ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

MORUS-PRNG: a Hardware Accelerator Based on the MORUS Cipher and the
IXTAM Framework

Alessio Medaglini @, Mirco Mannino @, Biagio Peccerillo ®, Sandro Bartolini
Department of Information Engineering and Mathematics
University of Siena
Siena, Italy
e-mail: {medaglini | mannino | peccerillo | bartolini } @diism.unisi.it

Abstract—High-quality Pseudo-Random Number Generator
(PRNG) is crucial in many applications that span a variety of
fields. A common way to implement PRNGs is by exploiting an
underlying secure ciphering algorithm, since its ciphertexts have
statistical properties very close to those of a random sequence.
Depending on the nature of the application requiring random
values and its constraints, the ability of such a PRNG to generate
numbers with high throughput and/or limited latency can be
paramount. In recent years, programmers and researchers have
been relying on hardware accelerators for many computation
tasks where performance matter, moving progressively away from
classic all-CPU software solutions. Ciphering algorithms and
PRNGs have benefited from this tendency as well. In this paper,
we propose a PRNG based on the MORUS cipher as an integrated
accelerator that can be connected to CPU cores through the
IXIAM layer, which allows a fast host-accelerator communication
with RISC-V instructions. We measure performance in CPU cy-
cles per number in the gem5 architecture simulator, and compare
our implementation against plain software solutions provided
by the C+ standard library. We show that our implementation
outperforms them, with speedups above 2x.

Keywords-cryptographic accelerators; hardware accelerators;
simulation; ciphers; pseudorandom sequences.

I. INTRODUCTION

The ability to generate random number sequences has al-
ways found many applications in a variety of fields. According
to Knuth, these include simulation, sampling, numerical anal-
ysis, computer programming, decision making, cryptography,
aesthetics, and recreation [1], but many more can be added.
A notable example is the generation of large prime numbers,
which have a fundamental role in asymmetric key encryption
algorithms since the introduction of RSA [2]. A popular
method to obtain them involves generating random numbers,
applying a primality test to them, and stopping when enough
prime numbers are found [3]. Since the amount of random
numbers necessary to obtain the required amount of primes
cannot be known in advance, the ability to generate long
random sequences with high performance is paramount.

However, generating truly random numbers may be diffi-
cult, and for most applications a number sequence generated
deterministically that looks random enough is sufficient. Such
a sequence is said a pseudo-random number sequence, and
a module (hardware or software) implementing its generation
algorithm is said Pseudo-Random Number Generator (PRNG).

A common way to implement a PRNG is by relying on an
underlying cipher. In fact, the ciphertext produced by a cipher

considered secure must present randomness properties, as no
information about the original message should be obtainable
from it: in practice, the ciphertext can be regarded as a
sequence of random numbers. For this purpose, both stream
ciphers and block ciphers operated in counter mode can
be used, with examples pertaining to both categories being
available in literature [4], [5].

MORUS [6] was selected as a finalist in the CAESAR com-
petition announced by the National Institute of Standards and
Technology (NIST) for authenticated encryption. It is an ex-
ample of authenticated cipher, which outputs both a ciphertext
and an authentication tag, providing both confidentiality and
integrity. Its attractiveness derives from its potential speed both
in HW and in SW, even on platforms not featuring dedicated
or widespread ISA-extensions (e.g., AES-NI [7]). Compared
to AEGIS, the winner of the aforementioned CAESAR com-
petition, MORUS can be implemented with higher efficiency
in hardware (both throughput per area and throughput per
energy, as shown in Figure 6 and Figure 7 in [8]). Therefore,
MORUS is particularly amenable to be adopted as the heart of
a hardware accelerator serving as a PRNG. Furthermore, in the
number generation task, the calculation of an authentication
tag can be avoided, thus gaining further performance.

In this paper, we design MORUS-PRNG, a high-
performance PRNG modular architecture encompassing an in-
tegrated hardware accelerator based on the MORUS cipher and
suitable for modern multi-core processor systems. We design
it as an IXIAM-ready accelerator [9] so to take advantage
of reduced communication latency and a flexible and general
interface between cores and accelerator. We simulate the archi-
tecture in gem5 simulator [10] and evaluate its performance,
using all-CPU software-only PRNGs included in the standard
library of the C+ programming language as a baseline.

