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Abstract—Machine Learning (ML) continues to find appli-
cations in the geosciences, specifically in the classification of
minerals from spectral or elemental data. We begin by exploring
the use of four different methods for classification of elemental
mineral samples from Scanning Electron Microscopy (SEM) and
microprobe analysis in terms of structure, group, and subgroup.
We create the most extensive silicate mineral group and subgroup
classifiers available to the best of our knowledge, and achieve
precision and recall values as high as the current state-of-
the-art methods, which cover fewer groups and subgroups.
Finally, we attempt to leverage the knowledge of structural
families to improve classification performance on mineral groups,
and reapply this process to improve performance on mineral
subgroups. The train, test, validation split of data used in this
paper will be posted online, along with the code and a webpage
called MINdicator where anyone can use the new models easily.

Index Terms—machine learning, ensemble learning, mineral-
ogy, silicates.

I. INTRODUCTION

Mineralogists group naturally occurring crystalline solids,
called minerals, into seven different families. One of these is
the silicate family, which makes up ≈90% of all minerals
in the earth’s crust and is critical for rock formation [1].
Determining what silicate minerals are present in a sample
is therefore crucial in determining rock forming processes,
histories of metamorphism, and tectonic history, and has
countless other applications [2], [3].

Geoscientists currently make mineral predictions by us-
ing petrographic microscopes and spectroscopy methods [4].
These methods have been invaluable for the field of mineral-
ogy since its inception in the late 1800s. However, there are
drawbacks. The process requires an in-depth knowledge of
mineralogy to derive an accurate classification. Even with a
high degree of mineralogical knowledge, the identification is
not always reproducible. As the process stands today, the time
to correctly identify a group of samples is directly related to
how many samples one has since there is not a reliable, in-
depth, automated method of classifying a wide range of silicate
minerals through chemical analyses [5]. The identifications
of mineral family, group, and subgroup are based on real
elemental data, and are used to train our data-driven ML
models. This type of data-driven model provides a high degree
of automation and reproducibility, and a path to parallelize the
process of silicate mineral identification.

Machine learning techniques offer an expressway between
data collection and data analysis that is normally time con-
suming and requires a high degree of domain knowledge con-
cerning mineral identification. It has been shown that machine
learning can expedite the process of mineral identification
from Raman Spectroscopy [6], X-ray fluorescence (XRF) [5],
and Electron Microprobe Analysis (EMPA) analyses [7]. Ad-
ditionally, some methods have used deep learning and Convo-
lutional Neural Networks (CNN) to identify minerals using
standard RGB images [8] and hardness measurements [9].
Machine learning provides rapid, reproducible methods for
determining the mineral in question. Other methods also use
random forest classifiers and ensemble learning to improve
mineral identification within rock cross sections by using
spectral signatures from SEM and hyperspectral analysis of
rock cross-sections [10], [11].

Existing methods that operate on weight oxide data have yet
to utilize a large dataset, which is necessary to capture the wide
range of variability in the silicate group. We have developed
several methods to determine structure, group, and subgroup
classification that are state-of-the-art because we classify more
classes with higher accuracies than previous methods, while
utilizing a more robust and challenging dataset. To our knowl-
edge, we are the first to classify family structure. Additionally,
we classify 12 more groups and 7 more subgroups than any
previous method using SEM data [5]–[7]. We achieve macro
F1-scores (Section II-B) of 98.4%, 92.3%, and 90.7% on struc-
tural families, groups, and subgroups, respectively. Finally, we
investigate the effectiveness of utilizing the explicit divisions
of structures and groups in order to improve classification
quality of groups and subgroups, respectively. These tests
show promising results that warrant further investigation.

