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Abstract—Orientation prediction is a critical task for robotics
as it enables robots to understand and interact with their envi-
ronment more effectively. By accurately determining an object’s
position and orientation, robots can perform a range of complex
tasks. This in turn will advance smart manufacturing facilities to
achieve higher levels of automation, increase efficiency, and enable
more flexible production systems. Hence, we present a comparative
study of shallow regression models, integration strategies, and
trigonometric encoding schemes for planar orientation prediction
in robotics, using synthetic and real-world datasets. Results
demonstrate that XGBoost 1.7, combined with vector integration
and quadrant encoding, achieves the best balance of accuracy,
robustness to angular boundary discontinuities, and computational
efficiency, significantly outperforming alternative approaches in
real-world scenarios.

Keywords-Computer Vision; Robotics; Manipulation; Machine
Learning; Smart Manufacturing.

I. INTRODUCTION

Autonomous grasping serves as the foundation for numerous
robotic operations, yet current approaches frequently generate
arbitrary grasp poses without considering the object’s pose
for subsequent manipulation requirements [1] [2]. Contem-
porary robotic grasping research typically focuses on two-
finger parallel grippers [1] [2], using complex seven or
five dimensional grasp representations [3] [4], often referred
to as grasping rectangles [5]. Some works have explored
approaches to simplify grasp parameters whilst maintaining
effectiveness. Notably, the work in [6] demonstrated success
in representing object orientation using a single planer angle,
predicted through ImageNet Convolutional Neural Network
(CNN) feature extraction with a Support Vector Regressor
(SVR) for angle prediction. However, the work demonstrated
in [6] relies on RGB-Depth (RGB-D) data and complex
hierarchical regression techniques to handle angle discontinuity
at the 0°/360° boundary. This is accomplished using a two-
step process: first, the angle is classified into one of four
90° intervals; then, a separate SVR model is trained for each
interval. While effective, this method introduces additional
complexity compared with single stage direct angle regression
approaches that utilise RGB data. Additionally, alternative
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existing strategies present other notable drawbacks: meth-
ods that rely on high-dimensional grasp representations or
hierarchical angle classification typically involve significant
computational overhead, increased susceptibility to annotation
errors, and limited generalisation when object pose varies
beyond training data distributions. In contrast, approaches that
require depth sensing or RGB-D inputs restrict applicability on
platforms equipped only with RGB cameras. These constraints
hinder practical deployment in dynamic or resource-constrained
environments.

This research, therefore, aims to enhance post-grasp task
execution through the use of a novel methodology which
represents object orientation as a single angle in a 360°
coordinate system. This approach provides orientation infor-
mation that not only facilitates the intended use of the object
but also enables derivation of the appropriate grasp angle.
Additionally, this representation enables learning architectures
to focus specifically on orientation prediction of one value (),
circumventing the complexity of multiple parameter estimations
and facilitating grasping with manipulators of all types.

To address the scarcity of annotated grasping datasets suitable
for single angle object pose estimation, this work draws direct
inspiration from [7], which utilised traditional computer vision
with object geometric data to generate object poses. Here,
a modified version of the methodology outlined in [7] is
employed to augment the MetaGraspNet dataset: rather than
relying on edge maps, ground-truth object segmentation masks
are used to extract geometric features such as centroid, handle-
tip displacement, and axis of symmetry, enabling the calculation
of precise orientation annotations for each object instance.
This automated annotation process was validated through
manual inspection to ensure geometric fidelity and orientation
accuracy, resulting in a high-quality synthetic dataset well-
suited for model training. Recognising that synthetic datasets
alone cannot capture the full complexity of real-world scenarios,
a complementary real-world dataset was created and rigorously
annotated. This secondary dataset was curated to reflect a range
of object configurations, occlusions, and lighting conditions
encountered in practical applications. The combination of

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-289-0


https://orcid.org/0009-0004-7239-0180
https://orcid.org/0000-0002-4676-7640
https://orcid.org/0000-0002-5077-0658
https://orcid.org/0000-0002-2189-3608
https://orcid.org/0000-0002-4551-1272
https://orcid.org/0000-0003-2044-2386
https://orcid.org/0000-0002-8152-4281

