 if the authentication information in
the trailer is present.

o Modification counter to prevent routing
loops due to invalid gate setups

o Length of the payload in bytes

o Forward route for the packet

 Trailer

o Length of the authentication information in
bytes

o Authentication information itself

o Revers route for answers

Each route starts with a length field followed by a stack
of route segments. There are two types of segments:

 The explicit route segment is a stack of gate
numbers, defining explicitly a sequence of gates to
travel through.

 The destination route segment contains a destination
name or address and the requirements for the
remaining route to this destination.

Each forwarding node processes the route of a packet as
shown in Figure 2. If the route is empty, the packet has
reached its destination. If the signaling flag is set, the packet
contains signaling information dealing with the setup of
gates and connection establishment between applications.
The signaling message is handled by the host or router, and it
updates the gate and forwarding node graph accordingly. If
the signaling flag is not set and the forwarding node has a
socket attached to it, it removes the FoG header and trailer
and stores the payload in the receive buffer of the socket. If
the route is not empty, the forwarding node processes the
topmost segment. If it is an explicit route segment, it
removes the topmost gate number and uses it to lookup one
of its outgoing gates. If there is an outgoing gate with this
gate number, the packet is handed over to this gate for
further processing. If the explicit route segment is empty, it
is removed from the route and the procedure restarts. If the
topmost segment is a destination segment, the forwarding
node has to contact the routing component in order to get the
next explicit route segment.

Route
empty?

Segment
type?

Process
locally

Call routing:
r = routing(this, S)

Insert r to route
of packet

yes

no

Destination

Explicit route

Pop gate number
and determine

next gate

Gate
numbers?

Forward
packet to

gate

Update reverse
route

Pop
segment

Pop segment S and
mod. counter--

yes
no

yes

no

Extract
payload

yes no

Signal-
ing?

yes

Drop
packet

Mod.
counter

> 0
no

Trace
reverse
route?

Figure 2. Forwarding node procedure without error cases.

H
e

a
d

e
r

s
iz

e

F
la

g
s

M
o

d
ific

a
tio

n

c
o

u
n

te
r

P
a

y
lo

a
d

s
iz

e

Header Trailer*

R
o

u
te

P
a

y
lo

a
d

A
u

th
e

n
tic

a
tio

n

in
fo

rm
a

tio
n

*

R
e

ve
rs

e

ro
u

te
*

* Optional field

Figure 1. FoG protocol packet structure.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

The routing component calculates a route from the
forwarding node to the destination. The requirements given
in the destination segment are used as requirements for the
route. The route returned by the routing component is added
to the route of the packet and the procedure is restarted.

The modification counter is decremented if the route is
changed in a way that loops might occur. It is used to avoid
routing loops.

The reverse route of a packet is recorded if the reverse
route flag in the packet header is set. A forwarding node has
to derive the reverse gate number from the gate chosen for
the forward direction. The reverse route does not need to be
symmetric to the forward route. Furthermore, an
intermediate forwarding node, which is not able or allowed
to record the reverse route using explicit route segments, can
insert a destination segment to the reverse route. The reverse
route can be used by the receiver of a packet to reply to the
sender. The main benefit of using the reverse route instead of
an address is twofold. First, routing requests for reply
packets are avoided and second, addresses for sending nodes
are not required. The latter is useful for hosts acting only as
clients. A server can reply by using the reverse route without
forcing the client to have an address. If a reply with a traced
backward route is received by a client, it knows the route the
request packet has traveled. In most cases, this route contains
less destination segments and more explicit route segments.
Therefore, the client can use this route for subsequent
packets in order to reduce the routing overhead and the delay
for its packets.

The destination segment is not necessarily the last
segment in a route. As shown by the use cases in the next
section, it might define only an intermediate node of the
route, due to missing knowledge about gate numbers.
Theoretically, multiple destination segments in one route are
possible, which would emulate loose source routing. Due to
security considerations [12], policies might restrict that.

IV. USE CASES

Based on the FoG architecture and its network protocol,
we will now investigate three different use cases showing the
provisioning of QoS functions ranging from IntServ to
DiffServ to a combination of both. For simplicity, the same
example network is used in each case. Only the gate setup
and the responsibility for the classification states (CS) differ.

