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Abstract—The PISALE ALE-AMR hydrocode suite is an
advanced computational tool that combines the Arbitrary
Lagrangian-Eulerian (ALE) method with Adaptive Mesh Re-
finement (AMR) to simulate complex multi-physics problems
involving substantial material deformation. The suite currently
includes physics modules for heat conduction and radiation
transport, which are handled by a finite element diffusion solver
operating on a structured, adaptive mesh infrastructure provided
by the SAMRALI library. This paper investigates the feasibility of
extending this framework to simulate fluid flow in porous media
as described by Darcy’s law, a critical component for subsurface
applications like geothermal energy extraction and hydrogeology.
We analyze the mathematical parallels between diffusion and
Darcy flow, assess the suitability of the existing solver, and
consider the integration of the more general MFEM finite element
library. The primary objective is to evaluate the potential of
the ALE-AMR methodology for Darcy flow simulations and to
outline the necessary modifications and implementation steps,
including addressing challenges related to integrating different
AMR and grid formulations.
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I. INTRODUCTION

The PISALE ALE-AMR hydrocode suite represents an
advanced computational tool that combines the Arbitrary
Lagrangian-Eulerian (ALE) method with Adaptive Mesh Re-
finement (AMR) [1]. This combination enables the simulation
of physical phenomena characterized by substantial material
deformation, via the Lagrangian approach, while simultane-
ously addressing challenges associated with mesh distortion
and optimizing computational efficiency through localized
mesh refinement, which are key features of AMR method-
ologies. Initially published as ALE-AMR, the code is more
recently referred to as PISALE (Pacific Island Structured-
AMR with ALE), with various specialized versions developed
to model a diverse range of applications [2].

Currently, the hydrocode suite incorporates physics mod-
ules dedicated to simulating heat conduction and radiation
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transport, both of which are modeled using a finite element
diffusion solver [3]. This solver is specifically engineered to
operate on the dynamically adapting mesh structures generated
by the AMR technique. The foundational support for adaptive
mesh refinement within the hydrocode is provided by the
SAMRALI (Structured AMR Application Infrastructure) library.
Given its established infrastructure for managing complex
mesh geometries and integrating various physics modules, we
discuss here the potential for further expansion to simulate
additional physical phenomena, including Darcy flow in sub-
surface applications.

Darcy’s law governs the movement of fluid through a
given material, and for this application, we consider flow
through a porous medium [4]. This law states that the rate at
which a fluid flows through a permeable material is directly
proportional to the pressure gradient driving the flow and the
intrinsic permeability of the material, while being inversely
proportional to the viscosity of the fluid. In hydrogeology, it
serves as a basis for analyzing groundwater flow; in petroleum
engineering, it is used for multiphase flow modeling (e.g., the
behavior of oil and gas reservoirs); and in geothermal energy,
it is used for understanding the transport of both heat and
fluids within the Earth’s subsurface [5].

This paper presents an investigation into the feasibility of
using the existing ALE-AMR methodology, in conjunction
with its current finite element diffusion solver and/or the
MFEM solver, for simulating fluid flow in porous media
governed by Darcy’s law. A detailed analysis examines the
mathematical similarities and differences between diffusion
and Darcy flow, assess the suitability of the current solver
and/or replacing it with a more general finite element package,
MFEM, for modeling Darcy flow. The primary objective is to
evaluate the potential of ALE-AMR for Darcy flow simulations
and outline the requisite steps for implementation.

The MFEM solver is a general purpose high-performance,
open-source finite element library developed for solving partial
differential equations. It provides a flexible and scalable frame-
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work for discretizing and solving a wide range of problems.
MFEM'’s capabilities include support for various finite element
formulations, efficient linear and nonlinear solvers, and ad-
vanced mesh management techniques. By leveraging MFEM’s
strengths, this investigation aims to explore its potential as
a viable alternative or complement to the existing diffusion
solver for Darcy flow simulations within the ALE-AMR
framework. One problem with direct application of MFEM
is that it has its own AMR and grid formulation which needs
adaptation for PISALE. We discuss solutions to this obstacle
later in the paper.