ADVCOMP 2025 : The Nineteenth International Conference on Advanced Engineering Computing and Applications in Sciences

these two datasets (a large, systematically annotated synthetic
set and a smaller, carefully validated real-world set) enables
robust evaluation of model generalisation and domain transfer,
providing a more comprehensive assessment of each method’s
practical viability. This research systematically evaluates the
influence of regression architectures, integration strategies,
and encoding schemes on orientation prediction performance.
Both branched and vector-based integration approaches are
assessed alongside various trigonometric encoding schemes,
using synthetic and real-world data. Cross-validation, com-
putational benchmarking, and error analysis are integrated to
determine practical suitability, advancing the current state of
planar orientation prediction for robotic manipulation. The
study clarifies the interplay between encoding, integration, and
model architecture, while also providing actionable insights for
deploying robust, efficient orientation predictors in real-world
robotic pipelines.

The remainder of this paper is organised as follows. Sec-
tion II details the datasets used for training and evaluation.
Section IIT describes the methodology, outlining the regression
models, target encoding strategies, and integration approaches
assessed in this work. Section IV presents the experimental
results, including performance metrics and computational
benchmarking. Section V provides a comprehensive discussion
and evaluation of the findings, with a focus on model robust-
ness, error distributions, and practical implications. Finally,
Section VI concludes the paper and outlines future work.

II. DATASETS

Training Dataset MetaGraspNet: The following work
employs two distinct datasets: the first is used for training
and validating the proposed methods, while the second serves
to evaluate performance under conditions more closely aligned
with real-world applications. The initial training of the proposed
methods utilised a carefully curated subset of the MetaGraspNet
dataset [8] reduced to focus exclusively on Phillips and flat-head
screwdrivers. The subset selected for this work corresponds
to the single-class, multiple-instance configuration within the
MetaGraspNet framework. The choice of screwdrivers as
the focal object class is deliberate as these objects possess
geometric properties, which satisfy the requirements outlined
in [7]: screwdrivers possess an axis of symmetry and a mass
distribution that is biased to one side perpendicular to this axis.
These characteristics permit the application of the approach
described in [7] to compute the centroid (derived from the
segmentation mask), the distances from the centroid to the
screwdriver’s handle and tip, and hence the identification of
the direction based on the displacement of the centre of mass
relative to the tip. This directional information is then recorded
as an angular annotation, ranging from 0° to 359° and provides
the angular information required to use this dataset to train
machine learning models such as those employed in this paper.

The resulting curated dataset provides 7,932 annotations
across 2,691 images of size 1200 x 1200 pixels [9]. Initial
evaluation of the dataset revealed that orientation calculations
for occluded objects with areas less than 10,000 pixels were

unreliable. Consequently, such instances were removed, reduc-
ing the dataset to 5,709 annotations. A 10% sample of these
annotations was manually verified, revealing 55 screwdrivers
with incorrectly detected angles (errors ranging from 1° to
9°), yielding a Mean Absolute Angular Error (MAAE) of
0.313° across the sample set. This inspection demonstrated
that the majority of angular errors were minor and would not
significantly compromise robotic grasping performance [10].
The final dataset thus comprises 4,567 training samples and
1,142 testing samples with associated images and annotations
(see examples in Figure 1).

Difficulty 1—2 Difficulty 1-2 Difficulty 1-2
Difficulty 4 Difficulty 5 Difficulty 4
Difficulty 5 Difficulty 5 Difficulty 5

eLa

Figure 1. Example images from the MetaGraspNet training dataset.

Secondary Evaluation Dataset: A secondary real-world
dataset, containing 81 annotations, was constructed to eval-
uate the trained models using real-world RGB images of
screwdrivers. This dataset mirrors the structure of the curated
MetaGraspNet subset employed for training, closely adhering
to the difficulty levels defined in [9] but uses real screwdrivers
rather than synthetic data. The MetaGraspNet difficulty levels
are designed to progressively increase in complexity: Levels 1
and 2 represent single objects with no occlusion, while higher
levels introduce multiple objects and increasing degrees of
occlusion and clutter. In line with this, the custom real-world
evaluation dataset contains 8 images at difficulty level 1 or
2 (single screwdrivers, no occlusion), 5 images at difficulty
level 4 (moderate clutter and occlusion), and 14 images at
difficulty level 5 (high clutter and occlusion). Example images
from the evaluation set are shown in Figure 2. No images from
difficulty level 3 were included, consistent with the original
subset selection. Table I summarises the dataset details.