The remainder of the paper is structured as follows: Sec-
tion II contains background information on mineralogy and
machine learning, Section III contains an overview of related
work, Section IV contains the details of our dataset, Section
V describes our methods for classification, Section VI con-
tains results, Section VII contains a discussion, Section VIII
our methods for classification using the explicit divisions of
structure and group, Section IX contains the results of that
effort, Section X provides additional discussion, and Section
XI provides concluding remarks.
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II. BACKGROUND

A. Mineralogy
Minerals are naturally occurring crystalline solids with

a repeatable pattern. Due to differences in chemistry and
crystal structure, minerals are broken into seven families:
silicates, oxides, sulfates, sulfides, carbonates, native elements,
and halides [1]. The silicate family of minerals contains
six structural groups which are also denoted as subfamilies.
These are nesosilicates, cyclosilicates, sorosilicates, inosili-
cates, phyllosilicates, and tectosilicates/framework silicates, all
of which have lattice differences [1]. Differences in crystal
lattice configurations will alter the type of ions that can
perform solid solution in a mineral, which alters the number
of different elements present within a mineral group. For
instance, clay minerals (a phyllosilicate) allow for a greater
degree of solid solution than wollastonite (an inosilicate)
due to lattice differences [1], [12]. Though silicate minerals
cover a wide range of chemical variability, the structure of a
mineral family, group, or subgroup creates a unique chemical
”fingerprint” due to physical chemistry [13]. For example,
this means that, in theory, the amphibole group is chemically
unique from quartz or chlorite [4], [14], [15]. This creates a
”fingerprint”; if an individual knows the chemistry, they can
forecast the structure [13].

Geologists commonly determine mineral chemistry by a
spectroscopy method, typically either Raman, SEM, Energy-
Dispersive Spectrum X-Ray Fluorescence (EDS/XRF), or
EMPA. These methods work by subjecting a mineralogical
sample to a high intensity electromagnetic radiation source
or electron beam. The released energies are then reported as
weight percent oxide counts.

B. Machine Learning
Decision trees [16] are a simple tree structure in which

training data are split at each tree node on some learned
condition until only one class is remaining. The resulting tree
is then used to classify unknown data samples. Extremely
randomized trees (Extra Trees) [17] is an ensemble learning
method that randomizes the data splitting at the nodes within
the decision trees used. Both of these tree methods are
computationally efficient. The K-Nearest-Neighbors (KNN)
classifier finds the k closest known samples to some unknown
sample (by euclidean distance), and uses the classes of the
known samples to predict the unknown class. A drawback of
this method is sensitivity to high dimensional spaces, both
in accuracy and efficiency, making it more computationally
expensive than the tree methods. The final method employed
is the Support Vector Machine (SVM) [18], which finds a
hyperplane that provides maximal separation for two sets of
data. Unseen data points are then plotted and classified by
their position relative to the hyperplane. The data can first
be operated on by a kernel to map it to a different space,
allowing non-separable data to be separated. In order to apply
this method to our multiclass problem space, the problem
is converted into several “one-vs-rest” binary classification
problems.

One weakness of many publications in ML is the use of
evaluation metrics that do not fully report the results [6].
Some background terminology: True Positive (TP) are all the
correctly labeled samples from the class of interest; False
Positives (FP) are samples labeled as the class of interest, but
actually in another; False Negatives (FN) are samples labeled
as another class, but actually in the class of interest. Often,
the only metric used is accuracy over all points. Computed
over all points, this is simply (all correct points)/(all points).
However, if 90% of the points are from class A, and the
classifier labels all data as A, then an accuracy of 90% will
be reached, which is misleading. This is why using metrics
such as recall and precision is important. Recall is defined as
(TP/(TP+FN)). If we measure using per class metrics from
our previous example, class A will have 100% recall, and all
other classes will have 0% recall. At this point the average
recall can be calculated, providing a realistic picture of the
results (at best 50%). Another metric that is important is
precision, defined (TP/(TP+FP)). However, it is often more
cumbersome to report the pair of metrics for each class, so
the F1-score, defined as (2×Precision×Recall)/(Precision +
Recall), is often used as a comprehensive metric. The macro
F1-score, which is the average F1-score across all classes, is
commonly used to evaluate models. Note that this is unaffected
by the imbalance of data in the evaluated dataset. One final
metric that is employed in the later sections of our evaluation
is the average top-3 recall, (top-3 recall, for brevity). To
calculate this metric, the probability vector V is taken from
each classifier. Normally, the position of the largest value in
V is used as the class identified, but instead the three largest
values are observed and if any of those correspond to the
correct class, the vector is considered “correct”. Then, the
average recall over all classes is computed as normal.

