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Abstract— The process of developing of a machine learning 

application presents multiple challenges relating to data and 

their features. Based on experiences with several applied studies 

carried out using machine learning methodologies, we report on 

addressing challenges in the collection, quantity, distribution, 

quality, sampling, of and relevancy of data. We also address 

feature engineering and selection issues, including approaches 

to identifying, combining, and eliminating attributes and 

features that are not needed or of low significance. We include 

insight into overfitting and underfitting training data. Example 

applications include classification, anti-autonomy and trust 

modeling and analytics for self-driving cars and intrusion 

detection systems aimed at detecting malicious activity.                  

Keywords- Machine Learning, Data Management, Feature 

Engineering, Self-Driving Cars, Intrusion Detection. 

I. INTRODUCTION 

Machine Learning (ML) is a rapidly emerging area of 

artificial intelligence. Many types of applications have been 

successfully developed and new successes are regularly 

reported. The famous Turing award winner Jim Gray referred 

to data science as a “fourth paradigm,” taking a rightful place 

among empirical, theoretical, and computational sciences [1].  

Often viewed as interdisciplinary, data science involves 
mathematics, statistics and computer science as well as other 

related areas. In many applications, the availability of large 

and relevant datasets, and the methods of data science 

provide the lifeblood of machine learning problem-solving 

approaches. Analyses and decision support in nearly every 

area of human endeavor today are related to machine 

learning. 

The example machine learning studies that we describe 

are in the areas of self-driving cars and intrusion detection 

[2], [33], [36], [37]. 

In the case of the self-driving car study, there was 
availability of multi-attribute data about specific collisions. 

The data contained a host of features and attributes 

concerning the vehicle itself, the damage incurred, roadway 

conditions, etc. The objective of the study was to build a 

classification model that could translate the detailed data into 

collision predictions and to drive an anti-autonomy trust 

model. There were important and difficult choices made 

related to scale and balance within the available dataset, and 

in feature engineering. A linear sequential supervised 

learning machine learning model was employed. 
The intrusion detection study used supervised learning 

techniques to build a model for identifying outside threats 

initiated by malicious actors who wish to breach or 

compromise a system. Among other datasets, the study 

examined the famous dataset that originated in the KDD 

(Knowledge Discovery and Data Mining) competition and 

was later modified to form the now publicly available NSL 

(Network Security Laboratory) KDD dataset [6], [7]. 

The rest of the paper is structured as follows. In Section 

II, we describe supervised machine learning with illustrations 

of the flow of a machine learning model and data splits for 
cross validation. In Section III, we present a self-driving cars 

example illustrating an implementation of a linear sequential 

supervised learning artificial neural network model utilizing 

multiple pre-processed complex attributes. In Section IV, we 

present the intrusion detection example, explaining how a 

machine learning model can be tuned to predict and identify 

attacks. In Section V, we describe data management and 

feature engineering issues that are ubiquitous in machine 

learning practice. This section also includes several 

categorical encoding techniques for preprocessing data for a 

machine learning algorithm. Finally, we conclude our work 

in Section VI. 

II. SUPERVISED MACHINE LEARNING 

We restrict our discussion to supervised learning models. 

Fundamentally, such models are well-suited to address 

applications for which there are available datasets whose data 

instances have a known classification label or target. The 

initial task is to computationally train the machine learning 

model to accept the data instances as input and to produce the 

correct target as output. Once trained, the model is available 

to accept new data and predict their target classification. The 

model is successful if it has high values of performance 

measures such as percentage of accuracy in correctly 
classifying the new data instances, called the ability to 

generalize. There are multiple issues surrounding the 

characteristics of the available data, the classes into which 

they fall, their attributes and features, and the learning models 

charged with producing the predictions. Concerning baseball, 

Coach Yogi Berra famously said, “It's tough to make 
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predictions, especially about the future.” This aphorism is 

equally true in machine learning [45]. 