The secondary evaluation dataset was acquired using a
camera equipped with a Samsung ISOCELL GN9 sensor,
capturing images of size 3072 x 4080 pixels, with a lens
aperture of f/1.9, an exposure time of 1/100 second, and an
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International Organisation for Standardisation (ISO) sensitivity
of 386, with images being collected from both overhead and
45° angled perspectives. The dataset features three screwdriver
variants, red/black Torx, blue/black flathead/starhead, and solid
black starhead, randomly arranged on a white backdrop under
uncontrolled ambient lighting conditions. To ensure natural
illumination variability, 27 images were taken across daylight
hours, resulting in 81 annotations.

Difficulty 5

Figure 2. Example images from the real-world evaluation dataset.

Ground truth segmentation masks and orientation angles
were annotated by three domain experts [11]. Inter-annotator
agreement on segmentation masks was assessed using mean
Intersection-over-Union (IoU), where IoU is calculated as
the area of overlap between two masks divided by the area
encompassed by either mask, providing a measure of agreement
for object segmentation; this analysis yielded a high consistency
of 0.95. Discrepancies were resolved via consensus review to
refine the segmentation boundaries. For orientation, annotators
measured shaft angles against the right horizontal axis, with

a mean absolute difference of £1.8° between predictions.

Disagreements exceeding 5° were resolved by taking the
circular mean for the affected objects; otherwise, the final
orientation annotations were selected from a random sample

TABLE I. SUMMARY OF IMAGES AND ANNOTATIONS BY
DIFFICULTY LEVEL

Level No. of Images No. of Annotations
1-2 8 8
4 5 17
5 14 56

of the independent measurements, except where consensus
averaging was required as described.

For inference in the custom real-world dataset, segmentation
masks were generated using the Segment Anything Model
(SAM) [12]. The accuracy of these masks was validated against
the manual annotations, achieving a mean IoU of 0.95. This
strong agreement supported the use of SAM-generated masks
for subsequent stages in the pipeline.

III. METHODOLOGY

This work systematically evaluates planar orientation pre-
diction using three regression architectures, two integration
strategies, and four target encoding schemes. The methodology
extends trigonometric decomposition to address circular data
challenges and combines encoding scheme analysis with
shallow learning models. Each combination’s performance is
assessed on both a MetaGraspNet subset and a custom real-
world dataset.

A. Target Encoding Schemes

Four encoding configurations were designed, in which the
data are derived from ground truth angles to form the study:

« Base: Fundamental trigonometric components:
Ybase = [Sin(e)a COS(6>]
o Quadrant: Base + one-hot quadrant encoding (Q1-Q4):

Yquad = [sin(0),cos(0), 1g1, 192, 103, 104

o Polar: Base + radian displacement:
Ypolar = [sin(0), cos(6), Orad)

o Full: Comprehensive representation:

Yun = [Sil’l(a), COS(G)’ ]-le ]-Q?, 1Q37 1Q47 erad]

These encodings represent target variables used to train
various shallow learning models, as outlined in Table II. The
selection of these models is motivated by specific technical
requirements of the orientation prediction task and practical
deployment constraints. Random Forest (RF) was chosen for
its native multi-output capability and robustness to noisy
features, particularly relevant given the variable quality of
geometric features extracted from segmentation masks. SVR
was selected for its strong generalisation via kernel methods,
enabling effective handling of non-linear relationships between
ResNet50 features and trigonometric targets; Multiple-Output
Support Vector Regression (M-SVR) extends this capability
to joint optimisation across all target variables. XGBoost
1.7 implementations were included due to their established
performance in regression tasks involving high-dimensional
feature spaces and their gradient boosting approach’s ability
to iteratively correct prediction errors, a property especially
valuable for circular data where small angular errors can
compound. The XGBoost 2.0 variant specifically addresses
multi-output limitations present in the earlier versions (1.7).
Deep learning approaches were deliberately excluded due to
the relatively modest dataset size (5,709 training samples),
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which favours shallow models that avoid overfitting, as well
as the need for rapid inference in robotic applications where
computational efficiency is paramount.

