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Abstract—In this paper, the electrochemical alkaline methanol
oxidation process, which is relevant for the design of efficient fuel
cells, is considered. An algorithm for reconstructing the reaction
constants for this process from the experimentally measured
polarization curve is presented. The approach combines statistical
and principal component analysis and determination of the trust
region for a linearized model. It is shown that this experiment
does not allow one to determine accurately the reaction constants,
but only some of their linear combinations. The possibilities
of extending the method to additional experiments, including
dynamic cyclic voltammetry and variations in the concentration
of the main reagents, are discussed.

Index Terms—modeling of complex systems; observational data
and simulations; advanced applications; mathematical chemistry.

I. INTRODUCTION

Fuel cells are environmentally friendly portable energy
sources based on obtaining electricity as a result of electro-
chemical reactions. They are similar to galvanic cells; the
difference is that the main reagents in fuel cells can be
replenished many times. Among fuel cells, a special group
is formed by the so-called direct fuel cells, in which the
intermediate stage of the production of gaseous hydrogen is
omitted and the oxidative reaction proceeds directly. In fact,
this is the same combustion reaction, but here the energy is
released not in the form of heat or mechanical pressure of gas,
but in the form of electric power. Among the various fuels
in such cells, the most common are alcohols, methanol and
ethanol. We consider the methanol oxidation reaction to reduce
the number of intermediate reagents for modeling. Although
acidic reactions are easier to model and have been well studied,
they rely on the use of expensive noble metal electrodes. The
alkaline environment allows the use of cheaper materials for
the production of electrodes.

The main problem for the analysis of electrochemical alka-
line methanol oxidation is the large number of intermediate

reagents and reactions, as well as the fact that the elementary
reaction constants are not known a priori, and they must be
reconstructed from the experiment. Moreover, such quantities,
as surface coverages of the electrode, are experimentally not
measurable and require mathematical modeling. The challenge
here is to consider the systems of differential-algebraic equa-
tions of high dimension. Additional complication comes from
the stiffness of the system: some components evolve much
faster than others. There are also slow reactions that inhibit
the entire process and lead to the unattainability of a stationary
state and hysteresis effects in the current-voltage dependence.

In this paper, we continue our research on mathematical
modeling of alkaline methanol oxidation in the context of
design of efficient fuel cells. A detailed description of the
mathematical model is given in our previous paper [1]. In our
other papers, a model reduction [2] of the system from Or-
dinary Differential Equations (ODE) to Differential-Algebraic
Equations (DAE) was performed; a chemical interpretation for
hysteresis effect [3] in dynamics of the system is presented;
a footprint of the dynamics in the form of electrochemical
impedance spectrum [4] was analyzed. Our papers extend the
approaches of [5]–[8] for analysis of this and analogous elec-
trochemical processes, paying more attention to mathematical
aspects of the problems. We use the electrochemical measure-
ment methodology from [9]. We also use general methods of
model data analysis [10], most of which are implemented as
ready-to-use procedures in the system Mathematica [11].

The main goal of the experiments under consideration is the
reconstruction of the reaction constants describing the under-
lying electrochemical processes. Note that the reconstructed
values of the constants for alkaline methanol oxidation are
given in [1]. The main purpose of this work is to estimate the
reconstruction accuracy of the reaction constants.

In Section II, an overview of the mathematical model
of the reactions in alkaline methanol oxidation is given. In
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Section III, the method of statistical and principal component
analysis for estimating the reconstruction accuracy of the
reaction constants in the considered process is presented.
Section IV summarizes the obtained results.

The experimental measurements used in this paper were
carried out by our colleagues at INES / TU Braunschweig
[1]–[4].

II. THE MODEL

Figure 1a shows the chemical reaction network under con-
sideration. Figure 1b shows an experimental setup containing
an evacuated teflon cell with a rotating electrode. A detailed
description of reactions and setup can be found in [1]. In the
experiments, the voltage η in the cell changes along a certain
profile, and the current Icell through the cell is measured. In
particular, Cyclic Voltammetry (CV) experiments use a saw-
like voltage profile shown in Figure 1c.

The resulting cell response is shown in Figure 2a. Note
that at low voltage values, the profiles for the increasing and
decreasing half-cycles of the saw run approximately along the
same curve. In this zone, the reagents are in equilibrium,
their concentrations depend only on the voltage, following
the so-called Polarization Curve (PC). At higher voltages, a
new reagent is formed. Its reactions are slow, as a result, the
equilibrium is disturbed, a delay appears in the response of
the system, and a characteristic hysteresis is formed on the
CV-plot.