The main contributions of this paper can be listed as follows:

o We design MORUS-PRNG, an integrated hardware accel-
erator implementing a MORUS-based PRNG, interfaced
via the IXIAM framework to the CPU cores;

« We evaluate its performance, comparing it against
software-only PRNGs included in the C++ standard library.

The paper is organized as follows. In the next section,
we give some background on both MORUS and IXIAM. In
Section III, we present our solution. In Section IV, we evaluate
our proposal. Finally, we conclude in Section V.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

https://orcid.org/0000-0002-7572-6733
https://orcid.org/0000-0003-1660-3984
https://orcid.org/0000-0002-4998-0092
https://orcid.org/0000-0002-7975-3632

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

‘ Sioo ‘ S'on Sz ‘ Sos ‘ Soa ‘
L]
[T
‘ Sho ‘ sy, ‘ Sy, ‘ ‘ S'is ‘ ‘ S'ha ‘
T~
] o] [] e
o
’ S50 ‘ S51 ‘ S5z ‘ ’ Saa ‘ ‘ R ‘
=)
=
Siio ‘ Sign ‘ ‘ Sha ‘ Sias ‘ S'aa
— 4
Si*15, ‘ S S*h, ‘ $*0s ‘ "

Figure 1. MORUS StateUpdate function, from [6]. Sﬁlym is the m-th state

block at the beginning of the n-th round, i-th step. wy, and by, are constants,
and m; is the i-th block of the plain message. Rot1l_zzx_yy (S, c¢) isthe
operation of dividing an zzz-bit S block in yy-bit words and perform left
rotation by c bits.

II. BACKGROUND

In this section, we give some background on the MORUS
Authenticated Cipher and the IXIAM host-accelerator inter-
face, which form the backbone of our proposal.

A. MORUS

MORUS is a family of authenticated ciphers which in-
clude three ciphers: MORUS-640-128, MORUS-1280-128,
MORUS-1280-256 [6]. They can be described as stream
ciphers with an internal state of 5 blocks which can have
128 or 256 bits each and deal with 128- or 256-bit keys. The
names can be read as MORUS-z-y, with x being the size of
the internal state and y the size of the key. In the following, the
generic term MORUS is used to refer to all the three ciphers
interchangeably, unless specified otherwise.

MORUS has been designed with speed in mind, with all
the phases relying on different combinations of few basic
operations (AND, XOR, shift, and rotate), chosen to be easily
mapped on SIMD instructions in x86 processors. These design

SoC

USER-SPACE INTERRUPT MODULE |

1

Reservation| Status
Accelerator 0
[S

Reservation| | Status
queue register

Accelerator 1
[S

P
Reservation| Status
queue register

Accelerator n

[—

Core 0

core-interconnet
interface
A
A 4
A
A4
interface

A
interface

INTERCONNECT

interface
A
A\ 4
A
interface

Last-Level Cache

Figure 2. IXIAM hardware interface, highlighted in green on a generic
SoC, from [9]. It consists of a core-interconnect interface for each core; an
accelerator-interconnect interface, a reservation queue, and a status register
for each managed accelerator; and a user-space interrupt module.

choices permit reaching 0.69 cycles per byte (cpb) on Intel
Haswell processors [6]. MORUS is ‘“authenticated” because
the encryption phase produces, in addition to the ciphertext,
also a 128-bit tag that can be used to verify decryption.

The cipher is articulated in four fundamental phases: initial-
ization, encryption, decryption, and finalization. Initialization
is performed by loading a key and a 128-bit Initial Value
(IV) and running a StateUpdate function 16 times, mixing
both key and IV into the internal state. Optionally, there is
the possibility to use some Additional Data (AD) of any
size to further mix the internal state and introduce additional
non-linearity. Encryption is performed by encrypting a whole
message of arbitrary size, processing one 128-bit (MORUS-
640-128) or 256-bit (MORUS-1280-128 and MORUS-1280-
256) block at a time. Each block is encrypted with 5 basic
operations and a StateUpdate call that mixes the plain text
into the internal state. Finalization consists of a XOR, a
StateUpdate call, and a tag generation (achieved with 4 basic
operations). The StateUpdate function, depicted in Figure 1, is
used as a fundamental building block in the various phases and
consists of 5 rounds in which each block of the internal state
is updated with 5 basic operations. Decryption is analogous to
the encryption. Message encryption/decryption is performed
by initializing the cipher, invoking the encryption/decryption
phase, and then finalizing to get the authentication tag.