II. THE ALE-AMR HYDROCODE AND ITS FINITE
ELEMENT DIFFUSION SOLVER

The ALE method, as implemented in ALE-AMR, provides
flexibility in handling various geometries and scenarios in-
volving large-scale deformations and multiple objects within
a domain. The mathematics follows a Lagrangian description,
where the mesh follows the material, and an optional and/or
modified remap to an Eulerian description, where the mesh
appears via the remap to remain fixed in space. The AMR
capabilities integrated within ALE-AMR serve to enhance the
efficiency of computations by selectively refining the mesh in
regions identified as requiring higher accuracy, such as areas
with sharp gradients or complex flow patterns. This localized
refinement ensures that computational resources are focused
where they are most needed, without incurring the overall cost
of a uniformly fine mesh. This ALE-AMR framework, which
was developed initially for pure gas dynamics simulations, has
matured into a comprehensive multiphysics framework capable
of addressing a broad spectrum of applications, including
phenomena in high-energy-density physics, material impacts,
and laser target modeling [2]. Some very preliminary results
on the application of PISALE to groundwater flow are given
elsewhere [6].

The physics modules responsible for simulating heat con-
duction and radiation transport within ALE-AMR are enabled
by a finite element diffusion solver specifically engineered to
function on the composite meshes generated by the AMR. This
solver employs a nodal-based approach, where the primary
variables of interest are defined at the nodes of the computa-
tional mesh. A critical feature of this solver is its utilization
of transition elements to effectively manage the interfaces
that arise between regions of the mesh with different levels
of refinement, a direct consequence of the AMR technique.
These specialized elements are designed to ensure the conti-
nuity of the solution across these coarse-fine boundaries by
appropriately handling the hanging nodes, edges, and faces
that are characteristic of such interfaces. For the necessary
3:1 refinement ratio (or multiples, thereof) employed by the
ALE-AMR framework for consistency, a variety of transition
element types are used, depending on which of the element’s
sides are subject to refinement.

The finite element method necessitates the use of numer-
ical integration techniques, which are implemented through

quadrature rules within the solver. For the transition ele-
ments, compound Gauss-Legendre quadrature[3] is employed
to maintain a level of integration accuracy comparable to that
achieved on standard elements. Additionally, mass lumping
quadrature rules, which strategically place integration points
at the element nodes, are utilized to produce diagonal mass
matrices, a property that can be advantageous for certain time-
stepping schemes. To overcome the challenge of undefined
derivatives at the transition faces, which complicates the com-
putation of the stiffness matrix, “blurred" quadrature rules are
implemented. These rules work by averaging the evaluations
of derivatives taken from different regions within the element,
thereby ensuring the accurate assembly of the stiffness matrix.

The discretization of the diffusion equation is achieved
using the standard Galerkin approach, a method where the
equation is multiplied by a test function, integrated over the
computational domain, and then subjected to integration by
parts to derive the weak form. Both the solution being sought
and the test functions used in the formulation are approximated
using a basis set composed of shape functions defined on both
standard and transition elements. This process culminates in
a system of linear algebraic equations, typically represented
in matrix form as Au = f, where A is the system/stiffness
matrix, u is the vector containing the unknown nodal values
of the solution, and f is the vector representing the source
terms. This linear system is then solved using the HYPRE
GMRES solver, an iterative algorithm particularly well-suited
for handling large, sparse systems of equations, often enhanced
by the use of a preconditioner to accelerate the convergence
of the solution. The current finite element framework within
PISALE/ALE-AMR is based on first-order H1 quadrilateral
elements in two dimensions and hexahedral elements are
required in three dimensions. These element types are recog-
nized as being well-suited for the diffusion equation solvers
that underpin the heat conduction and radiation diffusion
modules.

The PISALE diffusion solver serves as the foundation
for modeling heat conduction through the dynamic diffusion
equation, which accounts for the temporal evolution of tem-
perature and the flow of heat within the material. This equation
incorporates parameters such as specific heat, thermal conduc-
tivity, and the absorptivity of the medium. Similarly, radiation
transport can be modeled using the diffusion approximation, a
simplification of the more complex radiative transfer equations
that is applicable under certain conditions, such as in optically
thick media. This approach involves formulating equations for
both the energy density of radiation and the temperature of the
material, with coupling terms that describe the absorption and
emission of radiation. A significant hurdle in integrating these
physics modules with the ALE-AMR framework arises from
the inherent difference in how physical variables like temper-
ature and energy are represented within the code. Specifically,
the finite element method uses nodal representations, while
PISALE uses cell-centered values for certain variables. To
bridge this gap, we employ projection integrals as a means
of mapping variables between the nodes and the cell centers,
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a technique that ensures the conservation of energy during
the transfer process. This mapping involves calculating the
differences in cell temperatures after the hydrodynamic step,
using the specific heat capacity to determine the corresponding
energy and specific heat differences at the nodes, updating
the nodal temperatures based on these differences, and then
transferring these changes back to the cells to update their
internal energy.