Figure 3 and 4 show three networks with network 3
providing QoS functions in the form of gates to network 1
and 2. Gates are depicted as straight lines between the
forwarding nodes (FNi), which are shown as dots. The dotted
lines represent connectivity through some other network,
where the gate numbers are not known. Known gate numbers
are depicted with small letters. Each network has not only
the forwarding component but also the routing component as
defined by the architecture. It is depicted as an extra box
with its known components inside.

A. IntServ gates

In Figure 3, networks 1 and 2 have requested QoS
functions from network 3. Network 3 has set up one gate for
each request and network 1 and 2 have informed their
routing component about these gates. For example, each gate
represents a (virtual) link providing 100 MBit/s. The router,
which is represented by FN3, has to store the scheduling and
signaling states required to provide and enforce these QoS
functions. However, the classification states are not stored by
FN3 but have been moved to network 1 and 2, respectively.
Their routing components know about gates b and c,
respectively, and handle the decision about which flows are
mapped to these gates.

If network 1 would like to establish a flow, the entity
responsible for flow creation (e.g. one of the control nodes or
the network edge) starts sending a signaling message with a
route, which just contains a destination segment with the
address of the destination and the requirements for the route,
e.g., a minimum bandwidth of 10 MBit/s. In this example,
the destination is FN4. The packet with the route
[[address(FN4)]] is inserted into the forwarding component
FN1, which proceeds as described in Section III. Since the
topmost segment of the route is a destination segment, it
contacts the routing component R1. In the given case, R1
knows a route with all gate numbers to the destination. We
assume that R1 did not map too many flows on these gates
and that therefore there is enough remaining capacity. R1
maps this new flow on the gates a and b and updates its
classification states. It returns the route [[a, b]] containing
only one explicit route segment. FN1 removes the destination
segment from the packet and inserts this new route into the
route field in the packet. FN1 restarts the procedure with the
explicit route segment as topmost segment. It pops the gate
number a from the gate number stack and looks it up in its
list of outgoing gates. Then, it hands over the packet to gate
a. The gate transports the packet to the next hop via a link
layer, e.g., Ethernet. The packet arrives at FN3 with the route
[[b]]. It pops b from the stack and hands over the packet to
gate b. FN4 receives the packet with an empty route and
processes the packet locally.

Network1

Network3
FN1

FN3

a

R1

FN4

FN1 FN4

Network2

FN2

FN3

b

a

R2

FN2 FN4FN3

b

c

c

CS

CS

R3
100MBit/s link

100MBit/s link

FN5

d

d

FN5

Figure 3. Gates representing IntServ reservations.

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

For network 2, the process is similar. However, there is a
difference in the route required to reach FN3. R2 calculates a
route with three route segments: [[d], [address(FN3)], [c]]. In
contrast to the route calculated by network 1, one more
request to the routing component has to be done. FN5
receives a packet with [address(FN3)] as topmost segment,
which triggers the remaining route request.

B. DiffServ gates

In Figure 4, network 3 provides one gate with a high
priority and a best effort gate with a low priority. The latter
is included in the scenario to demonstrate the integration of
non-QoS links in FoG. The routing components of network 1
and 2 have slightly different views on this situation. R1 only
knows about e and R2 knows about both e and f. The reason
might be that R1 decided to omit f or network 1 did not
request a best-effort gate from network 3. Moreover, R1 and
R2 have different strategies for tracking the flows mapped to
these gates. R1 stores the classification states as in the
previous scenario. However, the criterion for using gate e
differs. Instead of bandwidth as in the previous example, R1
might use a cost metric (e.g. money to pay to network 3) to
decide which flow is important enough to justify the usage of
gate e. R2 does not limit the usage of gate e nor f and does
not store any classification states.

The routes calculated are similar to the previous scenario.
The main difference is in the policy for selecting gates in R1
and R2. In addition to the previous scenario, R2 shows the
benefit of knowing a broader set of gates available for a link.
Depending on the requirements for a route, R2 can decide to
use e or f. For example, it can return the route [[d],
[address(FN3)], [f]] for flows with no QoS requirements.
Gate e can be used by R2 without having to signal to FN3.
Furthermore, FN3 does not have to know the details about
flows and can just follow the gate numbers given in a packet.
This reduces the load of the router providing FN3.

C. Combined scenario

Both gate types can be combined in a single scenario.
Such a scenario can be constructed by merging the two
scenarios shown before. This combined scenario has four
gates between FN3 and FN4 representing different QoS

functions. In such a scenario, R1 would have two options
(since it does not know all gates) for a route from FN3 to
FN4:

 Gate b: The usage is limited by bandwidth already
reserved by R1 for other flows. Through proper
management of R1, a minimal bandwidth can be
guaranteed.