Figure 1 illustrates the general flow of a machine learning 

technique. Several tasks are included. The overall task of the 

DEVELOP phase shown at the top is to produce a Final 
Model that is fully specified, trained and feeds into the 

PREDICT phase shown below the dotted line, where it is 

available for generalization use on new data. Starting from 

the top, the data is shown as partitioned into splits for 

Training, Validation and Test. The full data is divided into 

the Training Split and the Test Split. A good way to perform 

training is to withhold a portion of the data while training is 

done. It is viewed as a mistake to train and test a machine 

learning model on the same data. So doing would result in the 

model memorizing all of the data/target pairs, resulting in the 

model perfectly knowing all of the answers, leaving no ability 

to generalize. The result is known as overfitting. For 
validation purposes, the Training Split is typically divided 

into pieces called folds. Called k-fold cross validation, Figure 

2 illustrates basic logic for splitting the data. In this example, 

k=5 so there are five equal parts. This corresponds to the 

Validation Split and Model Tuning blocks in Figure 1. In 

Figure 2, shown in bold italics on the diagonal, there is a 

designated fold in each row that is specified for testing, with 

the other four used for training. The key idea is to find the 

best set of meta-level parameters for a model being 

developed. All of the major machine learning models have 

parameters. For example, an ML that utilizes an Artificial 
Neural Network (ANN) in some way, will be parameterized 

with settings like Learning Rate (governs weight 

adjustments), topology (number of hidden layers, nodes 

within layers, and interconnectedness), and activation 

functions. Other ML methods, like a Support Vector Machine 

(SVM) or Logistic Regression also have parameters. When a 

model is trained on the folds, a performance metric, such as 

classification accuracy, can be calculated on the testing fold. 

After all of the fold splits are evaluated in this way, an 

average is calculated, which yields a score for the parameter 

settings. Various optimization methods can be employed to 

explore the parameter space in a quest to identify the best 
settings. Viewed more generally, the Model Tuning block can 

also be viewed as exploring various types of models in a quest 

to not only optimize the use of one type of model, but to also 

choose among competing models. 

 In multiple places of the ML process, there is a need to 

evaluate the quality of the predictions using a metric. The 

empirical accuracy of a method is simply the percentage of 

the predictions made that are correct. Other metrics are 

available. More details are provided later in this paper.  

 

 
 

Figure 1. Flow of a Machine Learning Model [2] 

 

 
Figure 2. Data Splits for Cross Validation 

Raw data is rarely available in a form that is suitable for 

direct use by an ML model. Pre-processing of data is typically 

necessary to deal with null or missing values, outliers, 

transforming or reconciling numeric and categorical values, 

rescaling, standardizing, etc. We expand on the data-centric 

issues for the example applications reported in this article.  
Feature Engineering also appears in Figure 1. Features are 

those characteristics that are present in the data that are 

potentially useful in predicting a target outcome. It is often 

effective in ML to modify or combine features in some way 

to produce a new feature that can improve the prediction 

accuracy of the method. Called Feature Engineering, the 

operations that can be carried include things like 

mathematically transforming a single feature or applying a 
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functional calculation on multiple features. Feature Selection 

refers to reducing the number of features employed by the 

model while retaining acceptable results. Reducing the 

features needed can ease the data collection task and reduce 

the computational load of running the model. Feature 
Selection typically follows Feature Engineering. We provide 

details related to the examples discussed in this paper. 

Unsupervised Learning is different than supervised learning 

in many ways. Some of the most known algorithms are, k-

means clustering, hierarchical clustering, principal 

component analysis, and apriori algorithm [44]. The need for 

unsupervised models is increasing in the cybersecurity 

domain since attacks are being modified every day [46]. 

III. SELF-DRIVING CARS EXAMPLE    

For an application to self-driving cars, we used available 

data to study anti-autonomy traits and factors responsible for 

collisions and diminished trust [2], [38]. Data availability was 
a challenge since jurisdictions of different states, federal 

traffic agencies and motor vehicle departments often do not 

make their data publicly available. Data used in this study 

was submitted by the manufacturers of autonomous vehicles 

to the California Department of Motor Vehicles for collisions 

that occurred with other cars, pedestrians, bicyclists, and 

other objects during their test drives on roads and freeways in 

the state. All data applied to collisions that occurred while the 

cars were being driven in autonomous driving mode. The 

collisions occurred between October 2014 and March 2020 

[2], [38]. The attributes of this dataset are listed in Table I 
below. All attribute names are feature type categorical and 

data type object. 