ITII. DARCY’S LAW AND FLOW IN POROUS MEDIA

In its most fundamental form, Darcy’s law describes the
rate of fluid flow (Q) through a porous medium as being
directly proportional to the cross-sectional area (A) of the
flow path and the pressure difference (AP) over a given
length (L), and inversely proportional to the viscosity (u)
of the fluid. Mathematically, this relationship is expressed as
Q = —(kA/u)(AP/L), where k represents the permeability
of the porous medium. The negative sign in the equation
signifies that the direction of flow is from regions of higher
pressure to regions of lower pressure. Permeability (k) is an
intrinsic property of the porous medium that quantifies its
capacity to transmit fluids. This property is influenced by the
grain size, shape, and interconnectedness of the pores within
the material. Permeability can be uniform in all directions, in
which case it is termed isotropic, or it can vary with direction,
in which case it is termed anisotropic and is mathematically
represented as a tensor. The differential form of Darcy’s law
relates the Darcy velocity (v), which is the volumetric flow
rate per unit cross-sectional area, to the gradient of the pressure
(Vp) and is given by v = —(k /) Vp. The ratio k/p multiplied
by the specific weight (pg) is often referred to as the hydraulic
conductivity (K), particularly when considering the flow of a
specific fluid with a known viscosity. Hydraulic conductivity
can also incorporate the effect of gravity when the flow is
described in terms of hydraulic head (h = p/pg + 2), leading
to the form v = —KVh [4].

For a steady-state flow of an incompressible fluid through a
porous medium, the principle of mass conservation, expressed
by the continuity equation, dictates that the divergence of the
velocity field must be zero (V - v = 0). By combining this
with the differential form of Darcy’s law (v = —(k/u)Vp), we
arrive at the governing equation for the pressure distribution
within the medium: V - (—(k/u)Vp) = 0 when there is no
source/sink to the system. In scenarios where the permeability
(k) and the fluid viscosity (u) are spatially uniform, this
equation simplifies to Laplace’s equation: V2p = 0. However,
in heterogeneous media where these properties vary from one
point to another, the equation retains its more general elliptic
partial differential form [7]. This mathematical similarity in
form between the governing equation for pressure in Darcy
flow and the steady-state diffusion equation (V- (DVu) = 0),
where D corresponds to &/ and u to p, is a significant factor
in considering the potential for adapting the existing diffusion
solver.

Simulating Darcy flow typically involves the application
of specific boundary conditions that define the state of the

flow at the edges of the computational domain. These com-
monly include: (i) Prescribed Pressure (Dirichlet boundary
condition), where the pressure is set to a known value on
certain boundaries, such as at the interface with a large
fluid reservoir; (ii) Prescribed Flow Rate (Neumann boundary
condition), where the rate at which fluid enters or leaves
the porous medium across a boundary is specified such as
no-flux boundary representing impermeable conditions; (iii)
and Mixed Boundary Conditions, which involve applying
different types of conditions on different segments of the
domain’s boundary. These are often used to model injection or
production from wells. Well injection/extraction are typically
dealt as source/sink conditions (non-zero RHS in the mass
conservation equation). The ALE-AMR framework would
need to be capable of implementing these types of boundary
conditions, which might differ from those typically used in
simulations of heat conduction and radiation transport.

One important point to note about the ALE-AMR frame-
work however is the fact that because of the AMR refinement
levels, one can often make the computational domain so large
that the boundary conditions play little role in determining
the early time behavior of the system. This is particularly
beneficial for field-site applications since the modelers often
make the domain large enough to minimize the effect of
uncertain boundary conditions estimated in the field using
geophysics or sparse field data sets. One can wrap the problem
in a largely non-participatory airmesh for certain dynamical
situations and effectively remove the boundary effects for the
problem at hand.

