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Abstract—This work presents the development of a local 

weather forecasting system integrated into an agricultural 

digital twin, leveraging classical machine learning. Data were 

collected from ESP32-based weather stations equipped with 

temperature, relative humidity, and atmospheric pressure 

sensors. The acquired measurements were processed through a 

Node.js server and used to train predictive models, including 

Random Forest, Gradient Boosting, Ridge Regression, Lasso 

Regression and K-Nearest Neighbors. A sliding window 

approach was applied to structure the input data for short-

term forecasting. Experimental results show that Gradient 

Boosting achieved the best performance among classical 

methods for atmospheric pressure but exhibited overfitting for 

temperature and humidity. These findings highlight the 

potential of Artificial Intelligence (AI)-powered digital twins to 

enhance precision agriculture by providing accurate, localized, 

and up-to-date weather forecasts. 

Keywords-Digital twin; local weather forecasting; machine 

learning; deep learning; agriculture; Gradient Boosting. 

I.  INTRODUCTION 

In recent decades, technological advancements have 
driven the development of digital twins, virtual replicas of 
real-world physical systems that enable real-time monitoring, 
simulation, and control. In the agricultural sector, these 
digital twins integrate data from sensors, weather stations, 
and Internet of Things (IoT) devices to remotely model and 
optimize complex processes, facilitating the management of 
resources such as water, fertilizers, and pesticides [1]. 

The reliability of these models largely depends on the 
underlying sensing infrastructure. Well-designed Wireless 
Sensor Network (WSN) architectures, such as those 
proposed by Lloret et al. [2], and Hussein et al. [3] have 
proven essential for ensuring coverage, scalability, and 
efficiency in data collection. Such infrastructures enable 
parallel and organized communication between multiple 
nodes, optimizing network topology and reducing latency in 
transmitting critical data. 

By replicating plants and cultivation environments, 
digital twins offer farmers decision support systems that 
reduce resource consumption and improve productivity [4]. 
These virtual representations facilitate scenario evaluation 
and predictive analysis without extensive physical trials, 
accelerating the digital transformation of the agricultural 

sector [5]. Incorporating artificial intelligence and machine 
learning expands the capabilities of these models, allowing, 
for example, adaptive irrigation scheduling based on real-
time soil moisture data and weather forecasts, significantly 
reducing water waste [6]. 

Artificial intelligence techniques have emerged as a key 
component in high-precision weather forecasting, leveraging 
convolutional and recurrent neural networks to model 
complex atmospheric phenomena [7]. These approaches 
have been shown to improve the estimation of precipitation 
and extreme temperatures, enabling digital twins to 
anticipate adverse conditions and proactively adapt their crop 
management strategies [8]. 

Moreover, digital twins support sustainable agricultural 
practices through continuous environmental monitoring and 
adaptive management strategies [9]. The combination of 
cloud computing technologies and edge devices increases 
data processing capacity and allows faster, more precise 
responses to changes in the field [10]. 

This work presents the design and implementation of a 
local weather forecasting system integrated into an 
agricultural digital twin. Unlike previous studies, our 
proposal combines IoT-based sensing infrastructure with 
classical machine learning models to generate short-term, 
high-resolution forecasts directly tailored to the conditions of 
a specific agricultural plot. The system demonstrates the 
feasibility of deploying low-cost weather stations with real-
time data processing and highlights the comparative 
advantages and limitations of different predictive 
approaches. This contribution provides a practical 
framework for enhancing decision-making in precision 
agriculture through accurate, localized, and continuously 
updated forecasts for digitals twins data input. 

The remainder of this article is structured as follows: 
Section II reviews related works on digital twins, artificial 
intelligence, and weather forecasting in agricultural contexts. 
Section III details the architecture and operation of the 
proposed system, including data acquisition, preprocessing, 
and model training. Section IV presents and discusses the 
experimental results, covering machine learning approaches. 
Finally, Section V summarizes the conclusions and outlines 
potential future research directions. 
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II. RELATED WORK 

Several studies have reviewed the adoption of digital 
twins in agriculture, focusing on controlled environments 
such as greenhouses. A systematic review highlights how 
these models improve horticultural productivity and 
sustainability, emphasizing their role in microclimate 
control, crop growth monitoring, and resource use efficiency 
[11]. 

Integrating sensors to measure humidity, temperature, 
CO₂ levels, and light, along with IoT platforms, increases the 
accuracy of growth simulations and optimizes climate 
control in greenhouses [12]. As documented by Bri et al. 
[13], real deployments of wireless sensor networks 
demonstrate the feasibility and challenges associated with 
large-scale agricultural monitoring, including node resilience 
in adverse environments and energy management to ensure 
continuity of real-time measurements. 