The evolution of the system is described by ODE of the
form

dθi/dt = Fi(θ, η), i = 1..6, Icell = F7(θ, η), (1)

where θi ∈ [0, 1] are surface coverages for 6 reagents. The
right-hand sides of the equations are polynomials in θi, the
exact form of which is given in [1]. Some monomials corre-
sponding to electron exchange reactions have an exponential
voltage dependence. The purpose of the experiments is to
reconstruct the reaction constants ki, which are the coefficients
of the monomials in the given model. In total, there are 14 re-
action constants for the considered system of reactions. In the
normalization used in [1], the reaction constants are measured
in [mol/(m2s)], while their numerical values vary over a wide
range. Therefore, it is convenient to use the decimal logarithms
of the reaction constants as model parameters: pi = log10 ki.

III. STATISTICAL AND PRINCIPAL COMPONENT ANALYSIS

In this work, we will consider the PC-part of the CV-curve,
shown in detail in Figure 2b. In this part, the state of the system
can be considered stationary, and the terms with derivatives in
(1) can be omitted. As a result, a closed polynomial system
on θi is formed, which can be solved. The obtained θi as a
function of voltage can be substituted into the expression for
the current, resulting in a model response function Icell =
f(η, p). In Figure 2b, the red curve corresponds to the model,
and the blue dots to the measured values. It can be seen that
the model reproduces the experiment very well.

For reconstruction in [1], a fitting procedure is used that
minimizes the sum of the squares of the deviations of the
model from the values measured in the experiment:

L2
2 =

∑
i(f(ηi, p)− fexp,i)2. (2)

The p-values obtained at the minimum point represent the
reconstructed reaction constants. The accuracy of the recon-
struction is determined as follows [10]. At the minimum, the
sensitivity matrix X and related matrices are determined:

Xij = ∂f(ηi, p)/∂pj , cov = ε2(XTX)−1 (3)
σi = (covii)

1/2, corrij = σ−1
i covij σ

−1
j , (4)

the covariance matrix cov, the diagonal values of which
determine the standard deviations of the parameters σi, and
the correlation matrix corr. The value ε appearing in the
definitions represents the estimate of the experimental data
error fexp,i, calculated by the formula ε2 = L2

2/Ndof , Ndof =
Npt −Npar. Here, Npt is the number of experimental points,
Npar is the number of model parameters, Ndof is the number
of degrees of freedom for a fit, in our case:

Npt = 21, Npar = 14, Ndof = 7, (5)
L2
2 = 2.08 · 10−9A2, ε = 1.72 · 10−5A. (6)

The obtained small value of ε corresponds to the good quality
of the fit. In fact, this value corresponds to the size of the dot
on the graph Figure 2b.

In the case when the parameter errors are large and highly
correlated with each other, Principal Component Analysis
(PCA) must be performed to interpret the result. The con-
fidence region in parameter space is an ellipsoid that can
be stretched in some directions and compressed in others.
In stretched directions, measurements have a large error, in
compressed directions – small one. The values and directions
of the semi-axes of the ellipsoid can be determined using
Singular Value Decomposition (SVD) of the sensitivity matrix:

X = uλvT , uTu = 1, vT v = vvT = 1, ak = ε/λk. (7)

Here, the matrix X is Npt×Npar rectangular, u is Npt×Npar

semi-orthogonal, λ is Npar×Npar diagonal, v is Npar×Npar

orthogonal. The ak values represent the semi-axes of the error
ellipsoid. The columns of the v matrix (or the rows of the vT

matrix) represent the directions of the axes of the ellipsoid
in the parameter space, while the columns of the u matrix
represent the profiles of the principal components in the space
of experiments. Figure 2d shows such profiles for the first four
components, in red-green-blue-cyan order for ui,1−4. These
profiles show the variation of PC curve when the parameters
are displaced along the axes of the error ellipsoid.

Note: addressing the question, why we choose PCA
for the analysis, and not another factorizing method, e.g.,
Independent Component Analysis (ICA) or Curvilinear Com-
ponent Analysis (CCA), etc. These methods are very close
to PCA, and ICA even uses SVD in the main phase of
the computation, so called signal whitening. However, these
methods belong to different fields of application; ICA is used
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Fig. 1. (a) network of chemical reactions, (b) experimental setup, (c) saw-like voltage profile. Images from [1], [2].

Fig. 2. (a) CV plot with selected PC part, (b) fit of PC curve by the model, (c) sensitivity analysis, (c) principal component analysis (for color coding see
main text).