Darcy’s law and the associated governing equations are used
extensively in modeling a wide variety of phenomena. These
include the flow of groundwater in aquifers, encompassing
scenarios such as flow towards extraction wells for freshwater
supply, the regional movement of groundwater for contaminant
remediation, and the interaction between groundwater and
surface water bodies for flooding and drought risk mitigation.
Notably, ALE methods have been successfully applied to sim-
ulate groundwater flow in situations involving free surfaces,
which are characterized by moving boundaries [8]. In the
field of petroleum engineering, Darcy’s law is fundamental
for simulating the flow of hydrocarbons (oil and gas) and
water within subsurface reservoirs, enabling the prediction of
production rates and the design of effective recovery strate-
gies. The extraction of geothermal energy from the Earth’s
internal heat relies on the flow of fluids through porous rock
formations, a process that can be modeled using Darcy’s law,
often in conjunction with equations governing heat transfer.
Beyond these primary applications, Darcy’s law is also utilized
in modeling flow through various types of filters, membranes,
and porous electrodes in devices like fuel cells.

While Darcy’s law is a powerful tool, it is predicated
on certain assumptions that limit its applicability to specific
flow regimes and porous media characteristics. A fundamental
assumption is that the flow is laminar, a condition typically met
at low flow velocities and within media having small pore
sizes, resulting in low Reynolds numbers (generally below
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1 to 10). At higher velocities, inertial forces become non-
negligible, and the flow transitions to turbulence, a regime
where Darcy’s law in its basic form is no longer accurate.
In such cases, modifications like the Forchheimer equation,
which incorporates a term proportional to the square of the
velocity, are employed to account for these inertial effects.
Furthermore, Darcy’s law typically assumes a homogeneous
and isotropic porous medium, meaning that the properties of
the medium (like permeability) are uniform throughout and
are the same in all directions. In reality, many geological for-
mations and engineered materials exhibit heterogeneity, where
properties vary spatially, and anisotropy, where permeability
differs depending on the direction of flow. While the tensorial
form of Darcy’s law can accommodate anisotropy, significant
heterogeneity might necessitate finer spatial discretization with
more advanced modeling techniques. In very low permeability
media under extremely small pressure gradients, deviations
from the linear relationship described by Darcy’s law have
been observed, a phenomenon known as pre-Darcy flow.
This behavior is thought to be due to factors such as the
presence of immobile fluid layers at the pore walls. Lastly,
the basic formulation of Darcy’s law is for single-phase flow,
where only one fluid is present in the porous medium. For
scenarios involving multiple immiscible fluids (like oil and
water in a reservoir), generalized forms of Darcy’s law are
used, which introduce the concept of relative permeabilities
for each fluid phase. The dependence of fluid/rock density and
permeability on the temperature, pressure, and displacement
further complicate the modeling effort. We first consider what
is involved in adapting the ALE-AMR code for Darcy flow
based on its current diffusion solver for simulating laminar,
single-phase flow in porous media. Modeling more complex
flow regimes or multiphase scenarios would require additional
developments.

IV. MATHEMATICAL PARALLELS AND DIVERGENCES:
DIFFUSION VS. DARCY FLOW

The general form of the diffusion equation is given by
Ou/ot = V - (DVu) + S, where u represents the quantity
undergoing diffusion (such as temperature or concentration),
D is the diffusion coefficient (e.g., thermal diffusivity or mass
diffusivity), and S denotes any sources or sinks of the quantity
u. In a steady-state scenario, where the conditions do not
change with time, the time derivative becomes zero, resulting
in the equation V - (DVu) + S = 0. If, in addition, there are
no sources or sinks within the domain, the equation further
simplifies to V - (DVu) = 0. In the special case where the
diffusion coefficient D is also constant throughout the domain,
the equation reduces to Laplace’s equation, VZu = 0. Within
the ALE-AMR hydrocode, for the simulation of heat conduc-
tion, u corresponds to the temperature (T), and D is related
to the thermal conductivity of the material. The source term
S in this context can represent the generation or absorption
of heat. For the modeling of radiation transport using the
diffusion approximation, the equations involve the radiation
energy density (E'r) and the material temperature (T), with the

“diffusion coefficient" being a function of radiation-specific
properties such as opacities and the speed of light. Thus, the
diffusion equation fundamentally describes the transport of a
scalar quantity driven by its own spatial gradient.

As previously discussed, the steady-state flow of an in-
compressible fluid in a heterogeneous porous medium under
Darcy’s law is governed by the equation V- (—(k/u1)Vp) = 0,
where p is the pressure, k is the permeability tensor of the
medium, and y is the viscosity of the fluid.