 Gate e: The usage is limited by the cost network 1 is
willing to pay for a flow (if it is charged by network
3). A certain amount of bandwidth cannot be
guaranteed. However, the delay is minimized.

Which gate to choose, depends mainly on the
requirements for a flow and the requesting entity.

D. Discussion

Neither network 1 nor network 2 knows about the
techniques used by network 3 to provide the QoS. These
implementation issues are hidden by the abstract gate
description for the routing and by the gate number used for
the forwarding.

In all scenarios, FN3 does not store any classification
states and does not know which flows are mapped to its gates
by network 1 and 2. It delegated the decision to these
networks. However, the states required to enforce the
characteristics of the gates remain in network 3. Thus, even
though network 3 does not know which and how many flows
are mapped to a gate, it can enforce that the combined traffic
does not use better QoS than requested. Another benefit of
this delegation is reduced signaling overhead. In particular,
no signaling messages from network 1 or 2 are required to
inform FN3 about a new mapping.

The routes calculated by network 2 show an important
case, which is not supported by MPLS and IP today. While
the route [[d], [address(FN3)]] can be implemented with
MPLS handling the explicit route segment and IP handling
the destination segment, a subsequent explicit route segment
([c] in the example) is not directly supported. In IP, the
ingress router doing the IP forwarding has to have some
classification states, which link a packet to the subsequent
explicit route segment. However, FoG moves this state to
other routers and thus reduces the number of states to be
maintained by the ingress router.

The main use case of FoG consists of a network that
would like to sell some degree of QoS to its customers (its
own end users and other networks). Thus, deploying FoG in
order to implement a best effort network provides only
limited advantages compared to IP. However, the degree of
deployment is critical for QoS scenarios, too. The delegation
of states and decisions cannot be done only by network 3,
since it requires the support of network 1 and 2.
Consequently, a partial deployment in today’s Internet might
not benefit from these two features. However, the more
networks support FoG, the better the exploitation of the
advantages. A migration strategy for introducing FoG to
existing networks depends mainly on the legacy systems,
which should be supported. For example, MPLS might be

Network1

Network3
FN1

FN3

a

R1

FN4

FN1 FN4

Network2

FN2

FN3

e

a

R2

FN2 FN4FN3

e

f

e

CS

R3
Best-effort link

High priority link

FN5

d

d

FN5 f

Figure 4. Gates representing DiffServ classes.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

integrated by representing LSP as gates. However, suitable
migration strategies are a subject for future work.

V. IMPLEMENTATION & SIMULATION RESULTS

We have implemented the FoG architecture in a Java-
based discrete event simulator. It can be switched to an
emulator mode that handles events in real time. The FoG
emulator includes interoperability solutions combining FoG
and IP based networks [13]. FoG applications specify their
QoS requirements directly via an interface and FoG reacts
accordingly. The interface bases on the GAPI defined in [8].

For evaluating FoG in the context of QoS management,
the route length of explicit route segments is a specific
concern. The more hops a packet has to travel, the more gate
numbers are required and the longer the header. In order to
estimate the FoG protocol overhead, the length of explicit
routes for large-scale scenarios has been analyzed.

The network used for evaluation should match the
characteristics of today’s Internet but be smaller in size in
order to reduce simulation time. Therefore, the network has
been generated with the GLP algorithm implemented in
BRITE [14] and the parameters derived in [15]. Therefore,
the graph has similar characteristics to the real world Internet
graph on the autonomous system level. The scenario consists
of 5000 nodes and 12437 links between them. In addition, a
different graph generated with the default parameters of
BRITE (5000 nodes and 8974 links) was used for simulation.
Since the results do not differ significantly, only the results
from the first graph are presented.

The analysis is based on the total explicit route lengths of
6000 connections between randomly chosen FoG nodes.
Figure 5 shows the cumulative distribution function of route
lengths. Since each intermediate node uses three gate
numbers and each end node uses two gate numbers in order
to encode its routing decision, only specific route lengths
such as 4 and 7 are possible. An end-to-end route contains
12.1 gate numbers in average. If each gate number is
encoded in one byte, 91% of all routes remain below the size
of an IPv6 address. The average number of hops between
two FoG nodes L = 3.7 matches the expectations for the
Internet [16].