B. IXIAM

ISA eXtension for Integrated Accelerator Management
(IXIAM) is a hardware-software framework for Systems-on-
a-Chip (SoCs). It permits controlling integrated accelerators
directly from the cores, with specific CPU instructions trigger-
ing packet-sending towards the target accelerator and possibly

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

generating a packet response, which is sent back to the
core [9]. It is articulated in a limited hardware infrastructure
and a RISC-V ISA extension. RISC-V was selected as the
target ISA due to its open-source and modular nature, which
allow for open-source implementation of the IXIAM frame-
work. With respect to classic driver-based solutions, IXIAM
ensures a lower latency in communicating with the accelera-
tors, giving significant performance advantages, especially for
small to medium workloads [9].

The hardware infrastructure, depicted in Figure 2, includes
a few components on the accelerators, on the cores, and on the
SoC, shared between them. For each accelerator, it consists in
a FIFO reservation queue to manage requests from different
processes and a status register to hold the accelerator status, so
to be able to quickly distinguish between “busy”, “free”, and
“error”. Both accelerators and cores need to send and receive
specific packets through the SoC interconnect, and achieve
this through the accelerator-interconnect and core-interconnect
interfaces, respectively. Finally, IXIAM provides a light user-
space interrupt mechanism which is managed by an ad-hoc
module on the SoC.

The ISA extension provides 12 additional instructions for
RISC-V ISA: RESERVE to ask for accelerator reservation,
CHECK to check the reservation outcome, TGL/TGS to
load/store data from/to a specific memory location into/from
the accelerator, TL to move data across different memory
resources on the accelerator, TRL/TRS to load/store data
from/to a CPU register into/from the accelerator, EXEC to
trigger an operation execution on the accelerator, ISBUSY
to check the accelerator status, RELEASE to release the
accelerator, AFENCE to block the CPU pipeline until flying
transfer instructions on the accelerator complete, and RUISR
to indicate a function to serve user-space interrupts. The major-
ity of instructions are designed as asynchronous instructions,
in the sense that the execution on the CPU can proceed
undisturbed after an instruction commit, with no need to wait
for response packets. The only exceptions are: CHECK, TRS,
ISBUSY, and AFENCE.

III. OUR PROPOSAL

Figure 3 shows our design for an integrated MORUS-based
PRNG hardware accelerator based on the IXIAM framework.
It includes the following modules:

MORUS PRNG Engine is the processing engine, which
is responsible of doing MORUS-based pseudo-random
number generation;

Output buffer is the buffer that will contain the array of
generated numbers;

Register file includes a register to hold the amount of pseudo-
random numbers to be generated and four key registers,
each holding one word of the key;

Controller is responsible for reading the IXIAM packets
from the interconnect, translate them into accelerator
commands, and send response packets to the calling core
through the interconnect;

— Output | e
> buffer [~
: MORUS e
i PRNG
. ! Register file .
Main O Engine
Memory = S
I' K2 ~
| K3
H AA f A
v! ; ‘ : T
| Controller |
| Interconnect ‘
Figure 3. MORUS-PRNG, an integrated hardware accelerator with the

necessary components to communicate with the IXIAM framework. Solid
lines indicate data exchange, dashed ones indicate control signal exchange.
The register file holds the number of pseudo-random numbers to generate and
the four words of the key. The output buffer will hold the generated numbers
and the MORUS PRNG Engine implements the number generation logic.

IXIAM HW infrastructure includes a status register and a
reservation queue.

Without loosing generality, in the following, we consider
the underlying cipher as being MORUS-1280-128. Thus, the
four words composing the key are 32-bit words.

A. Technical Details

gem) is a well-established tool for computer architecture
researchers. It is a cycle-accurate simulator with a modular
nature, in which architectural components (CPU, memory,
caches, NoC, accelerators, etc.) are treated as individual ob-
jects that communicate with each other through ports. Every
operation can be simulated functionally and be described in
terms of associated latency. gemS supports multiple ISAs and
is easily extensible as its code is open-source. IXIAM was
proposed and evaluated by the means of gem5 components [9].