Despite their different physical contexts, both the steady-
state diffusion equation and the governing equation for Darcy
flow with homogeneous medium share significant mathe-
matical similarities. First, they are both second-order partial
differential equations of the elliptic type. This classification
implies that the solution at any given point within the domain
is influenced by the conditions imposed at all the boundaries of
the domain. Second, both equations describe a flux—be it heat
flux or radiation flux in the case of diffusion, or Darcy velocity
in the case of Darcy flow—that is directly proportional to the
gradient of a scalar potential. For diffusion, this potential is
temperature or radiation energy density, while for Darcy flow,
it is pressure or hydraulic head. The constant of proportionality
is a transport property, which is the diffusion coefficient in the
diffusion equation and the permeability (divided by viscosity)
in Darcy’s law. Third, both types of equations are amenable to
solution using similar numerical techniques, most notably the
finite element method. This method involves discretizing the
continuous domain into a mesh of smaller elements and then
approximating the solution within each element using a set of
basis functions. This suggests that the numerical methodolo-
gies already in place within the ALE-AMR diffusion solver
could be adapted to address problems involving Darcy flow.

However, there are also key differences between these two
types of physical processes and their mathematical represen-
tations. A primary divergence lies in the nature of the primary
variable and the desired output. The diffusion solver in ALE-
AMR is designed to solve for a scalar quantity, such as
temperature or energy, which is also the main result of the
simulation. In contrast, while the governing equation for Darcy
flow is often solved for pressure, which is a scalar, the quantity
of principal interest is frequently the Darcy velocity, which is a
vector quantity representing the rate and direction of fluid flow
[9]. To obtain this velocity, Darcy’s law itself must be applied
to the computed pressure gradient, either as a post-processing
step or through a different formulation. Another significant
difference pertains to the physical properties involved. The
diffusion equation utilizes properties like thermal conductivity
or radiation opacities, which are typically scalar quantities,
although they can exhibit anisotropic behavior in some mate-
rials. Darcy flow, however, is characterized by permeability,
which in anisotropic porous media is inherently a tensor,
reflecting the fact that fluid flow can be more or less restricted
depending on the direction. Another more complicated issue
is spatial variability. One may need to discretize the domain
with finer resolution, for example, the number of the cells with
different permeability in the domain can be 100 x 100 x 100
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or 1000 x 1000 x 1000 for 3D. In many cases, modelers assign
only horizontal and vertical permeability in a cell instead
of full tensor values. The full tensor is typically needed for
coarse-scale discretization to simulate directional flow. With
finer discretization, it can handle directional flow with small-
scale horizontal/vertical permeability. The ALE-AMR solver
would need to be capable of handling such tensorial properties
for permeability. Additionally, the viscosity (u) of the fluid is a
critical parameter in Darcy’s law, whereas it does not explicitly
appear in the standard heat or radiation diffusion equations.
While both types of equations can include source terms, their
physical interpretations differ. Sources in diffusion problems
represent the generation or absorption of the diffusing quantity
(heat or energy), whereas in Darcy flow, sources typically
correspond to the injection or extraction of fluid from the
porous medium. Finally, the boundary conditions commonly
encountered in Darcy flow simulations, such as prescribed
flow rates or impermeable boundaries, might not have direct
analogs in heat conduction or radiation transport problems,
necessitating the implementation of new types of boundary
conditions within the ALE-AMR framework.

V. ADAPTABILITY OF THE FINITE ELEMENT DIFFUSION
SOLVER FOR DARCY FLOW

The current finite element diffusion solver within ALE-
AMR employs a standard Galerkin method using first-order
H1 elements. This choice of numerical method and element
type is also prevalent in the solution of Darcy’s equation,
particularly when the primary variable being solved for is
pressure. The solver’s inherent capability to manage complex
meshes arising from AMR, including the use of transition ele-
ments and specialized quadrature rules, presents a considerable
advantage for potentially simulating fluid flow in porous media
that exhibit geometric complexity or heterogeneity requiring
localized mesh refinement. Furthermore, the utilization of an
implicit solver (GMRES with a preconditioner) within the
ALE-AMR framework suggests its suitability for handling
elliptic partial differential equations, such as the steady-state
form of the Darcy flow equation.