TABLE II. SHALLOW LEARNING MODELS TESTED

Model Description

RF Random Forest

SVR Support Vector Regression

M-SVR Multiple-Output Support Vector Regression
XGBoost 1.7 Standard XGBoost implementation
XGBoost 2.0  Multi-output enabled XGBoost variant

Along with the multiple target encoding schemes and
different model architectures, two proposed model integration
strategies were introduced. This refers to how each of the
models handles the target variables required to perform the
analysis of encoding schemes. The two proposed integration
strategies are as follows:

B. Branched integration strategy

This integration strategy uses multi-output models split into
branches which are trained in parallel, one predicting the sine
component and the other predicting the cosine component. In
each of these branches, the additional target variables required
for the encoding scheme analysis remain, meaning the only
change is that the branch simply does not receive its alternative
sin/cosine pair, but it does receive all other target variables
required for the encoding scheme testing. During testing and
subsequent inference, the predicted sine and cosine values are
then combined using the inverse tangent function (tan™1!) to
provide the predicted angle.

C. Vector integration strategy

The second proposed integration strategy leverages a vector-
based approach, however, depending on the model’s archi-
tecture, the meaning of this differs slightly. For tree-based
approaches, such as decision trees and RF, multiple outputs are
natively supported, allowing a single model to predict all target
variables directly, allowing for a joint relationship between
targets sharing their influence on the scorers, loss function and
predictions [13].

However, for algorithms lacking native multi-output support
(e.g., SVR or XGBoost 1.7), a wrapper-based framework is
required [13]. This wrapper fits one independent regressor
per target variable, however it differentiates itself from the
branched approaches by using shared hyperparameters tuned
globally across all targets. This allows for a more balanced
performance optimisation across all target variables through
the use of a custom scorer that can be changed but does not
alter individual model training objectives [14].

As noted previously, wrapper-based approaches face lim-
itations when applied to models lacking native multi-output
regression capabilities. To address this constraint and enable
comprehensive comparative analysis, two additional implemen-
tations were evaluated: XGBoost 2.0 [15] and a M-SVR [16].
These vector-based approaches introduce critical architectural
enhancements over standard wrapper methods. XGBoost 2.0
implements multi-output trees, where leaf nodes contain vector

outputs spanning all targets simultaneously. This enables
feature splits during tree construction to directly consider cross-
target relationships, a capability absent when isolated models
produced by Multi-Output Regressor wrappers. Concurrently,
M-SVR extends traditional SVR by jointly optimising all targets
through a unified e-insensitive loss function, eliminating the
hyperparameter compromises inherent in wrapper approaches.
These additional models, when used with this integration strat-
egy, should better enable implicit enforcement of trigonometric
relationships (e.g., sin? § 4 cos? § = 1) more akin to the use
of RF models.

D. Feature extraction

The pipeline (Figure 3) processes object segmentation masks
(provided in MetaGraspNet annotations) to extract screwdriver
patches. Each patch is placed on a white background, resized
with aspect ratio preserved, and padded to 224 x 224 pixels.
A ResNet50 CNN pre-trained on ImageNet, with classification
head removed and global average pooling applied, extracts
2048 dimensional feature vectors [17]. These features serve
as inputs to regression models trained on synthetic data from
MetaGraspNet subset. For testing on real-world data, the same
pipeline is applied using the custom dataset, with segmentation
provided by SAM [12].

( N\
I:I Data (Input/Output/Target) l:l Feature Extraction Block

Target:
[sin, cos,
+ Additional]

Vector Integration

Segmented
Object
Patch

Branched Integration

Pred. Predicted
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Target: [sin
+ Additional]
bSmeh J—»[ Pred. sine L
Cloxiine Pred. cos Anele
branch .