TABLE I.  COLLISION DATA ATTRIBUTES [2] 

Attribute Type Attribute Names 

Autonomous vehicle details Manufacturer Name, Business 

Name, Vehicle Year, Vehicle 

Make, Vehicle Model, Vehicle 

was (stopped in traffic/moving)  

Accident Details  Date of Accident, Time of 

Accident 

Involved in Autonomous vehicle 

accident 

Involved in Autonomous Vehicle 

Accident 

(Pedestrian/Bicyclist/Other), 

Number of vehicles involved with 

Autonomous Vehicle 

Autonomous vehicle damage Vehicle Damage, Damaged Area  

Details of other vehicle involved 

in accident 

Vehicle 2 Year, Vehicle 2 Make, 

Vehicle 2 Model, Vehicle 2 was 

(stopped in traffic/moving) 

Involved in Other vehicle 

accident 

Involved in Vehicle 2 Accident 

Pedestrian, Involved in Vehicle 2 

Accident Bicyclist, Involved in 

Vehicle 2 Accident Other, 

Number of vehicles involved with 

Vehicle 2  

Injuries Injured, Injured Driver, Injured 

Passenger, Injured Bicyclist 

Vehicle driving mode Vehicle Driving Mode 

Weather conditions for both 

vehicles 

Clear, Cloudy, Raining, Snowing, 

Fog/Visibility, Other, Wind 

Attribute Type Attribute Names 

Lighting conditions for both 

vehicles 

Daylight, Dusk-Dawn, Dark 

Street Lights, Dark-No Street 

Lights, Dark-Street Lights Not 

Functioning 

Roadway surface for both 

vehicles 

Dry, Wet, Snowy-Icy, 

Slippery/Muddy/Oily/etc., Holes-

Deep-Rut, Loose Material on 

Roadway, Obstruction on 

Roadway, Construction/Repair 

Zone, Reduced Roadway Width, 

Flooded, Other, No Unusual 

Conditions 

Preceding Movement of 

Autonomous Vehicle before 

collision 

Stopped, Proceeding Straight, Ran 

Off Road, Making Right Turn, 

Making Left Turn, Making U 

Turn, Backing, Slowing/Stopping, 

Passing Other Vehicle, Changing 

Lanes, Parking Maneuver, 

Entering Traffic, Unsafe Turning, 

Xing Into Opposing Lane, Parked, 

Merging, Travelling Wrong Way, 

Other 

Preceding Movement of Other 

Vehicle before collision 

Stopped, Proceeding Straight, Ran 

Off Road, Making Right Turn, 

Making Left Turn, Making U 

Turn, Backing, Slowing/Stopping, 

Passing Other Vehicle, Changing 

Lanes, Parking Maneuver, 

Entering Traffic, Unsafe Turning, 

Xing Into Opposing Lane, Parked, 

Merging, Travelling Wrong Way, 

Other 

Type of Collision Head On, Side Swipe, Rear End, 

Broadside, Hit Object, 

Overturned, Vehicle/Pedestrian, 

Other 

Other CVC Sections Violated Cited, 

Vision Obscurement, Inattention, 

Stop and Go Traffic, 

Entering/Leaving Ramp, Previous 

Collision, Unfamiliar With Road, 

Defective WEH Equip Cited,  

Uninvolved Vehicle, Other, None 

Apparent, Runaway Vehicle 

This data was extracted from PDF files and converted into 

CSV format. Data cleaning was a significant effort, and 

included pre-processing steps for augmenting, labeling, and 

classifying the data [2], [38]. The core purpose of the study 

was to associate conditions into a level of trust that people 

had in a self-driving car. Anti-autonomy refers to decisions 

and actions taken by a self-driving car that are in some way 

inappropriate in terms of increasing risk, diminishing safety, 

or lowering trust. The values of attributes in the data that 

describe conditions and circumstances that are present when 

a collision occurs provide a handle to model a mapping 
between data and trust level. After pre-processing the data, a 

linear sequential supervised learning ANN model called 

NoTrust was devised, validated, and tested to classify the 

target data, using the basic approach illustrated in Figure 1.   