We design our solution in terms of gem5 modules. We
implement their operations functionally and characterize them
from a latency standpoint. We acknowledge that other tech-
niques such as VHDL or Verilog description would allow us
to achieve higher accuracy. However, we are interested in the
performance that such an accelerator could achieve within the
system, rather than its precise gate-level performance. In this
case, gemS offers a more appropriate level of abstraction. We
leave the implementation of such solutions to future work.

We design the MORUS PRNG Engine as a standalone
processing element inside our MORUS-PRNG accelerator. We
consider it as being analogous to the ASIC design described
by Muehlberghuber and Giirkaynak in [11]. This exposes a
variable throughput that grows with the amount of numbers to
be generated and varies from 2.54 to 250Gbps. We select an
operating frequency of 250MHz.

For the Output buffer, we select a size of 1MiB that can host
up to 262’144 numbers. The Register file includes the 5 32-

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

bit registers specified above. Considering a SRAM technology
for these memories, we estimate with CACTI [12] an access
latency of 2 and 1 cycles (at 250MHz), respectively.

To model the Controller, we associate a latency to the “de-
code and execute” of the IXIAM instructions contained in the
packets coming from the interconnect. Since it is a lightweight
controller with limited responsibilities, we can associate a 1
cycle latency to every instruction, except those that need to ac-
cess the reservation queue (RESERVE, RELEASE, CHECK),
for which we associate 3 cycles. However, these latencies do
not include the operative part of the instructions: for instance,
after 1 cycle of an EXEC instruction, the execution operation
begins and ends after a number of cycles that depend on the
amount of work to be done. The same happens for the transfer
instructions, where we add to the “decode and execute” latency
the one calculated in the buffer/register file that models the
effective data read/write.

B. Operations

In the rest of this section, we describe the two operations

exposed by the accelerator: Initialize and Generate.

1. Initialize

The Initialize operation is responsible for triggering the ini-
tialization phase in the underlying MORUS cipher, embodied
by the MORUS PRNG Engine. The user is responsible for
writing into the K, registers the four words composing the
128-bit key. The 128-bit IV value necessary for initialization,
together with the key, is hard-coded into the MORUS PRNG
Engine.

Each of the four K, registers can be written via a TRL
or a TGL instruction. The former reads a value from a CPU
register and sends it to the accelerator, while the latter passes
a main memory location to the accelerator that reads a value
from it.

Initialize is triggered with an EXEC instruction with op_id
parameter set to 0. When the accelerator receives the corre-
sponding packet, the MORUS PRNG Engine reads the key
from the four local registers and the hard-coded IV value and
triggers the underlying MORUS initialize. This modifies its
internal state and brings the engine in a state that is ready to
perform subsequent encryptions, necessary to generate pseudo-
random numbers. An internal 128-bit counter is set to 0.

The possibility of including AD of arbitrary size in the
initialization phase is not managed by the proposed engine.
This choice, together with having a hard-coded IV, limits
the degrees of freedom with respect to a classic MORUS
cipher. However, for this particular application (PRNG), the
sole 128-bit key as the only degree of freedom may be
considered sufficient, as it serves the same purpose as a seed
in analogous pseudo-random number generation algorithms,
which are usually 32-bit integers [13]. In any case, this design
can be easily improved by adding six more registers to set
before initializing: four for the IV, one for the memory location
containing the beginning of AD, and one for its size. This
would allow for seeding the PRNG with data of arbitrary size,

improving the quality of the generated numbers, but increasing
the duration of the initialization phase.

2. Generate

The Generate operation triggers the encryption phase in the
underlying MORUS cipher, generating pseudo-random num-
bers as a consequence. The user writes into the NV register the
amount of numbers they want to generate. Also in this case,
by the means of a TRL or TGL instruction.

Generate is triggered with an EXEC instruction with op_1id
parameter set to 1. As a first step, the engine reads the content
of the N register and interprets it as the amount of 32-
bit pseudo-random numbers to generate. If this exceeds the
capacity of the Output buffer, an error code is written in
the status register and the operation terminates. Otherwise,
the pseudo-random number generation can proceed and is
performed by encrypting the content of an internal 128-bit
counter. It is initialized to O in the Initialize and is incremented
after each encryption step. At each step, a 128-bit block of
ciphertext, which can be interpreted as four 32-bit numbers,
is generated this way. The generation terminates when the
counter value minus its initial state (which is saved into an
internal register when encryption begins) equals [N/4], a
comparison that can be easily done in hardware by checking
whether said difference is greater or equal than N without its
two least significant bits.