Target: [cos
+ Additional]

Figure 3. Object orientation prediction pipeline.
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IV. RESULTS

To assess the predictive performance of the tested models,
integration strategies, and encoding approaches, the MAAE was
employed as the primary metric. This measure was computed
independently for each encoding method and dataset, ensuring a
granular evaluation of angular accuracy. Robustness was further
enhanced through the application of 5-fold cross validation
across all models and encoding scheme, providing a reliable
estimate of performance.

A comprehensive computational benchmarking analysis was
also conducted to evaluate inference speed. For each model,
inference was performed on identical image features, with each
test comprising 1000 repetitions per run and five aggregate
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runs to account for variability. To ensure fairness, the sequence
of model evaluation was randomised for each aggregate run,
and system memory was cleared between measurements to
minimise interference. All experiments were executed on a
Linux 6.8.0 system equipped with Python 3.8.3, an Intel Xeon
w7-3445 CPU (20 cores, 40 threads), and 62.3 GB of RAM.
This rigorous protocol facilitates a thorough and equitable
comparison of both predictive accuracy and computational
efficiency across all models and integration strategies.

The following results begin with the MAAE measurements
across the MetaGraspNet subset. The results compare different
integration strategies (vector vs branched encoding) and encod-
ing configurations (full target set vs reduced sets). All values
represent degrees of angular error, with lower values indicating
better performance. The initial results on the MetaGraspNet
subset are displayed in Table III.

TABLE III. MAAE FOR METAGRASPNET DATASET (DEGREES)

Model Base Quadrant Polar Full
XGBoost 1.7 (Vector) 5.15 5.15 5.15 5.15
XGBoost 1.7 (Branched) 5.15 5.15 5.15 5.15
XGBoost 2 (Vector) 4.92 5.01 546  5.17
M-SVR (Vector) 8.04 8.04 8.04 8.04
SVR (Vector) 5.01 5.12 5.01 5.01
SVR (Branched) 5.01 5.12 5.01 5.01
RF (Vector) 5.48 5.08 5.87  5.67
RF (Branched) 7.43 5.44 593 5388

TABLE IV. MAAE RESULTS FOR REAL-WORLD DATASET

(DEGREES)
Model Base Quadrant Polar Full
XGBoost 1.7 (Vector) 9.61 8.15 8.96 9.61
XGBoost 1.7 (Branched)  9.61 11.66 9.15 11.14
XGBoost 2 (Vector) 17.09 13.91 7.18 10.46
M-SVR (Vector) 28.86 28.86 28.82 28.82
SVR (Vector) 23.13 23.54 23.14  28.03
SVR (Branched) 23.15 23.54 23.14 2328
RF (Vector) 14.81 14.49 11.84 17.43
RF (Branched) 16.45 11.62 1290 17.50

TABLE V. INFERENCE TIME PER IMAGE PATCH

(MILLISECONDS)
Model Type Base  Quadrant Polar Full
XGBoost 1.7 (Vector) 0.76 1.86 0.91 1.73
XGBoost 1.7 (Branched) 0.50 0.83 1.20 3.61
XGBoost 2 (Vector) 0.76 1.86 0.91 0.29
M-SVR (Vector) 17.76 17.78 17.80  17.76
SVR (Vector) 13.48 41.94 20.78  51.25
SVR (Branched) 13.55 70.23 27.68  75.49
RF (Vector) 59.27 56.50 5790 45.42
RF (Branched) 119.15 117.08 117.83  91.04

Table IV summarises model performance on the real-
world dataset using the same MAAE metric to enable direct
comparison with the MetaGraspNet results. In addition to
angular accuracy, Table V reports the inference time per

image (in milliseconds) for each model and condition. This
enables an explicit comparison of computational efficiency
across integration strategies and model types, with lower values
reflecting faster processing.