The model used the libraries provided by Keras with the 

Tensorflow backend [39] -[41]. Python was used for 

programming since it integrates with Keras to access the 
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neural network Application Programming Interface. The 

deep learning libraries of Keras support fast prototyping, 

modularity, and smooth computation. 

There are multiple challenges concerning data, features, 

and metrics in applying a ML methodology to the self-driving 
car application. First, there were only 256 collision reports 

available, which is arguably a small number to use in a ML 

method. Also, in the context of alternative target value 

possibilities, the data is somewhat unbalanced in that the 

number of samples across the distinct classes differs. Section 

V describes methods, such as oversampling, to deal with 

unbalanced data. Second, there are 140 attributes, a large 

number relative to sample size, as shown in Table I. Thus, the 

possible permutations and combinations that could be 

evaluated in the ANN model is explosive. Fortunately, with 

initial analyses of the data and evaluation runs, it was possible 

to identify a subset of attributes and features which revealed 
that they were mandatory to include. The five attributes 

shown below form the mandatory set.  

 

• Vehicle driving mode = autonomous 

• Vehicle damage = moderate and major 

• First vehicle involved = Pedestrians/Bicycle/Other 

• Second vehicle involved = Bicycle/Other  

• Injuries sustained = Pedestrians/Bicyclists/Others 

While keeping the model simple and still retaining 

accuracy, the mandatory feature set performed well in 

making trust and do not trust predictions for autonomous 

vehicles. However, when anti-autonomous traits of the self-

driving car itself were incorporated into the model it became 

apparent that more attributes had to be utilized. These include 

vehicle driving mode, type of collision, weather conditions, 

roadway surface conditions and injuries sustained by 

pedestrian/bicyclists/others. In addition to the linear 
sequential ANN, evaluation of Recurrent Neural Networks 

(RNN) models with Long Short-Term Memory (LSTM) were 

available for possible comparison purposes. When the 

additional attributes are included, along with measures of 

severity of damages sustained by vehicle, the imbalance of 

the data increased. More specifically, the larger number of 

predictors added more noise, redundancies, increased 

overfitting, and decreased the quality of the predictions. A 

related study by Meiri and Zahavi [3] used simulated 

annealing to search the attribute space.  

Combinatorial problems often have issues related to model 

accuracy, performance, and optimizer bias. Also, the model 
solutions offered by machine learning include approximation 

errors which is further exacerbated by the fact that the input 

configurations to the ML model can be significantly different 

between training and validation [4]. This can be solved by 

two approaches – active learning and passive learning. Active 

learning involves updating the model itself to assure a 

convergence between training and validation curves in turn 

improving model accuracy and optimization bias. Passive 

learning involves the training set providing a uniform and 

sufficient coverage of the search space [4]. In a similar 

context, Charikar et al. [5] defined and studied combinatorial 

feature selection problems and presented a theoretical 

framework which provided algorithms on approximation and 
hardness results of these combinatorial problems [5].   

IV. INTRUSION DETECTION EXAMPLE 

In today’s world of connected devices, security of the 

network is of critical importance. Unauthorized access and 

malicious activities are a great threat to confidentially, 

integrity, and availability that form the information security 

triad. The role of an Intrusion Detection System (IDS) is to 

detect abnormalities caused by an unauthorized reach into the 

network and send alerts. An IDS is an element of support for 

a wall of defense between cyber-attacks.  Supervised ML 

techniques in an IDS can provide high detection accuracy, 

particularly against known types of attacks.  