When large datasets are at hand in ML settings, the data
are broken into three sets: train, validation, and test. The
train set is used for training the model. The validation set
is used to validate the model and tune the choices of various
hyperparameters. The test set is used to test, or evaluate, the
performance of the final trained model. By using these three
sets it is ensured that the test data is not used to tune the
hyperparameters, which would create a model that is tuned
specifically for the test data and that creates misleading results.

III. RELATED WORK

Several ML methods, namely KNN, SVM, Extremely Ran-
dom Trees, Weighted Neighbors [19], and CNNs, are reviewed
as methods for mineral identification from Raman spectra [6].
The primary dataset used consisted of 3950 Raman spectra
samples from 1214 mineral species, with some rather large
class imbalances. A novel ML approach is introduced that
achieves 89.31% accuracy, although precision and recall are
not reported which leaves uncertainty when considered along-
side the class imbalances. Further, the use of another novel
method leveraging CNNs on the fusion of Raman, visible and
near-infrared, and laser-induced breakdown spectroscopy data
are explored as a method to improve accuracy of classification.

12Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences



This is shown to far outperform the use of a single dataset,
reaching 92.76% accuracy. Again, neither precision nor any
other more comprehensive metric is reported, leaving uncer-
tainty of the performance of the model.

Random forest, SVM, and neural networks are used to
predict mineral composition of eight different mineral classes
for rock cross-sections by using hyperspectral imagery and
SEM data [11]. The random forest method is able to achieve
root-mean-squared error 0.02 on an unseen region of the rock
section used to train the classifer. However, when moved to
new samples the errors ranged from 0.03 to 0.12 for the lowest
errors for each model.

A Classifier Chain Random Forest (CCRF) performs multi-
class tasks by using a chain of binary classifiers, each of which
is a random forest model, and where each step builds on the
results of the previous classification. Applying this method
to a hyperspectral image of a rock cross section achieved
accuracies between 66.96% and 94.65% for six classes [10].

A decision tree is used to identify twelve different mineral
groups from 4601 SEM-EDS analyses with a relatively bal-
anced dataset [5]. This novel approach to determine minerals
in thin sections reports 100% accuracy for the twelve minerals
the study set out to identify. It should be noted that the dataset
has a limited sample size of minerals from only igneous rocks
and multiple samples are from the minerals identified to create
their dataset. In this study, there is no exploration of options
for solid solutions in mineral groups.

A set of 5 minerals from river sediment samples are identi-
fied using EMPA and EDS analyses [7]. Three different novel
ML algorithms are used, with the most successful achieving
≈92% accuracy. The authors show that ML algorithms can be
used to classify geologic samples.

Many of these existing methods rely on additional spectral
data, which is more computationally expensive to process and
more expensive to obtain than EMPA or SEM data. Previous
methods that operate on weight oxide data (such as SEM
or EMPA) have yet to utilize a large dataset or classify the
structural groups or mineral groups of samples. Our focus is on
creating methods to determine structure, group, and subgroup
for a larger number of classes than previously achieved, using
a much larger dataset.

IV. THE DATASET

The dataset used is > 99% composed of data available from
Earthchem [20], [21]. Each mineralogical sample contains the
source DOI, location, methodology, sample ID, and chemical
data. These analyses are chosen because they are the most
common and accurate analysis types available to geoscientists.
As dense as this source is, it contains only 10 viable clay
mineral samples. To supplement clay mineral data, the other
< 1% of our data were taken from two publications, one
with microprobe analyses [22], and one with wet chemistry
analyses [23].

In order to get only exact or near-exact data samples for
training and evaluating our models, any EarthChem data that
used “<” in measurement is discarded, as this is a clear

indicator of uncertainty. All samples whose sum total weight
oxide was not within 10% of 100%, that is, | weight oxide−
100 |< 10, are also discarded. We allow the room for error
because there is inherent error within SEM or EMPA analyses
due to a wide variety of inconsistencies within the sampling
and preparation steps [24]. The dataset is split into train, test,
and validation sets. The size of each set for subgroups, groups,
and structure samples is provided in Table I. This shows that
our dataset is much larger than datasets used in the past.
Additionally, this new dataset has 17 subgroups and 20 groups
(Table I), which is twelve groups and seven subgroups more
than two previous datasets [5] [7], and is the only dataset
to make the distinction between family structure, group, and
subgroup.