The generated numbers are written in the Output buffer
starting from address 0. From there, they can be retrieved with
a TGS instruction as soon as the number generation terminates.
TGS is responsible for copying the generated numbers to a
main memory location, where the CPU can read them when
needed.

At the end of Generate, the internal counter is not reset:
only Initialize is responsible for that. This way, the number
that will be generated next is completely determined by the
internal state of the cipher and the state of the counter, which
are, in turn, uniquely determined by the key chosen by the
user and the amount of numbers generated so far. This way,
initializing the engine with key K and generating m numbers
first and n numbers then leads to the same sequence obtained
by initializing the engine with K and generating m + n
numbers in one go.

No MORUS finalize phase is invoked, as it would be
responsible for producing the authentication tag, which is not
needed in the pseudo-random number generation task at hand.

IV. EVALUATION

In order to evaluate our proposal, we implement MORUS-
PRNG and its interfacing in the gem5 architecture simulator.
For this purpose, we take advantage of the infrastructure
proposed in [9]. Table I lists the specifications of the simulated
system.

The accelerator performance is evaluated in the context of
a simple C+ 17 application in which a variable amount of
pseudo-random numbers is generated. The CPU-accelerator
communication is wrapped in a C+ generator engine class that
executes Initialize when constructed and exposes two methods:

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

f1a0 —— MORUS PRNG (generate)
2097152 — — -MORUS PRNG (naive)
1048576 ———MORUS PRNG (buffered 32)
524288 = - =MORUS (sw)
262144 ——— MersenneTwister19937
mnist_rand0
i‘g 1z = . mnist_rand
% 69596 — —Ranlux 24
282768 e Ranlux 48
° 16384 — . Knuth-B
8192 —
4096 ké@usmﬂ_i_:
S — EEPESAA.
1024
512
! 2 4 8 16 32

64 128 256 512

1024

2048 4096

Generated Numbers

Figure 4. Performance comparison between MORUS-PRNG and other PRNGs included in the C+ standard library. For each PRNG, it is displayed the number
of CPU cycles necessary to generate the amount of numbers indicated on the X axis (lower is better).

TABLE I. SPECIFICATION OF THE SIMULATED SYSTEM.

CPU Quad-core, 3.4GHz, RISC-V, MinorCPU

L1 I/D Cache 32KB, 8-way, write-back, 64B block size, non-
blocking, 2-cycles access time, private

L2 Cache 512KB, 8-way, write-back, 64B block size, non-
blocking, 10-cycles access time, private

L3 Cache 8MB, 16-way, write-back, 64B block size, non-
blocking, 36-cycles access time, shared

Interconnection ring-based, 16-cycles average latency

Main Memory DRAM-DDRA4, 16GB, 300-cycles access time, clas-

sic memory model

engine throughput 2.54-250Gbps, 250MHz, buffer
size 1MiB, buffer latency 2 cycles, register latency
1 cycle

MORUS-PRNG

operator() outputs a single generated number;
generate fills an array with n generated numbers.

The first method is compliant with the C+ specification,
so an instance of this MORUS-based generator class can be
passed to a distribution object, according to the modern syntax
introduced in C+11 [13]. An evident limitation of this design is
that at most 1 number is generated per method call, so filling
an array of n elements requires n method invocations. The
generate method, conversely, adopts a more efficient design,
as it permits of generating the needed amount of numbers
in the minimum number of steps. This is determined by the
capacity of the Output buffer, which can host at most 256
32-bit numbers (see Table I).

We design two variants of operator() solutions:

naive triggers the generation of 1 number on the accelerator,
reads it from there, and returns it to the caller;

buffered triggers the generation of a few numbers on the
accelerator, reads them in a local buffer, returns 1 buffered

number at each method call until all of them have been
consumed, and generates another amount at that point.

Without loosing generality, we tune the local buffer of the
buffered version to a capacity of 32 elements.

To evaluate our solution, we compare it with other PRNGs
defined in the random C+ header. The classes included there
allow generating pseudo-random numbers using a combination
of generator and distribution objects. The former generates
uniformly distributed numbers, while the latter transforms
number sequences generated by a generator into number
sequences that follow a specific random variable distribution
(e.g., uniform, Normal, or Binomial). The generator can be
instantiated with a seed, then passed as an input parameter
to the operator() of the distribution object, to generate one
pseudo-random number per method invocation.