The NSL-KDD is an update and improvement to the 

KDD’99 dataset that that was developed for the KDD Cup 

competition in 1999 [6]. These datasets are publicly available 

and are very widely used for IDS experiments. The data is 

primarily internet traffic consisting of 43 features per record, 

of which the last two are class (attack or normal) and score 

(severity of traffic input) [7]. The class column provides 

information on whether the record is considered normal or is 

a member of one of four attack classes - Denial of Service 

(DoS), Probe, Remote-to-Local (R2L) or User-to-Root 
(U2R). There are14 attack types under these 4 classes: 

Apache2, Smurf, Neptune, Back, Teardrop, Pod, Land, 

Mailbomb, Processtable, UDPstorm, WarezClient, 

Guess_Password, WarezMaster, Imap, Ftp_write, Named, 

Multihop, Phf, Spy, Sendmail, SmpGetAttack, AnmpGuess, 

Worm, Xsnoop, Xlock, Buffer_Overflow, Httptuned, 

Rootkit, LoadModule, Perl, Xterm, Ps, SQLattack, Satan, 

Saint, Ipsweep, Portsweep, Nmap, Mscan [42], [43]. A 

mixture of categorical (nominal), binary and numeric 

variables are in the feature set. Each record has basic, 

content-related, time-related, and host-based features [8]. 
The attributes of this dataset are listed in Table II. 

TABLE II.  NSL-KDD DATASET ATTRIBUTES [8] 

Attribute Type Attribute Names 

Basic Duration, Protocol_type, Service, Flag, Src_bytes, 

Dst_bytes, Land, Wrong_fragment, Urgent 

Content 

related 

Hot, Num_failed_logins, Logged_in, 

Num_compromised, Root_shell, Su_attempted, 

Num_root, Num_file_creations, Num_shells, 

Num_access_files, Num_outbound_cmds, 

Is_hot_login, Is_guest_login 

Time related Count, Srv_count, Serror_rate, Srv_serror_rate, 

Rerror_rate, Srv_rerror_rate, Same_srv_rate, 

Diff_srv_rate, Srv_diff_host_rate 

Host based 

traffic  

Dst_host_count, Dst_host_srv_count, 

Dst_host_same_srv_rate, Dst_host_diff_srv_rate, 

Dst_host_same_src_port_rate, 

Dst_host_srv_diff_host_rate, Dst_host_serror_rate, 

4Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences



Dst_host_srv_serror_rate, Dst_host_rerror_rate, 

Dst_host_srv_rerror_rate 

The study also used the UNSW-NB15 dataset. This 

dataset has 49 features categorized into 6 groups: basic, flow, 

time, content, labelled and additional generated features [9]. 
There are 9 attack types: fuzzers, analysis, back-doors, DoS, 

exploits, generic, reconnaissance, shell code and worms [10]. 

This dataset has a mixture of categorical, binary, and 

numerical datatypes. The attributes of this dataset are listed 

in Table III below. 

TABLE III.  UNSW-NB15 DATASET ATTRIBUTES [15] 

Attribute Type Attribute Names 

Basic state, dur, sbytes, dbytes, sttl, dttl, sloss, dloss, 

service, sload, dload, spkts, dpkts 

Flow srcip, sport, dstip, dsport, proto 

Content swin, dwin, stcpb, dtcpb, smeansz, dmeansz, 

trans_depth, res_bdy_len 

Time sjit, djit, stime, ltime, sintpkt, dintpkt, tcprtt, 

synack, ackdat  

Additional generated 

(general purpose) 

is_sm_ips_ports, ct_state_ttl, 

ct_flw_http_mthd, is_ftp_login, ct_ftp_cmd 

Additional generated 

(connection) 

ct_srv_src, ct_srv_dst, ct_dst_ltm, ct_src_ltm, 

ct_src_dport_ltm, ct_dst_sport_ltm, 

ct_dst_src_ltm 

Labelled attack_cat, attack_cat 

The target attribute either identifies records as ‘normal’ or 
‘attack’ or distinguishes the record as a particular attack type. 

Depending on the desired goal of an intrusion detection 

system, the machine learning model is tuned to identify a 

particular attack, which is a challenge in itself. It is thus 

essential to understand the requirement thoroughly and 

preprocess input data accordingly. 

As an illustration of evaluation metrics, at a high level in 

the IDS study, for each input vector we have exactly one of 

the following outcomes: 

 

TP = True Positive = Correct predication that the input 

vector is an Attack 
TN = True Negative = Correct prediction that the input 

vector is not an Attack 

FN = False Negative = Incorrect prediction the input 

vector is not an Attack 

FP = False Positive = Incorrect prediction the input vector 

is an Attack 

The most widely reported metric is Basic Accuracy of the 

model, which simply reports the proportion of attack reports 

that are correct. 