V. PREDICTING THE STRUCTURE, GROUP, AND SUBGROUP
WITH MACHINE LEARNING

We evaluate the performance of four ML models as applied
to the tasks of classifying structure, group, and subgroup label.
For each task, we evaluated the following 4 methods:

1) Decision Tree,
2) K-Nearest Neighbors algorithm (KNN),
3) Support-Vector Machine (SVM),
4) Extremely Randomised Trees (Extra Trees).

The implementation from sklearn in Python [25] was used
for all methods. These 4 methods are chosen because they
all have been shown to be effective for solving mineral
classification tasks in the past [5]–[7], and we hope to build
on those successes with our much larger dataset and new set
of tasks. The hyperparameters and metadata for most methods
are constant throughout the experiments. All parameters for
respective methods are listed below:

1) random state=1, criterion=’gini’
2) Neighbors: (Subgroup, 20), (Group, 25), (Structure, 25)
3) decision function shape=’ovo’, kernel=’linear’, C=18
4) random state=42, criterion=”gini”

The k chosen for the KNN algorithm is lower for subgroups
because the lowest represented classes in those subsets have
fewer points than the lowest represented classes in the group
or structure subsets. The train set is used to train the four
classifiers for each method, and validation set is used to choose
the best of the four classifiers. This is done because the choice
of the best model is considered a form of parameter tuning,
which is the purpose of the validation data. The best classifier
is then evaluated on the test data. The macro-F1 metric is

TABLE I
THE NUMBER OF SAMPLES IN EACH OF THE TRAIN, TEST, AND

VALIDATION SETS, FOR THE SUBGROUP, GROUP, AND STRUCTURE
CLASSIFICATION TASKS.

Set Subgroup Group Structure
Train 145161 282213 282213
Test 29032 56442 56442
Validation 19354 37629 37629
Classes 17 20 6
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used to evaluate all models across all classes to choose the
best model.

VI. RESULTS OF PREDICTION ON VALIDATION DATA

As shown in Table II, the KNN classifier performs best
on the validation data in every task. The performance of the
best model from each task on the test data is then evaluated,
with results shown in Table III. The difference between the
average recall and average precision of the subgroup classifier,
about 7%, is the largest such gap of any of the classifiers. The
subgroup, group, and structure classifiers all break 90% for the
macro F1-score, with the structure classifier reaching 98.4%.

The disparity between the smallest and largest classes when
considering the number of training points per class is quite
large, and is reported in detail for the group classification
dataset in Table IV. The class with the most points is olivine,
and the class with the least is wollastonite, which has 99.96%
fewer points than olivine.

The effect of having very few training points on the F1-score
of the model is reported in Figure 1. All classes that achieve
an F1-score lower than 90% have a number of data points
99% lower than the number of data points contained in the
class with the most points. The worst performing model has a
number of data points more than 99.9% lower than the class
with the most points. Interestingly, the class with the fewest
points, wollastonite, achieves a perfect F1-score of 100%. This
is discussed in detail below.

VII. A BRIEF DISCUSSION OF THE RESULTS

As can be seen in Figure 1, it is not true that having
few samples will prevent a model from classifying the class
correctly, but rather that having many samples will increase
the likelihood of high performance on a class. Also, all of the
classes that receive worse than 0.9 as the F1-score have very
few training samples.

The varying F1-scores for the low-sample classes are due to
two factors: the uniqueness of crystal structure and the number
of data-points per class.

Amphiboles and pyroxenes are both inosilicates that differ
in structure, but have similar chemistry (which is the data used
to classify the samples) [14] [26]. If a decrease in accuracy was
solely due to similar chemistry, it would be apparent in these
two classes. This is not the case, as amphiboles and pyroxenes
have approximately the same accuracy, demonstrating that the

TABLE II
THE MACRO F1-SCORE OBTAINED ON THE VALIDATION DATA AFTER

TRAINING EACH ML ALGORITHM ON THE DATA FOR SUBGROUPS,
GROUPS, AND STRUCTURE DATASETS.