V. DISCUSSION | EVALUATION

While the MAAE metrics presented in Section IV form
the core of this discussion, it is essential to first address the
primary challenge that this work seeks to overcome: the issue
of boundary discontinuity. To thoroughly assess each method’s
performance, we conduct a granular analysis of the inference
data on the custom dataset, as visualised in Figure 4. Figure 4
displays the prediction error as a function of the ground truth
angle for each model and encoding configuration. Specifically,
the x-axis represents the ground truth angle of the object, while
the y-axis shows the signed angular error, calculated as the
shortest difference between the predicted and actual angles,
wrapped to the interval [—180°,180°]. Each point corresponds
to a single prediction, positioned horizontally by its ground
truth angle and vertically by the deviation from the true value.

A detailed inspection of these plots reveals substantial
differences in error distributions between models, which are not
always reflected in the aggregate MAAE values. For instance,
the M-SVR model exhibits pronounced and frequent error
spikes at the 0° and 359° boundaries, indicating a persistent
struggle with boundary discontinuity and a lack of robustness
in these critical regions. These errors are not isolated; the
M-SVR model demonstrates erratic behaviour across much of
the angular range, with large, abrupt deviations that suggest
poor generalisation and reliability. In contrast, XGBoost 1.7
(both vector and branched variants) stands out for its consistent
and stable error profile. Across nearly the entire angular range,
prediction errors remain tightly clustered around zero, with
only occasional moderate spikes, mostly at angular boundaries.
This stability is indicative of a model that not only achieves a
low mean error, as seen in Table V, but also avoids catastrophic
failures, making it more suitable for real-world deployment
where reliability is paramount.

XGBoost 2, while achieving competitive MAAE values in
some configurations, displays a more volatile error pattern.
Notably, it exhibits significant errors not only at the 0° and
359° boundaries but also around 180°, suggesting that its
generalisation may be compromised at multiple critical angles.
This behaviour underscores the importance of evaluating models
beyond mean metrics, as a low MAAE can mask underlying
instability. The SVR models, both vector and branched, provide
mixed results. While their errors are generally moderate, both
models are prone to sporadic, large prediction failures at various
angles, particularly near the boundaries and occasionally in the
mid-range. These large spikes indicate that, although SVR may
perform adequately on average, it is susceptible to unpredictable
outliers that could undermine its practical utility. Random
Forest models show moderate stability, with the vector variant
generally outperforming the branched version in terms of error
consistency. While occasional spikes are present, these are less
frequent and less severe than those observed in M-SVR or
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SVR, positioning Random Forest as a reasonable compromise
between stability and accuracy, something reflected by its
relatively low MAAE when paired with quadrant encoding and
a branched integration strategy as seen in Table V.

It is important to note that all models were trained exclusively
on a synthetic dataset which is inherently simpler and more
controlled than the real-world test set. As a result, the MAAE
values achieved using the synthetic MetaGraspNet subset
(Table III) are substantially lower across all models, reflecting
the training-domain familiarity. For example, XGBoost 1.7
achieves a MAAE of 5.15° using the synthetic data, compared
with 8.15-9.61° using the real-world dataset, while M-SVR and
SVR also show marked increases in error when transitioning to
real-world evaluation. This domain gap highlights the challenge
of generalising from synthetic to real data, and underscores
the value of robust error analysis using the real-world test set.

In addition to predictive accuracy, computational efficiency
was also evaluated. Table V quantifies inference times per image
patch, demonstrating XGBoost 1.7’s superior performance:
configurations predominantly achieve sub-2ms inference times
(one outlier). In contrast, M-SVR/SVR models exhibit 10-100x
slower performance (13.48-75.49ms), while RF demonstrates
the poorest efficiency, consistently exceeding 45ms and fre-
quently surpassing 100ms. This efficiency advantage positions
XGBoost 1.7 as optimal for applications requiring both rapid
inference and angular reliability.

Taken together, these results demonstrate that XGBoost 1.7
provides the most robust and reliable predictions across the
full angular range using real-world data, effectively managing
boundary discontinuities and avoiding large, erratic errors,
while also offering leading computational efficiency. In contrast,
models such as M-SVR and SVR are hindered by frequent
and severe outliers, particularly at critical boundaries, and
Random Forest occupies a middle ground, providing reasonable
stability but not matching the overall reliability or speed of
XGBoost 1.7. This comprehensive evaluation highlights the
necessity of considering both aggregate metrics and detailed
error distributions, as well as computational efficiency, when
selecting models for applications where consistent and timely
performance across all angles is essential.