Accuracy = (TP + TN)/(TP = TN = FP +FN) 

The Basic Accuracy is notoriously deceptive when the 
classes are unbalanced, as in the case of intrusion detection 

studies, where most input vectors are not attacks. False 

reports are of interest. This gives rise to the need for metrics 

such as Precision and Recall, which can be calculated from 

information in the confusion matrix given below. 
 

 Prediction 

 

Actual 

 Attack Not an Attack 

Attack TP FN 

Not an Attack FP TN 

 

Precision = TP/(TP + FP) 

 

Recall = TP/(TP + FN) 

 

Precision measures the proportion of the vectors reported 

by the IDS as attacks that are real attacks. Recall measures 

the proportion of the vectors that are real attacks and do get 
reported as such. This means that when Recall is high the IDS 

does not misclassify many true attacks. 

In Intrusion Detection applications, false negatives can be 

very deadly, which favors high Recall. However, dealing 

with false positives also has a cost. Unfortunately, 

experiments that improve Precision typically reduce Recall. 

The reverse is also often true. For this reason, the harmonic 

mean of the two, called the F1 score is often calculated.  

F1 = (2*(Precision * Recall))/(Precision + Recall). 

The effect of the F1 score, which falls between 0 and 1, 

is to punish extreme values. 
  

V. METHODOLOGIES FOR ADDRESSING DATA AND 

FEATURE ENGINEERING ISSUES 

We provide detailed descriptions data management and 

feature engineering issues that are pervasive in ML practice 

and were of importance in our applied studies. 

 

A. Data Management 

Class imbalance in a dataset means that the relative 

numbers of instances within the classes vary significantly in 

number [16]. The magnitude of the discrepancies will also 

vary. Class imbalance is common in most important data 

domains, including detection of things like fraudulent 

activities, anomalies, oil spills, and in medical diagnoses. The 

imbalance of classes occurs in both binary class and multi-

class classification [17]. In binary classes, the smaller and 

larger cardinality classes are called minority and majority 

classes respectively [16], [18]. Class imbalance can influence 

the training process of ML techniques and lead to ignoring 
the minority class entirely. We discuss some of the 

approaches to treat class imbalances. Figures 3 – 9 illustrate 

the results of applying each technique. 

Random oversampling of a minority class. In this approach 

data instances in minority classes are duplicated at random to 

induce a balance of membership between classes. Due to 

randomness of the oversampling, the method is naïve in that 
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it makes no assumptions about the classes and their members 

[19], [20]. Since exact copies of some data instances are 

included in training, there is a risk of overfitting. Classifier 

accuracy may also be influenced, and computational effort 

may be increased.  

Random undersampling of a majority class. This approach 

discards data instances from majority classes to induce 

balancing [21]. As in the case of the oversampling method, 

the discarded data is chosen randomly and naively. The 

method applies to both binary and multiclass data. The 

approach can make it difficult to distinguish boundaries 

between classes, with an inimical impact on performance 

measures [22]. 

Synthetic Minority Oversampling Technique (SMOTE). 

This technique was introduced in 2002 to address the 

shortcomings of the oversampling and undersampling 

approaches [23], [24]. The technique generates synthetic data 
by calculating feature space similarities between minority 

class data instances. The K-nearest neighbors of each data 

instance in a minority class are calculated, then randomly 

selected one by one. The method then calculates linear 

interpolations among the data and uses them to create 

synthetic data instances. 

Borderline SMOTE. The SMOTE approach encounters 

issues when minority class data instances occur in the vicinity 

of majority class data instances, creating undesirable bridges. 

The Borderline SMOTE variation addresses this drawback by 

oversampling only minority class instances near the 
borderline. Data points are called border points if they are 

incident to both minority and majority classes and called 

noise points otherwise [25]. Border points are then utilized to 

balance the data between classes.  