However, several potential challenges need to be addressed
to adapt the existing diffusion solver for Darcy flow simu-
lations. The solver would need to be modified to correctly
interpret the "diffusion coefficient" in the governing equation
as the permeability tensor of the porous medium divided by
the viscosity of the fluid (k/u). This adaptation would likely
involve changes to the process of assembling the element
stiffness matrix, particularly if the permeability is anisotropic,
requiring the solver to handle tensor properties. The current
diffusion solver is designed to output a scalar field (temper-
ature or energy). For Darcy flow, the Darcy velocity vector
is a key quantity that needs to be determined. This could be
achieved through a post-processing step, where the gradient
of the computed pressure field is calculated at the nodes or
element centers, and then Darcy’s law is applied to derive
the velocity [9]. Alternatively, more significant modifications
could involve exploring the implementation of mixed finite

element methods, which are formulated to solve for both pres-
sure and velocity simultaneously, potentially offering a more
direct and accurate way to obtain the velocity field [7]. The
ALE-AMR framework would also require the implementation
of boundary conditions that are specific to Darcy flow, such as
the ability to prescribe flow rates at boundaries, which would
necessitate adding new functionalities to both the solver and
the overall framework. Finally, the way in which the pressure
and velocity fields interact with the ALE mesh movement and
remapping processes would need to be carefully designed and
implemented, drawing upon the existing strategies used for
coupling temperature and energy with the hydrodynamics.

VI. POTENTIAL MODIFICATIONS AND ADDITIONS TO THE
ALE-AMR FRAMEWORK

To enable the simulation of Darcy flow within the ALE-
AMR hydrocode, several modifications and additions to the
existing framework would be necessary. A dedicated physics
module for Darcy flow should be developed to encapsulate
the governing equations and the specific parameters associated
with fluid flow in porous media [7]. This module would
be responsible for handling the input of spatially varying
permeability (which could be a scalar or a tensor field), the
viscosity of the fluid, and potentially porosity if more complex
scenarios such as transient or compressible flow are to be
considered. It would also manage the definition of source and
sink terms that represent the injection or extraction of fluid
from the porous medium.

The existing finite element solver would require several
adaptations. Firstly, it needs to be capable of accepting the
permeability tensor (divided by the fluid viscosity) as the trans-
port property in the governing equation, instead of the thermal
conductivity or radiation-related parameters it currently uses.
This would likely necessitate modifications to the process by
which the element stiffness matrix is assembled. Secondly, the
solver should be configured to solve for pressure (or hydraulic
head) as the primary unknown variable at the mesh nodes.
Thirdly, a post-processing function should be incorporated to
calculate the Darcy velocity vector at each node or within each
element, based on the computed pressure gradient and Darcy’s
law. For potential future extensions to model transient Darcy
flow, which would be relevant for applications such as ground-
water flow with time-varying boundary conditions or sources,
e.g., extraction in wells, the solver would need to include a
time-stepping scheme. Furthermore, consideration should be
given to exploring the implementation of mixed finite element
methods, which employ different basis functions for pressure
and velocity and solve for both simultaneously. This approach
can often yield more accurate velocity fields directly, which is
particularly important for problems where flow is coupled with
transport processes. Various finite element methods, including
continuous Galerkin (CG), discontinuous Galerkin (DG), weak
Galerkin (WG), and mixed finite element methods (MFEM),
are used for Darcy flow simulations, and the choice would
depend on the desired accuracy and computational cost.
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The ALE-AMR framework must also be extended to support
boundary conditions that are specific to fluid flow in porous
media. This involves implementing: the ability to prescribe
flow rates at selected boundaries; the option to define im-
permeable boundaries where no flow occurs; and ensuring
that these new boundary condition types can be applied and
handled correctly by the finite element solver, while also being
compatible with the ALE and AMR features of the code.

The mechanisms for mapping data between the nodal finite
element representation and the cell-centered representation
used in the ALE hydrodynamics need to be adapted to handle
pressure and velocity fields. This is crucial for scenarios where
Darcy flow might be coupled with other physical processes
already modeled in ALE-AMR, such as thermal effects in
geothermal reservoirs, or where the flow interacts with the
moving mesh in ALE simulations. For example, changes in
fluid pressure might induce deformation of the porous medium
that in turn affect the rock permeability, or the movement of
the computational mesh could affect the flow domain.

Finally, a rigorous program of verification and validation
is essential. This includes developing a comprehensive suite
of unit tests to ensure the correct implementation of the
Darcy flow physics module and the modifications made to the
finite element solver. Additionally, the adapted code should be
thoroughly validated against analytical solutions for standard
Darcy flow problems, such as flow in simple geometries or
radial flow towards a well, and against established benchmark
problems reported in the literature to confirm the accuracy and
reliability of the new simulation capabilities.