Macro F1-score
ML Algorithm Subgroup Group Structure
DecisionTree 88.428 90.905 97.672
KNN 91.084 92.278 98.279
ExtraTree 86.518 87.952 96.695
SVM 86.844 88.421 96.675

TABLE III
THE PRECISION, RECALL, AND F1-SCORE FOR THE BEST CLASSIFIER FOR
EACH TASK FROM SUBGROUP, GROUP, AND STRUCTURE, AS INDICATED IN

TABLE II ON THE TEST DATASET.

Subgroup Group Structure
Metric (KNN) (KNN) (KNN)
Precision 95.327 93.295 97.845
Recall 88.551 92.186 98.994
F1-score 90.764 92.332 98.404

high number of training points allows us to discern one from
another (Figure 1).

Inversely, wollastonite has a far greater F1-score than zeo-
lite. While they both have relatively few training points, they
have drastically different F1-scores. This is most likely caused
by the uniqueness of the wollastonite lattice structure and,

TABLE IV
THE F1-SCORE, TRAINING DATA POINTS, TRAINING DATA POINTS AS A
FRACTION OF THE LARGEST CLASS, AND TRAINING DATA POINTS AS A
FRACTION OF THE MEAN POINTS IN ALL CLASSES, FOR EACH GROUP.

Group F1− |Train| |Train|/ |Train|/
Score(%) Max(Train)% Mean(Train)%

Aenigmatite 92.68 188 00.21 01.33
Amphibole 96.82 12054 13.40 85.42
Analcime 80.00 95 00.11 00.67
Chlorite 92.59 140 00.16 00.99
Clay Mineral 81.08 99 00.11 00.70
Cordierite 98.18 142 00.16 01.01
Epidote 85.39 211 00.23 01.50
Feldspar 99.81 56443 62.74 400.00
Feldspathoid 98.07 1294 01.44 09.17
Garnet 99.62 27471 30.54 194.68
Kyanite Group 95.08 161 00.18 01.14
Melilite 97.08 412 00.46 02.92
Mica 97.53 10870 12.08 77.03
Olivine 99.88 89961 100.00 637.54
Prehnite 96.00 58 00.06 00.41
Pyroxine 99.34 82301 91.49 583.25
Quartz 100.00 113 00.13 00.80
Serpentine 82.93 91 00.10 00.64
Wollastonaite 100.00 36 00.04 00.26
Zeolite 54.55 73 00.08 00.52

10−3 10−2 10−1 100

0.6

0.8

1

Relative Training Points

F1
-S

co
re

Other Groups Wollastonite Zeolite
Amphibole Pyroxene

Fig. 1. The relative number of training data points per each group class
(points in class/max(points in classes)) versus the F1-score of the best model
for the group task (from Table I) on test data.
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therefore, chemical fingerprint. The dichotomy between the
accuracy of the zeolite and wollastonite groups show that sam-
ple count is not the sole indicator for performance of a class.
Wollastonite is the only silicate mineral in the pyroxenoid
group in our dataset. As noted by [27], pyroxenoids have a
unique structure from the pyroxenes and other mineral groups.
This uniqueness is compounded with that fact that ≈40-50%
of wollastonite is captured by CaO in our dataset. This value
is two orders of magnitude larger than any other CaO data-
point in the dataset. It is this uniqueness of wollastonite
that allows us to determine and discern from other silicate
minerals without a robust dataset. As the other members of
this low data-point cluster do not share the same uniqueness
as wollastonite, it can be observed that their low sample count
hinders their accuracy. Zeolites in particular suffer from this
issue. Zeolites accept a far greater range ion exchange then that
of wollastonite [12]. This wide range of chemical impurities
decreases the uniqueness of zeolites.

The reasoning for the difference between wollastonite and
zeolite holds for the other groups with relative training points
less than 10−2, demonstrating that with a low number of
relative training points, a mineral’s lattice structure dictates
the accuracy.