K-Means SMOTE. This technique generates minority class 

samples in safe and crucial borders of input spaces and thus 

assists performance in classification. The method begins by 

clustering the dataset using the K-means procedure, then 

selects the clusters that have higher numbers of minority 

samples [26]. Additional synthetic samples are then assigned 

to clusters where minority class samples are sparsely 

distributed. No noise points are generated. 

SVM SMOTE. A variation of Borderline-SMOTE, the 

method finds misclassification points. The borderline points 

are approximated and classified with a Support Vector 

Machine (SVM) classifier [27]. Synthetic data points are 

created randomly around the lines joining each minority class 

support vector with its neighbors. 

Adaptive Synthetic Sampling – ADASYN. A limitation of 

Borderline SMOTE is that is utilizes only synthetic points 

generated from extreme observations and the borderline 

instances and neglects the rest of the points in minority 

classes. This issue is addressed by ADASYN by creating the 

synthetic data using the density of the existing data [28]. The 

ratio of synthetically generated data is created in inverse 

relation to the minority class density. In this way, a less dense 

area creates more synthetic data. 
 

The Churn Modeling Data from Kaggle was applied to the 

methods [29]. Figure 3 shows the distribution of the data in 

the original classes, followed by the outcomes of the 

alternative methods in Figures 4 to 9. 

 

 

Figure 3. Original Class Imbalance Illustration 

 

Figure 4. Outcome of Random Oversampling 

 

Figure 5. Outcome of SMOTE 
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Figure 6. Outcome of Borderline-SMOTE 

 

Figure 7. Outcome of K-Means SMOTE. 

 

Figure 8. Outcome of SVM SMOTE 

 

Figure 9. Outcome of ADASYN 

B. Data Management and Feature Engineering 

 
There are multiple methods for feature engineering on 

categorical data. The inputs to ML algorithms must be 

numeric, but many applications have categorical data. In our 

work with ML methods for self-driving car collisions there 

are examples of ordinal categorical data, such as rating of 

severity of damages or a weather condition. The intrusion 

detection work examples include counts of file access 

attempts, session duration, or error rates. There are also 
examples of nominal data, such as a type of vehicle in our 

self-driving car work, or whether or not a flag is set in the 

intrusion detection work. Various encoding methods are used 

to convert the variables into a useful numerical representation 

[9]. Choosing an appropriate encoding scheme is an essential 

part of data preprocessing for a ML algorithm. Some of the 

categorical encoding techniques are described below. 

a) One-hot encoding  

This method converts an attribute with N possible 

categories into N distinct features. In the NSL-KDD dataset, 

the protocol type attribute has 3 possible values - Internet 

Message Control Protocol (ICMP), Transmission Control 

Protocol (TCP) and User Datagram Protocol (UDP). One-hot 

encoding converts this attribute into three feature columns as 

shown in Figure 10. It follows a 0/1 representation to indicate 

presence (indicated by 1) or absence (indicated by 0) of a 

value. 

  

 

Figure 10. One-hot encoding used in Protocol Type attribute 

b) Dummy coding  

Like one-hot encoding, dummy coding converts an 

attribute with N values to a feature set of N-1 values. The 
converted set of binary variables are called dummy variables. 

Figure 11 illustrates one-hot ending and dummy coding 

applied to the same set of categorical records.  

 

Figure 11. One-hot and dummy encoding used in the same dataset [11] 

c) Effect coding  

While one-hot encoding and dummy coding use only 0 

and 1 to encode categorical variables, effect coding sets 

values that sum to zero in the new feature set. As a result, 

negative values may also be generated in the encoded feature 
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set. Effect coding is a preferred choice when there is an 

interaction of categorical variables in a dataset as it can 

provide reasonable estimates of main effect and of the 

interaction [12]. 

d) Hash encoding  

Hash encoding is appropriately used for categorical 

variables that have a large number of possible values. The 

method uses a hash function to map categorical values into 

numbers. Commonly used hash functions include Message 

Digest functions MD2, MD4, MD5 and Secure Hash 

Algorithms  SHA0, SHA1, SHA2 and SHA3. The MD5 hash 

function is used by default [11]. Hash encoding returns a 

variable map with smaller dimension than other encoding 
schemes, such as one-hot encoding or dummy coding. Figure 

12 below shows the hash-encoding process: 

 

Figure 12. Hash Encoding Process [13] 

e) BaseN encoding  

BaseN encoding converts categorical variables into a 

consistently encoded feature set using a selected base, such 

as base 2 for binary encoding. The base or radix is the 

available number that can be used in different combinations 

to represent all values in a numbering system. A BaseN 

encoder encodes categorical values into arrays of their base-

n representation.  

f) Target encoding  

Target encoding (also known as mean encoding) replaces 

a variable with a mean of the target value for that variable. 