Several PRNGs are included in the random C+ header:

« linear congruential engine (mnist_rand, mnist_rand0):
they are the simplest engines in the STL library that
generate pseudo-random unsigned integer numbers by
using = = (ax + ¢) mod m, where z is the current state
and a, ¢, and m are different parameters.

o MersenneTwister19937: it is a random number engine
based on the Mersenne Twister algorithm [14]. It pro-
duces high quality unsigned integer random numbers in
the interval [0, (2¥)-1], where w is the word size (i.e.,
number of bits of each word in the state sequence).

« Ranlux24, Ranlux48: they are 24-bit and 48-bit RAN-
LUX generators by Martin Liischer and Fred James [15],
based on the subtract with carry algorithm.

« Knuth-B: It is a shuffle_order_engine adaptor that returns
shuffled sequences generated with the simple pseudo-
random number generator engine minstd_rand0.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

For completeness, we add a further PRNG which encom-
passes an all-software implementation of the MORUS cipher:
MORUS-sw. We compile our application using g++14 from
the RISC-V GNU toolchain [16].

Figure 4 shows the performance achieved by MORUS-
PRNG (generate, naive, and buffered versions) in generating
a variable amount of pseudo-random numbers, in comparison
with other PRNGs included in the standard library of the
C+ programming language. Performance is measured in CPU
cycles (so, lower is better). In the following, we refer to the
amount of numbers generated as the “workload size”.

What emerges from the performance comparison is that
MORUS-PRNG in its generate version outperforms the
other PRNGs, and the performance gap grows with the
workload size: with respect to the second best, from
2.46x (mnist_randO) with 1 element, up to 4.26x (Mersen-
neTwister19937) with 4096 elements. As specified before, the
different interface between MORUS-PRNG generate and the
other PRNGs has a non-negligible impact, as generate is an
optimal design which minimizes the method invocations, with
consequent minimization of CPU-accelerator communication.

MORUS-PRNG naive and buffered 32 have the same in-
terface as the other PRNGs. As expected, generate performs
better than both of them. naive evidently pays the communi-
cation latency between CPU and accelerator, which happens
at every method invocation. While this is negligible with
few elements, its performance are surpassed by other PRNGs
(MersenneTwister19937, mnist_randO, mnist_rand, Knuth-B)
for workload sizes above 24 elements.

MORUS-PRNG buffered proves to be a more reasonable
design, with the advantage of being compliant with the C+
generators syntax and being able of outperforming all the
library-provided PRNGs for workload sizes greater than 11
elements (when Ranlux48 generation time suddenly increases).
Speedup with respect to MersenneTwister19937, which is
the best C+-provided PRNG when 36 or more numbers are
needed, tends to 2.07x as the workload size increases.

We investigated the sudden performance worsening of Ran-
lux48 at the 12th number generation, which is clearly visible
in the figure. Looking at Ranlux48 source code, we noticed
that it is implemented as a discard block engine with two
template integer parameters: block-size and used-block, which
are set to 389 and 11, respectively. These parameter regulate its
functioning: every 11 (used-block) elements generated, 389 -
11 (block-size minus used-block) are generated and discarded,
causing a spike in the elapsed time every 11 elements.

Interestingly, the MORUS-sw proves as a valid alternative
with respect to the other PRNGs included in the C+ stan-
dard library, proving its value per-se, even with no hardware
acceleration involved. In fact, it is faster than all the other C+-
provided PRNGs for workload sizes between 12 and 196, and
is outperformed by MersenneTwister19937 when the workload
size surpasses 195 numbers, with the speedup between the two
tending to 1.18x in favour of MersenneTwister19937.

In conclusion, MORUS-PRNG provides a valid solution
to generate pseudo-random numbers, also in a version that

maintains compliance with the C+ syntax, as long as buffering
techniques are adopted in its implementation in order to reduce
the CPU-accelerator communication costs.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed MORUS-PRNG, an integrated
accelerator for pseudo-random number generation based on
the MORUS cipher. We designed it to communicate with the
CPU through the IXIAM framework, which allows users to
control it directly with CPU instructions. We evaluated it in
a simulated environment in the gem5 architectural simulator,
comparing its performance against PRNGs included in the C+
standard library. We showed that it is able to outperform them.