VII. SUITABILITY ASSESSMENT AND RECOMMENDATIONS

To simulate Darcy flow within the framework of the ALE-
AMR hydrocode, a series of key steps would be necessary.
The most critical of these would be the development of a
dedicated Darcy flow physics module. This module would be
responsible for managing the input of parameters specific to
porous media flow, such as permeability and fluid viscosity,
as well as defining the source and sink terms relevant to fluid
flow. The existing finite element solver would need to be
modified to correctly interpret these parameters, to solve for
pressure (or hydraulic head) as the primary variable, and to
provide the Darcy velocity as a key output, either directly
or through a post-processing calculation. Furthermore, the
solver would need to be enhanced to handle permeability
as a tensor to accurately model anisotropic porous media.
The implementation of boundary conditions specific to fluid
flow in porous media, such as prescribed flow rates and
impermeable boundaries, would also be a necessary addition
to the framework. Careful design and implementation of the
coupling mechanisms between the new Darcy flow module and
the existing ALE hydrodynamics would be crucial, drawing
upon the experience gained from coupling heat conduction and
radiation transport. Finally, a thorough and rigorous program
of verification and validation, using both (semi-)analytical
solutions and established benchmark problems from the liter-

ature, would be essential to ensure the accuracy and reliability
of the newly implemented Darcy flow simulation capabilities.

In summary, we believe that extending the PISALE ALE-
AMR framework to simulate Darcy flow is not only feasible
but also holds significant promise for advancing subsurface
models for geothermal applications. As high-performance
computing increasingly relies on GPU architectures for ac-
celeration, adapting a proven, fully parallel AMR-capable hy-
drocode like PISALE is a critical step toward next-generation
modeling. We give details here of a direct path to building sim-
ulation tools that can exploit modern HPC architectures and
software, and thus enable discovery of critical new important
details in geothermal reservoir modeling.
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TABLE 1. COMPARISON OF DIFFUSION AND DARCY FLOW
EQUATIONS

Feature Diffusion Equation Darcy Flow Equation

Governing Equation
Primary Unknown
Key Properties

du/dt = V - (DVu)

Temperature (T), Energy (ERr)
Conductivity, Diffusivity, Opacities

+ S (General)

V- (=(k/1)Vp) = S (Steady-State)
Pressure (p), Hydraulic Head (h)
Permeability (k), Viscosity (u)

Applications in ALE-AMR Heat Conduction, Radiation Transport Groundwater, Petroleum, Geothermal

TABLE II. SUMMARY OF REQUIRED MODIFICATIONS FOR
DARCY FLOW IMPLEMENTATION

Category Specific Action Purpose Potential Challenges
Required

New Physics Module Develop a dedicated Organize parameters Seamless integration with
Darcy flow module. (permeability, viscosity) ALE-AMR architecture.

and equations.

Solver Adaptations Modify solver for per- Accurately represent Handling tensor properties;
meability (tensor) and Darcy’s law; provide ensuring velocity accuracy;
viscosity; solve for pres- velocity output; handle significant code changes for
sure; post-process for anisotropy and transient mixed FEM.
velocity. Consider mixed flow.

Boundary Conditions

Data Mapping

Verification

FEM.

Implement  prescribed
flow rate and
impermeable
boundaries.

Define pressure/velocity

interaction with ALE
hydrodynamics and
evolving media
properties.

Develop unit tests and
benchmark  problems.
Validate against
analytical solutions.

Model physical conditions
at domain edges; ensure

compatibility with
ALE/AMR.

Enable  coupling  with
other physics (thermal,
structural); ensure

consistent data transfer.

Ensure correctness and ac-
curacy of the new simula-
tion capabilities.

Correctly imposing condi-
tions on AMR meshes with
hanging nodes.

Designing robust and con-
servative mapping strate-
gies.

Identifying appropriate vali-
dation cases and benchmark
problems.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.

ISBN: 978-1-68558-289-0

14



	Introduction
	The ALE-AMR Hydrocode and its Finite Element Diffusion Solver
	Darcy's Law and Flow in Porous Media
	Mathematical Parallels and Divergences: Diffusion vs. Darcy Flow
	Adaptability of the Finite Element Diffusion Solver for Darcy Flow
	Potential Modifications and Additions to the ALE-AMR Framework
	Suitability Assessment and Recommendations
	Acknowledgments