Figure 13 provides an illustration. When the values of a 

categorical variable are already of a high volume, target 

encoding provides an advantage over other methods as it does 

not add extra dimensions to the dataset.  

 

Figure 13. Target Encoding [14] 

g) Label or ordinal encoding scheme 

Ordinal categorical variables require that the order of the 

variable be preserved. For example, a road surface when a 

collision occurs might be categorized into dry, somewhat 

wet, or very wet so that the 3 values have an order that might 

provide additional insights. Ordinal encoding scheme aims at 

preserving this order when mapping values to numeric form. 

The method simply assigns each label a number (for example 

dry=1, somewhat wet=2 and very wet=3). 

C. Feature Selection 

 

The complexity of ML models increases with the 

dimensionality of the dataset. Predictive models often fail to 

achieve high accuracy because of inadequate analyses 

directed to feature selection. Selecting the most important and 

significant features reduces the complexity of the model and 

can also increase the prediction performance [36], [37]. 

Multiple approaches are available and effective for reducing 

the feature set. Prominent ones are described below.  

Filter Methods. In our work, we choose feature selection 
methods that apply to situations with a categorical output, 

such as whether an input vector is an attack or not. The filter 

methods eliminate features independently of the ML method 

used. A univariate feature filter evaluates the importance of 

single features using univariate statistical tests. Each feature 

is paired with the target to evaluate statistical significance 

between them. The analysis of variance or ANOVA F-test is 

widely used. The F-test calculates the ratio between variance 

values [30]. The resultant measures of the relative importance 

of individual features provides a tool for determining features 

that are unnecessary or of little importance. 

Wrapper Methods. The wrapper methods directly evaluate 
combinations of features by running the ML model restricted 

to the set of candidate features. Taken to an extreme, all 

combinations would be evaluated, an impossible task in 

practice. Thus, various search space approaches are 

employed. Forward search iteratively adds promising feature 

vectors one by one to build a feature set. Backward search 

starts with all features and successively eliminates those that 
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perform poorly. Many approaches based on optimization 

techniques are available [31]. The self-driving car work 

basically follows a forward selection approach based on both 

advance knowledge about the importance of certain features 

from analytics on the data itself along with test runs of the 
ML model. Heavy computational load and possibilities of 

overfitting are potential drawbacks [33]. 

Embedded Methods. Embedded methods utilize 

mathematical information that is available during the training 

of the model to determine the relative importance of features. 

In some sense embedded methods mitigate the drawbacks of 

the filter and wrapper methods but retain their strengths. 

When implemented carefully, they are not prone to 

overfitting [34]. The XGBoost technique produces an 

importance score for each attribute that is used to identify 

those that can be confidently eliminated [35]. In applications 

like intrusion detection, a large number of attributes presents 
a huge computational burden. The embedded methods are 

highly successful in greatly reducing the features needed in 

intrusion detection ML work.  

VI. CONCLUSION AND FUTURE WORK 

Machine learning is now a well-established and effective 

approach in many domains. The studies on collisions 

involving self-driving cars and on intrusion detection in 

networks reported in this paper are examples of complex 

problem-solving domains with special challenges. These 

applications have dimensions of importance in inter-related 

areas of cybersecurity, trust, risk, safety, reliability, 
autonomy, and anti-autonomy. The data-centric and feature 

engineering challenges are extensive, but addressable. We 

describe approaches to addressing these challenges. Results 

reveal several implications for research needs and frontiers 

for next steps in research. These include the quest for 

methods that can be deployed in real-time, automate feature 

engineering, choose, and extract features dynamically, and 

simultaneously support multiple performance evaluation 

metrics. 
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