A key focus of this work is the interplay between encoding
strategies, model architectures, and integration approaches.
Therefore, these results also reveal that model responsiveness
to encoding varies considerably:

e« XGBoost 1.7 demonstrates strong robustness across all
encodings, but achieves its best real-world performance with
quadrant encoding in the vector integration configuration,
yielding the lowest MAAE (8.15°). Notably, the addition
of quadrant or polar information generally improves perfor-
mance over the base (sin, cos) encoding, suggesting that
XGBoost 1.7 is able to leverage richer target representations
to better manage boundary effects and reduce systematic
errors. The full encoding does not consistently outperform
quadrant or polar, indicating that the full encoding may
introduce redundancy or noise for this architecture.
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Figure 4. Model prediction error vs ground truth angle on real-world
test set (missing data in 355° and 359° range).

o XGBoost 2.0 is more sensitive to the encoding choice,
achieving its best real-world MAAE (7.18°) with the polar
encoding. However, its error distribution is less stable, with
notable spikes at both boundary and mid-range angles,
suggesting that, while certain encodings can lower mean
error, they may not guarantee robust predictions.

« SVR and M-SVR models show limited benefit from more
complex encodings. Both models exhibit high MAAE and
frequent large errors regardless of encoding, indicating that
their architectures are less capable of exploiting additional
target information to improve generalisation, especially in
the presence of boundary discontinuities.

« Random Forest benefits moderately from quadrant encoding,
particularly in the branched configuration, but does not reach
the accuracy or stability of XGBoost models. Its performance
is more consistent than SVR/M-SVR but less robust to
encoding changes than XGBoost 1.7.

The choice between branched and vector integration strategies
also influences model performance:

« For XGBoost 1.7, the vector strategy paired with quadrant
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encoding is optimal, while the branched approach is less

effective, especially when combined with more complex

encodings.

« Random Forest shows a preference for the branched strategy
when used with quadrant encoding, achieving its lowest
MAAE (11.62°), but remains slower and less accurate than
XGBoost.

¢ SVR and M-SVR do not benefit significantly from either
integration strategy, with both approaches yielding high error
and erratic predictions.

In summary, these results demonstrate that XGBoost 1.7,
with vector integration and quadrant encoding, offers the best
trade-off between accuracy, robustness to boundary discon-
tinuities, and computational efficiency using real-world data.
While more complex encodings marginally improve mean error
for certain models, the quadrant encoding strikes an effective
balance between informativeness and generalisation. Models
such as M-SVR and SVR are hindered by frequent and severe
outliers and do not benefit meaningfully from richer encodings
or alternative integration strategies. Random Forest provides
moderate stability but cannot match the overall reliability or
speed of XGBoost 1.7. These findings underscore the need
to consider both aggregate metrics and error distributions,
alongside computational efficiency, when choosing models
for consistent, timely performance.

VI. CONCLUSION AND FUTURE WORK

This work systematically evaluates a range of shallow
regression models, integration strategies, and target encoding
schemes for the challenging task of planar orientation prediction
using both synthetic and real-world datasets. The results
demonstrate that among the tested configurations, XGBoost
1.7, when paired with the vector integration strategy and
quadrant encoding, consistently delivers the best trade-off
between predictive accuracy, robustness to angular boundary
discontinuities, and computational efficiency on real-world
data. While more complex encodings, such as the full or polar
representations, can marginally improve mean error for some
models, the quadrant encoding achieves a superior balance be-
tween informativeness and generalisation, avoiding the pitfalls
of overfitting or redundancy. Building on the insights gained
from this study, future work will prioritise scaling to larger and
more diverse datasets, extending evaluation to complex object
categories, and exploring deep learning and hybrid approaches
to benchmark gains over shallow architectures. Finally, efforts
will focus on full pipeline integration and real-world robotic
deployment, enabling end-to-end assessment in closed-loop
manipulation scenarios.
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