Virtual and augmented reality technologies have 
strengthened digital twin platforms by enabling immersive 
interactions with virtual crop models. Examples like the 
“Virtual Breeding Nursery” allow farmers to explore virtual 
plots, manipulate environmental variables, and simulate 
stress or pest infestation scenarios [14]. These intuitive data 
visualization interfaces combine sensor information with 3D 
models of plants and structures, supporting more informed 
decision-making [15]. 

In open-field contexts, pilot projects demonstrate that 
platforms equipped with IoT sensor networks—streaming 
real-time soil moisture, nutrient content, and weather data—
can dynamically adapt management practices, optimizing 
fertilizer use and pest control while minimizing 
environmental impact [16]. Cooperative group-based 
solutions, such as those presented by García et al. [17], 
reduce energy consumption and improve communication 
efficiency in WSNs, increasing the viability of these 
platforms in rural areas with limited infrastructure. 

Advanced Deep Learning techniques have been 
successfully applied to environmental monitoring, enabling 
the early detection of anomalous patterns in air quality, 
humidity, and temperature [18]. This automated analysis 
facilitates the integration of predictive systems within digital 
twins, enhancing responsiveness to emerging weather events 
or pest outbreaks. Nevertheless, challenges remain, such as 
data interoperability, real-time synchronization, and 
affordability for smallholder farmers, which currently limit 
widespread adoption [19]. 

III. SYSTEM PROPOSAL 

This section presents a proposed system for 
implementing local weather forecasting based on artificial 
intelligence within a digital twin environment. 

A. System Description 

The proposed system is based on weather stations 
developed on the ESP32 platform, as illustrated in Figure 1. 
These stations are equipped with sensors capable of 
measuring key meteorological variables such as air 
temperature, relative humidity, and atmospheric pressure. 

The data captured by the sensors is transmitted and 
managed through a server implemented with Node.js, which 
allows for their storage, processing, and subsequent use for 
modeling. The locally obtained meteorological variables 
constitute the inputs to the prediction model based on a 
machine learning models. 

The management of weather forecast requests and the 
visualization of real-time data and model results is carried 
out through a user interface developed as part of an 
application for monitoring agricultural fields. This 
application serves a dual purpose: to facilitate interaction 
with the system and as a key component in creating a digital 
twin of the agricultural environment. 

 

Figure 1.  Photograph of the weather station. 

B. Operating Algorithm 

The weather station's operating algorithm operates in a 
loop with an execution frequency of once per hour. After this 
interval, the node automatically connects to the wireless 
network, establishes communication with the sensors using 
the Inter-Integrated Circuit (I2C) or Universal Asynchronous 
Receiver-Transmitter (UART) protocols, and measures the 
meteorological variables. 

Once the data is obtained, the system attempts to connect 
with the server. If the connection is successful, the data is 
sent, and the node again enters a standby state until the next 
iteration of the cycle. 

Regarding the operation of the digital twin, the 
interaction begins when the user clicks the forecast button on 
the interface associated with a specific weather station. This 
action activates the weather prediction model, which 
generates a forecast for the next 24 hours. 

Additionally, the data collected daily by the weather 
stations is used to update the model. In this way, a new 
model version is trained daily, ensuring that predictions are 
based on the most recent local weather records, thereby 
increasing the system's accuracy and adaptability to 
environmental conditions. This data is used for input for 
digital twins. 

C. Dataset Description 

The dataset used in this work corresponds to a time series 
of local meteorological observations recorded from February 
1, 2025 to August 1, 2025. During this period, atmospheric 
conditions were assessed intermittently over a specific 
agricultural plot. The dataset is composed of the following 
variables: 
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• Air temperature (°C) 

• Relative humidity (%) 

• Atmospheric pressure (hPa) 

• Date  

• Time 

Each observation is associated with a timestamp (date 
and time) indicating the exact moment the measurement was 
taken. These variables constitute the basis for generating 
weather forecasts in the proposed system, allowing for 
modeling short-term local climate evolution within the 
context of the digital twin. 

D. Model Training and Testing 

The weather forecast model was generated following the 
steps illustrated in Figure 2. 

First, the dataset is loaded into a DataFrame, where the 
temperature, relative humidity, and atmospheric pressure 
variables are converted to numeric format. The date and time 
column is transformed into datetime objects and sorted in 
natural chronological sequence. 

Next, a data cleaning process is carried out. Invalid 
samples are eliminated, including those generated during 
testing (e.g., records with a frequency of one second) and 
those with temporal discontinuities greater than one hour. 

Once the dataset is cleaned, an exploratory analysis of 
the variables of interest is performed. To do this, histograms 
are used to visualize the distribution of the variables 
extracted from the database. 