VIII. IMPROVING GROUP AND SUBGROUP PREDICTION

The silicate structural groups and mineral groups provide
explicit divisions to create subsets of the data, and we aim
to leverage this knowledge to improve classification results
for the group and subgroup classification tasks. In order to
utilize these divisions to attempt to improve the classifications
of mineral groups, a high performing classifier of structural
class, say S, is used. For a given data point v, which is
a vector of elemental weights, the probability vector that is
the output of S(v) is appended to the end of v. This is the
initial augmentation step. At this point, a classifier is trained to
classify mineral groups using the augmented data points. The
structural classifier S is chosen based on the average top-3
recall rather than the F1-score in order to increase the chances
that the correct class is indicated strongly in the probability
vector returned by S(v), even if it is not the highest value in
the vector. This choice was supported when testing using a
subset of the data for the augmented group classification task.
The results are omitted for brevity. In this way, additional
data that the model can use to separate the various classes is
explicitly provided by leveraging domain specific knowledge.
The use of multiple models is an adaptation of ensemble
learning, which demonstrated success in [6]. The macro-F1
metric is used to evaluate the resulting models across all
classes in order to choose the best model to use on the test
data for each task.

IX. RESULTS OF PREDICTION USING AUGMENTED
MODELS

The best models for the group and structure tasks, as eval-
uated by the top-3 recall metric, are both the KNN classifiers.

This is shown in Table V. These are also the best models as
evaluated by F1-score, shown in Table II.

The results of evaluating (on the validation data) the best
models for the subgroup and group tasks, trained with data
augmented by the best top-3 models, are displayed in Table VI.
The change in F1-score from the old models to the new models
is also displayed. The best models are KNN for both subgroup
and group. The KNN subgroup classifier has a higher F1-
score than the best models from the non-augmented training,
while the new group classifier performs worse. The largest
improvement for both the subgroup and group models is in
the SVM, with an improvement of over 3% in both cases.
All subgroup models showed improvement, while only the
ExtraTree and SVM were improved of the group classification
models, while the KNN group model F1-score and the decision
tree F1-score decreased by 0.029% and 2.046%, respectively.

When evaluated on the test data, both the subgroup and
group models performed worse across precision, recall, and
F1-score than the non-augmented methods, as shown in Table
VII. The F1-score for the subgroup model decreased by
just under 0.06%, while the F1-score for the group model
decreased by more than 2%. This is also shown in Table
VII. The greater decrease in accuracy from the group model
reflects the worse performance on the validation set. The only
subgroup classes that performed worse in the new model
were clinopyroxene, kaersutite, and phlogopite, by -0.004%,
-1.001%, and -0.007%, respectively.

The per-class change in F1-score is displayed in Figure 2
for the groups only, as this experienced the larger decrease.
The classes experience both increases and decreases in F1-
score. The largest increase of just under 10% is for Analcime,
the worst performing class in the original model. The largest

TABLE V
TOP-3 RECALL OF THE CLASSIFIERS SHOWN IN TABLE II (EVALUATED ON

THE VALIDATION DATA) FOR GROUP AND STRUCTURE CLASSIFICATION.
THE BEST RESULTS ARE IN BOLD.

Top-3 Recall (%)
Task Group Structure
DecisionTree 93.168 98.860
KNN 97.883 99.770
ExtraTree 88.466 97.427
SVM 97.179 99.568

TABLE VI
THE RESULTS OF EVALUATION ON THE VALIDATION DATA AFTER

TRAINING THE SUBGROUP AND GROUP CLASSIFIERS ON THE DATASET
AUGMENTED WITH THE HIGHEST TOP-3 RECALL FROM THE PREVIOUS
CLASSIFIER. ”CHANGE” INDICATES THE CHANGE IN ACCURACY FROM

THE CLASSIFIERS TRAINED WITH THE ORIGINAL DATA TO THOSE TRAINED
WITH THE AUGMENTED DATA. THE BEST RESULTS ARE IN BOLD.