As future work, we plan to implement our solution in
hardware and conduct a more accurate evaluation. Also, we
plan to evaluate it against other accelerators aimed at pseudo-
random number generation.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Volume
2 (3rd Ed.): Seminumerical Algorithms. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997, pp. 1-2,
ISBN: 0-201-89684-2.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978, 1SSN:
0001-0782. DOI: 10.1145/359340.359342.

[3] Igumnov, “Generation of the large random prime numbers,”
in 2004 International Siberian Workshop on Electron Devices
and Materials, 2004, pp. 117-118. por: 10.1109/PESC.2004.
241202.

[4] B. Peccerillo, S. Bartolini, and C. K. Kog, “Parallel bitsliced
AES through PHAST: a single-source high-performance li-
brary for multi-cores and GPUSs,” Journal of Cryptographic
Engineering, vol. 9, no. 2, pp. 159-171, Jun. 2019, 1SSN: 2190-
8516. pol: 10.1007/s13389-017-0175-4.

[5] T. Tuncer and E. Avaroglu, “Random number generation
with LFSR based stream cipher algorithms,” in 2017 40th
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2017,
pp. 171-175. por: 10.23919/MIPRO.2017.7973412.

[6] H. Wu and T. Huang, The Authenticated Cipher MORUS
(v2), Submission to CAESAR: Competition for Authenticated
Encryption. Security, Applicability, and Robustness (Round 3
and Finalist), Sep. 2016.

[7]1 1. K. Rott, Intel Advanced Encryption Standard Instructions
(AES-NI), Retrieved: 15-09-2024, Feb. 2012.

[8] S. Kumar, J. Haj-Yahya, M. Khairallah, M. A. Elmohr, and
A. Chattopadhyay, A comprehensive performance analysis of
hardware implementations of CAESAR candidates, Cryptol-
ogy ePrint Archive, Paper 2017/1261, Retrieved: 15-09-2024,
2017.

[9] B. Peccerillo, E. Cheshmikhani, M. Mannino, A. Mondelli,

and S. Bartolini, “IXIAM: ISA EXtension for Integrated

Accelerator Management,” IEEE Access, vol. 11, pp. 33768—

33791, 2023. por: 10.1109/ACCESS.2023.3264265.

N. Binkert ef al., “The gem5 simulator,” ACM SIGARCH

computer architecture news, vol. 39, no. 2, pp. 1-7, 2011.

M. Muehlberghuber and F. K. Giirkaynak, Towards Evaluating

High-Speed ASIC Implementations of CAESAR Candidates for

Data at Rest and Data in Motion, en, Other Conference Item,

Workshop on Directions in Authenticated Ciphers (DIAC);

September 28-29, Singapore, 2015.

(10]

(11]

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/PESC.2004.241202
https://doi.org/10.1109/PESC.2004.241202
https://doi.org/10.1007/s13389-017-0175-4
https://doi.org/10.23919/MIPRO.2017.7973412
https://doi.org/10.1109/ACCESS.2023.3264265

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

[12]

[13]

[14]

S. J. E. Wilton and N. P. Jouppi, “CACTI: An enhanced cache
access and cycle time model.,” IEEE Journal of Solid State
Circuits, vol. 31, no. 5, pp. 677-688, 1996. poI: 10.1109/4.
509850.

ISO, ISO/IEC 14882:2011 Information technology — Pro-
gramming languages — C++. Geneva, Switzerland: Interna-
tional Organization for Standardization, Feb. 2012, 1338 (est.)
Retrieved: 15-09-2024.

M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number

(15]

(16]

generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1,
pp- 3-30, Jan. 1998, 1SSN: 1049-3301. DOI: 10.1145/272991.
272995.

M. Liischer, “A portable high-quality random number gen-
erator for lattice field theory simulations,” Computer Physics
Communications, vol. 79, no. 1, pp. 100-110, Feb. 1994, 1SSN:
0010-4655. por: 10.1016/0010-4655(94)90232-1.

RISC-V GNU Compiler Toolchain, Retrieved: 15-09-2024,
2024.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024.

ISBN: 978-1-68558-184-8

https://doi.org/10.1109/4.509850
https://doi.org/10.1109/4.509850
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://doi.org/10.1016/0010-4655(94)90232-1

	Introduction
	Background
	MORUS
	IXIAM

	Our Proposal
	Technical Details
	Operations

	Evaluation
	Conclusion and Future Work