Subsequently, the input structure for the model is built 
based on a sliding data window. The input to the forecasting 
models was defined using a sliding-window approach over 
the time series. Each input sequence consisted of a window 
of 24 consecutive hourly samples (corresponding to a 24-
hour period), with a stride of 3 hours between windows. This 
resulted in partially overlapping input sequences, capturing 
both short-term dynamics and daily patterns. The sampling 
frequency within each window was fixed at one hour, and 
the target variable was defined as the meteorological 
condition in the subsequent 24 hours. Thus, each input had a 
shape of (24, number of features), where the features 
corresponded to air temperature, relative humidity, and 
atmospheric pressure. With this structure, the input tensor is 
generated, on which statistical analysis is performed to 
obtain: 

• The tensor dimension. 

• The total number of elements. 

• The number and percentage of null values. 

• The percentage of valid data. 

• The ranges of values before normalization. 

• The identification of potential outliers. 

Before training the models, the variables are normalized, 
and the correlation matrix between them is analyzed to 
identify relevant relationships between the different 
meteorological variables. 

Different machine learning and deep learning algorithms 
are trained and comparatively evaluated in the final stage. In 

the machine learning field, the following models were 
considered: 

• Random Forest 

• Gradient Boosting 

• Ridge Regression 

• Lasso Regression 

• K-Nearest Neighbors 

The primary evaluation metric employed in this study is 
the Coefficient of Determination (R²), which provides a 
measure of how well the predicted values approximate the 
actual data. In addition to R², the Mean Squared Error (MSE) 
and Mean Absolute Error (MAE) are also analyzed to gain 
deeper insights into the model’s predictive performance. 
These complementary metrics allow us to assess aspects 
such as robustness, generalization capability, and potential 
overfitting. By considering multiple evaluation criteria, we 
ensure a more comprehensive understanding of the model’s 
behavior across different scenarios. 

 

Figure 2.  Flowchart of the artificial intelligence model selection, training, 

and testing process. 

E. Computational Tools and Libraries 

The data processing, analysis, and modeling pipeline was 
implemented in Python 3.10. For data handling and 
preprocessing, the libraries Pandas and NumPy were 
employed to manage time series, perform data cleaning, and 
generate sliding windows for model input. Exploratory data 
analysis and visualization were conducted using Matplotlib 
and Seaborn, which allowed the inspection of statistical 
distributions, correlations, and temporal trends. 

Traditional machine learning models, including Random 
Forest, Gradient Boosting, Ridge, Lasso, and K-Nearest 
Neighbors, were implemented with Scikit-learn, which was 
also used to compute the performance metrics (R², MSE, and 
MAE). 
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IV. RESULTS 

This section will detail the results obtained from the 
training and testing of the different models proposed for the 
meteorological dataset. 

A. Histogram of dataset variables 

Figure 3 presents the frequency distributions of the 
temporal and meteorological variables in the dataset. The 
temporal variables (minutes, day, and month) display distinct 
sampling patterns, with the distribution of minutes being 
nearly uniform across the recorded range, the distribution of 
days showing alternating frequencies, and the distribution of 
months indicating data collection concentrated in two main 
periods. 

Regarding the meteorological variables, the air 
temperature histogram shows a slightly left-skewed 
distribution, with most observations ranging between 27 °C 
and 30 °C, and fewer occurrences at extreme values. Relative 
humidity exhibits a bimodal distribution, with peaks near 
70–75 % and around 100 %, indicating frequent saturation 
events. Atmospheric pressure values are clustered mainly 
between 1012 hPa and 1016 hPa, following a near-normal 
distribution with moderate variability. 

These histograms provide insight into the statistical 

characteristics of the dataset, highlighting the predominant 

conditions recorded by the meteorological station and 

potential patterns relevant for model training. 

 
Figure 3.  Histrograms of the weather and time variables from the dataset. 

B. Correlation Matrix 

Figure 4 illustrates the relationships between the 

temporal and meteorological variables in the dataset. When 

considering the absolute values of the correlation 

coefficients, the highest associations are observed between 

relative humidity and both the day and month variables (|r| = 

0.60 and 0.51, respectively) negative in sign and between 

atmospheric pressure and the same variables (|r| = 0.53 and 

0.51, respectively) positive in sign. Air temperature also 

shows a relatively strong correlation (|r| = 0.63) with the 

minute of the day, indicating a marked diurnal pattern. These 

high-magnitude correlations, regardless of their direction, 

suggest that temporal factors exert a significant influence on 

the measured meteorological variables, and these 

relationships can be exploited to improve the performance of 

the forecasting models. 
These results indicate the presence of significant 

relationships among certain variables, which can be 
exploited to enhance the training process of the artificial 
intelligence model for local weather forecasting. 