VI. RELATED WORK

QoS for networks has a long research history. A survey
about today’s approaches is given in [17]. As discussed in
the introduction, IntServ [2] and DiffServ [5] can be used to
provide QoS. However, they do not support the movement of
states.

MPLS uses routes comparable to the explicit route
segment. In combination with IP, some use cases can be
supported. However, Section IV.D points out important
cases where the combination of IP and MPLS does not allow
the movement of classification states. Furthermore, FoG
does not require a standardization of gate numbers as
required for IP’s TOS field values in an inter-network
scenario [18].

Other forwarding approaches using a stack of locally
valid numbers to describe routes, like PARIS [19], Sirpent
[20] or Pathlet [10], already introduce the split between
forwarding and routing. In PFRI [9] the numbers are even
globally unique in order to enable the end host to specify a
loose source route based on links. An entry in a forwarding
table represents virtual [10] or physical [21] next hops. Some
(esp. the older) approaches are more related to intra-
networks. Pathlet [10], the newest one, deals specifically
with policy issues in inter-network routing. However, QoS
and other application requirement aspects are not discussed
in detail. Only Pathlet [10] mentions QoS but does not
describe any details about how to integrate IntServ and
DiffServ and a network protocol.

QoS protocols, like RSVP or NSIS [22] are able to signal
QoS requirements. Either of these protocols or similar
approaches are suitable to signal the setup of gates.

Other proposals for new inter-network architectures
focus more on the overall architecture and do not address
scalability of state information, e.g., NewArch [23], IPC
[11], RNA [24].

VII. CONCLUSION AND OUTLOOK

In this paper, we have presented the Future Internet
architecture “Forwarding on Gates” (FoG). It uses a network
protocol, which provides the capability to explicitly define a
route, use the destination address plus requirements for a
route or a combination of both. This enables the movement
of classification states between routers. IntServ and DiffServ
are merged by introducing QoS functions, which are
represented by directed gates in the FoG architecture. Routes
can be defined by using the gates without knowing about
their implementation. The protocol enables the flexibility to
move classification states from the router implementing a
QoS function to other routers, which take over the mapping
of flows to QoS functions. This delegation of the mapping
decisions reduces the amount of required signaling
messages.

Based on three use cases, the setup of gates in IntServ,
DiffServ and mixed scenarios is described. Although the
route length is dynamic, the protocol overhead remains low.
A protocol simulation in a large-scale network with 5000

Figure 5. CDF of route lengths for scenario with 5000 nodes.

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20

End-to-end route length in number of gates

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

nodes showed that 91% of the routes are shorter than an IPv6
address. The results presented in this paper show the
flexibility of FoG in providing QoS in a scalable way. It
indicates that the FoG architecture seems to be a promising
basis for a Future Internet.

In the future, we plan to develop deployment and
migration strategies from today’s network to FoG.
Furthermore, we will use route repair techniques known
from MPLS to evaluate the robustness of FoG routes against
link and node failures.

ACKNOWLEDGMENT

This work is funded by the German Federal Ministry of
Education and Research under the project G-Lab_FoG (code
01BK0935). The project is part of the German Lab [25]
research initiative.

REFERENCES

[1] Cisco Systems, “Cisco Visual Networking Index: Forecast
and Methodology, 2010–2015”, white paper, 2011,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525
/ns537/ns705/ns827/white_paper_c11-481360.pdf [retreived:
July 2012].

[2] R. Braden, D. Clark, and S. Shenker, “Integrated Services in
the Internet Architecture: an Overview,” IETF, RFC 1633,
June 1994.

[3] C. Deleuze and Serge Fdida, “A scalable IntServ architecture
through RSVP aggregation,” Networking and Information
Systems Journal, vol. 2, 1999, no. 5-6, pp. 665-681.

[4] B. E. Carpenter and K. Nichols, “Differentiated service in the
Internet,” Proc. IEEE, vol. 90, no. 9, pp.1479-1494 , 2002.

[5] S. Blake et al., “An Architecture for Differentiated Services,”
IETF RFC 2475, Dec. 1998.

[6] Y. Bernet et al., “A Framework for Integrated Services
Operation over DiffServ Networks,” IETF RFC 2998, Nov.
2000.

[7] X. Masip-Bruin et al., “The EuQoS System: A solution for
QoS Routing in Heterogeneous Networks,” IEEE
Communications Magazine, Vol.45 No.2, pp. 96-103,
February 2007.