SubGroup (%) Group (%)
ML Algorithm Macro F1 Change Macro F1 Change
DecisionTree 89.286 0.858 88.860 −2.046
KNN 91.107 0.023 92.249 −0.029
ExtraTree 86.888 0.370 88.765 0.813
SVM 90.255 3.411 91.778 3.358

15Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences



TABLE VII
THE RESULTS OF RUNNING THE BEST CLASSIFIERS (AS INDICATED IN

TABLE VI) ON THE TEST DATASETS AFTER AUGMENTING THEM WITH THE
PROBABILITIES FROM THE CLASSIFIERS WITH THE HIGHEST TOP-3
RECALL. AVERAGE PRECISION, RECALL, AND F1-SCORE OVER ALL

CLASSES ARE REPORTED.

SubGroup (%) Group (%)
Metric KNN Change KNN Change
Precision 95.204 −0.123 92.057 −1.237
Recall 88.546 −0.005 90.462 −1.724
F1-score 90.705 −0.060 90.302 −2.030

decrease of just over 25% is for wollastonite. Zeolite also
experienced a substantial decrease in F1-score, of over 10%.
All three of the most affected classes had less than 1% of the
mean points in all group classes used for training (Table IV).

X. DISCUSSION OF THE RESULTS OF THE AUGMENTED
MODELS

The F1-scores from training with the augmented data were
higher for several of the classifiers than those from the original
models on the validation data for both the subgroup and
group tasks, which shows promise for the method. However,
the results on the test data were worse in both cases, which
indicates that there are considerable improvements to be made
before this technique can be viable. The ultimate decrease
in accuracy for the KNN classifiers and the large increases
shown by both SVM classifiers are likely due to the increase
in dimensionality of the feature vectors. This increase, which
is caused by augmenting the vectors with the data regarding
either the structure or group classification, could be mitigated
by the use of some dimension-reducing method, such as
Principal Component Analysis (PCA) [28]. The changes of
the group classification results are discussed in depth, as
the changes are much larger than those for the subgroup
classification.

The groups whose performance improves by more than
0.1% after augmentation are serpentine, cordiedite, aenig-
matite, analcime, epidote, and the kyanite group. These im-
provements are likely a result of the new model, as the

Fig. 2. The difference in classification F1-score from the original Group
classifier to the Group classifier with structure data. Higher indicates better
performance from the Group classifier with structure data.

train, validation, and test datasets are all constant between
experiments. These mineral groups are from different struc-
tural sub-families, which disallows the possibility of crystal
lattice structures dictating the change in performance after
augmentation. The groups whose F1-scores decrease after
augmentation are also from different structural subfamilies,
maintaining this pattern.

Wollastonite and zeolite experience the most significant
decrease in performance, and have the fewest and fourth fewest
training points of all classes, respectively (Table IV). The
low point count contributes to this observed performance loss.
Additionally, the other groups that lose performance all have
point counts less than 100, which is 7% of the mean points
per class and 0.12% of the max point in any class. Also,
by augmenting the feature vectors with resulting structural
predictions, the uniqueness of the wollastonite samples that
allowed them to perform well with few training samples may
be reduced. The inverse holds for groups with a point count
greater than 100. Mineral groups over this relative point count
either experience very little change, or a notable increase
in F1-score. This coupling between low point counts and a
decrease in performance after augmentation leads us to believe
that one can successfully apply structure augmentation to
groups with high counts of relative training points.

XI. CONCLUSION AND FUTURE WORK

Previously, [5]–[7] demonstrated success using ML as a tool
for mineral identification. We have expanded on their ideas
by not only using a larger dataset of silicate minerals, but
by being able to identify more classes at the same level of
accuracy as the studies before us. We also note that although
we have created the most extensive silicate mineral classifiers
to the best of our knowledge, classes with fewer instances
could still be improved. This leads us to believe that the
development of future models that incorporate even more data,
along with deeper structural information, will perform even
better. Additionally, the use of methods to create synthetic data
to balance the classes could be beneficial in future efforts. It
is also anticipated that the use of dimension reduction will
greatly improve classification results. To aid in the collection
and development of the models, we will be offering free use of
these models through a website [29], and the ability to upload
labeled data to improve the model.
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