 
Figure 4.  Correlation matrix of temporal and meteorological variables. 

C. Machine learning analysis 

Figure 5 compares the results of the different models for 

temperature prediction. Gradient Boosting achieved the best 

overall performance among the classical machine learning 

methods, with the lowest MAE (0.37) and MSE (0.30), and 

the highest R² (0.656). K-Nearest Neighbors also provided 

competitive results (R² = 0.640), followed by Lasso and 

Ridge regressions with similar performance levels (R² ≈ 

0.60). Random Forest yielded the lowest R² (0.590) and 

slightly higher error values. 

However, Figure 6 reveals that, despite the relatively 

high R² value, the Gradient Boosting model exhibits 

substantial dispersion in the test set predictions, not only at 

extreme temperatures but also in central value ranges. This 

discrepancy between training and testing performance 

suggests overfitting, indicating that the model may be 

capturing noise or dataset-specific patterns rather than 

generalizable relationships. This limitation will later be 

addressed in the deep learning experiments, where 

regularization techniques are introduced to reduce overfitting 

and improve generalization. 

 

Figure 5.  Performance comparison of classical machine learning models 

for air temperature prediction, evaluated using MSE, MAE, R². 
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Figure 6.  Predicted versus actual air temperature values for the Gradient 

Boosting model, including both training and testing datasets, compared to 

the ideal prediction line. 

 
Figure 7.  Predicted versus actual relative humidity values for the Gradient 

Boosting model, including both training and testing datasets, compared to 

the ideal prediction line. 

 
Figure 8.  Performance comparison of classical machine learning models 

for relative humidity prediction, evaluated using MSE, MAE, R². 

 
Figure 9.  Performance comparison of classical machine learning models 

for atmospheric pressure prediction, evaluated using MSE, MAE, R². 

Figure 7 presents the performance comparison for 
relative humidity prediction. As in the case of temperature, 
Gradient Boosting outperformed the other models, achieving 
the highest R² (0.578) and the lowest error metrics (MAE = 
0.54, MSE = 0.45). Random Forest showed slightly lower 
performance (R² = 0.546), while Ridge Regression 
performed poorly (R² = 0.123), indicating difficulty in 
modeling the underlying relationships. Lasso Regression and 
K-Nearest Neighbors produced intermediate results. 

Figure 8 depicts the predicted versus actual humidity 
values for the Gradient Boosting model, showing a strong 
alignment with the ideal prediction line for most 
observations, though with higher dispersion in the test set, 
particularly at mid-range humidity levels. 

Figure 9 compares the performance of the evaluated 
machine learning models for atmospheric pressure 
prediction. Gradient Boosting achieved the highest 
coefficient of determination (R² = 0.899) and the lowest error 
metrics (MAE = 0.26, MSE = 0.10), demonstrating its 
superior accuracy and generalization capacity. Random 
Forest also performed well, with an R² of 0.845 and slightly 
higher errors (MAE = 0.34, MSE = 0.16). In contrast, Ridge 
Regression and Lasso Regression yielded moderate results 
(R² = 0.618 and 0.593, respectively), while K-Nearest 
Neighbors showed the weakest performance (R² = 0.457). 

Figure 10 illustrates the predicted versus actual 

atmospheric pressure values using the Gradient Boosting 

model. The predictions closely follow the ideal line for both 

training and testing datasets, with minimal dispersion, 

particularly in the test set. These results confirm that 

Gradient Boosting provides the most reliable predictions for 

atmospheric pressure in the given dataset, outperforming all 

other tested models. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a system successfully 

integrates artificial intelligence into a digital twin for local 

weather forecasting in agricultural environments. The results 

demonstrate that Gradient Boosting offers the most accurate 

predictions among the classical machine learning models for 

all three meteorological variables, with particularly strong 

performance in atmospheric pressure forecasting. 

These outcomes validate the feasibility of combining 

IoT-based sensing infrastructure with advanced predictive 

models to enhance decision-making in precision agriculture. 

By providing localized and timely forecasts, the system can 

support improved resource allocation, crop management, and 

environmental sustainability. 
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Figure 10.  Predicted versus actual atmospheric pressure values for the 

Gradient Boosting model, including both training and testing datasets, 

compared to the ideal prediction line. 

Future work will focus on expanding the dataset to cover 
multiple seasons and diverse climatic conditions, integrating 
additional variables such as wind speed, solar radiation, and 
soil moisture. Model optimization will include 
hyperparameter tuning, advanced regularization techniques, 
and the exploration of hybrid architectures that combine 
statistical and neural approaches. Furthermore, deploying the 
forecasting system in real-time operational scenarios and 
integrating it with automated control mechanisms in the 
digital twin will be key steps towards its practical adoption in 
smart farming applications. 
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