[8] F. Liers, et al., “GAPI: A G-Lab Application-to-Network
Interface,” 11th Würzburg Workshop on IP: Joint ITG and
Euro-NF Workshop "Visions of Future Generation Networks"
(EuroView2011) , Würzburg Germany, August 2011.

[9] K. L. Calvert, J. Griffioen, and L. Poutievski, “Separating
Routing and Forwarding: A Clean-Slate Network Layer
Design,” In proceedings of the Broadnets 2007 Conference,
pp. 261-270, September 2007.

[10] P. B. Godfey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet
Routing,” In proceedings of SIGCOMM 2009, pp. 111-122
August 2009.

[11] J. Day, I. Matta, and K. Mattar, “Networking is IPC: A
Guiding Principle to a Better Internet,” In Proceedings of
ReArch’08, Article no. 67, Madrid, Spain, December 2008.

[12] A. Reitzel, “Deprecation of Source Routing Options in IPv4,
IETF,” Internet-Draft, August 29, 2007.

[13] F. Liers, T. Volkert, and A. Mitschele-Thiel, “Scalable
Network Support for Application Requirements with
Forwarding on Gates,” Demo at 11th Würzburg Workshop on
IP: Joint ITG and Euro-NF Workshop "Visions of Future
Generation Networks" (EuroView2011) , Würzburg
Germany, August 2011.

[14] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: an
approach to universal topology generation,” In IEEE
MASCOTS, pp. 346–353, Cincinnati, OH, USA, August
2001.

[15] H. Haddadi, D. Fay, S. Uhlig, A.W. Moore, R. Mortier, A.
Jamakovic, and M. Rio, “Tuning Topology Generators Using
Spectral Distributions,” In proceedings of SIPEW, pp.154-
173, 2008.

[16] CAIDA, “Comparative analysis of the Internet AS-level
topologies extracted from different data sources,”
http://www.caida.org/~dima/pub/as-topo-comparisons.pdf
[retreived: July 2012].

[17] D. Vali, S. Paskalis, L. Merakos, and A. Kaloxylos, “A
Survey of Internet QoS Signaling,” IEEE Communications
Surveys & Tutorials, Volume 6, Fourth Quarter, pp. 32-43,
2004.

[18] Cisco Systems, “Implementing Quality of Service Policies
with DSCP,”
http://www.cisco.com/application/pdf/paws/10103/dscpvalues
.pdf [retreived: July 2012].

[19] Israel Cidon and I. S. Gopal, “PARIS: An approach to
integrated high-speed private networks,” International Journal
of Digital ans Analog Cable Systems, pp. 77-85, 1988.

[20] D. R. Cheriton, “Sirpent: a high-performance internetworking
approach,” In proceedings of ACM SIGCOMM '89:
Symposium proceedings on Communications architectures &
protocols, pp. 158-169, 1989.

[21] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A.
Gandhi, “BANANAS: An evolutionary framework for
explicit and multipath routing in the Internet.” In Proc. ACM
SIGCOMM 2003, pp. 277-288, FDNA Workshop, Aug. 2003.

[22] R. Hancock et al., “Next Steps in Signaling (NSIS):
Framework,” IETF, RFC4080, Jun 2005.

[23] D. Clark, K. Sollins, J. Wrolawski, D. Katabi, J. Kulik, X.
Yang, R. Braden, T. Faber, A. Falk, V. Pingali, M. Handley,
and N. Chiappa, “NewArch: Future Generation Internet
Architecture,” Technical Report, 2003,
http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf
[retreived January 2012].

[24] J. Touch and V. Pingali, “The RNA Metaprotocol,” Proc.
IEEE International Conf. on Computer Comm. (ICCCN), pp.
1-6, Aug. 2008.

[25] German Lab Homepage, http://www.german-lab.de
[retreived: July 2012].

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

http://www.tu-ilmenau.de/iks/personen/mitarbeiter/?no_cache=1&staff_id=13
http://www.tu-ilmenau.de/iks/personen/mitarbeiter/?no_cache=1&staff_id=31
http://www.tu-ilmenau.de/iks/personen/mitarbeiter/?no_cache=1&staff_id=1
http://www.cisco.com/application/pdf/paws/10103/dscpvalues.pdf
http://www.cisco.com/application/pdf/paws/10103/dscpvalues.pdf