TABLE I
PARAMETER CENTRAL VALUES AND TRUST REGION OF LINEAR MODEL

pj 0.949 -4.5 0.398 -0.563 4.72 -3.46 0.352 -0.101 1.2 -8.66 1.89 -1.08 -1.72 -7.82
dpj 0.3 0.1 0.3 0.4 1.5 0.1 0.1 0.06 0.1 0.1 0.08 0.2 0.15 0.15

TABLE II
RESULTS OF PRINCIPAL COMPONENT ANALYSIS

λk, A ak vjk
8.12 · 10−3 2.12 · 10−3 −0.531 0.014 0.461 −0.459 0.140 −0.013 −0.007 0 0 0 0 −0.522 0.032 −0.032
1.21 · 10−3 1.43 · 10−2 0.396 −0.159 −0.251 0.250 0.214 −0.010 −0.018 0 0 0.002 0 −0.769 0.167 −0.167
2.71 · 10−4 6.36 · 10−2 −0.078 0.639 −0.052 0.058 −0.402 0.065 −0.065 0 0 0.004 0 −0.052 0.451 −0.451
1.24 · 10−4 0.139 −0.066 −0.711 0.091 −0.074 −0.191 −0.058 0.066 0 0 −0.014 0 0.197 0.443 −0.443
7.79 · 10−6 2.21 0.305 −0.063 0.211 −0.123 −0.728 −0.290 0.277 0 −0.001 −0.113 0 −0.234 −0.206 0.206
5.1 · 10−6 3.38 0.546 0.214 0.540 −0.152 0.408 −0.204 0.205 0 0 −0.056 0 0.192 0.160 −0.160
8.51 · 10−7 2.02 · 101 0.315 −0.066 0.148 −0.264 −0.163 0.336 −0.449 0.001 0.032 0.679 −0.003 −0.010 −0.033 0.033
1.69 · 10−7 1.02 · 102 0.033 −0.083 0.508 0.459 −0.114 0.441 −0.349 −0.001 −0.029 −0.434 0.003 −0.033 −0.046 0.046
2.52 · 10−8 6.84 · 102 0.240 −0.003 −0.304 −0.617 −0.003 0.439 −0.030 −0.003 −0.080 −0.518 0.012 0.021 0.013 −0.013
7.81 · 10−9 2.21 · 103 0.047 −0.001 −0.075 −0.135 0.004 −0.582 −0.722 0.008 0.212 −0.257 −0.039 0.031 0.004 −0.004
5.92 · 10−10 2.91 · 104 0 0 −0.002 −0.002 0 −0.165 −0.159 −0.037 −0.972 0.022 0.002 0.007 0 0
9.35 · 10−13 1.84 · 107 0 0 0 0 0 0.024 0.024 0.485 −0.028 0 −0.874 0 0 0
3.38 · 10−13 5.09 · 107 0 0 0 0 0 0.014 0.014 −0.874 0.028 0 −0.485 0 0 0

0 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0.707 0.707
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to separate independent sources in signal processing, while
CCA is a method of non-linear dimensionality reduction.
PCA and the underlying spectral decomposition are general
statistical methods for data analysis. Here, we only need to
perform a statistical analysis of the measurement errors, for
which the standard PCA method is best suited.

Details of implementation: it is recommended in [10] to
use the formula (3) when there is no independent estimate
of measurement errors. In this case, the measurement error is
obtained from the χ2-criterion. Assuming the same error for
all measurements, one has χ2 = L2

2/ε
2, in case of a good

fit, χ2 = Ndof is fulfilled; from here one can find ε. The
geometric meaning of this definition is that for a good fit the
deviations of the experimental points from the model can be
considered appearing due to a random measurement error, and
the standard deviation of such a variation characterizes this
error. The term Ndof = Npt − Npar in the denominator of
this definition, instead of the traditional Npt − 1, takes into
account the influence of the fit parameters, which take on a
part of the experimental scatter.

The sensitivity matrix is determined using finite difference
schemes of the form

X+
ij = (f(ηi, p+ dp(j))− f(ηi, p))/dpj , (8)

X−
ij = (f(ηi, p)− f(ηi, p− dp(j)))/dpj , (9)

Xij = (f(ηi, p+ dp(j))− f(ηi, p− dp(j)))/(2dpj), (10)

where X±
ij – forward/backward, Xij = (X+

ij + X−
ij )/2 –

central difference scheme. Here, dp(j) = (0, ..., dpj , ..., 0)
represents a vector with non-zero entry on j-th place. Such
derivatives, for j = 1, are shown in Figure 2c, red line
for central, green/blue lines for forward/backward schemes,
respectively. More precisely, up to the next order, is the central
difference scheme, which should be taken as the final answer.
Other profiles are needed to evaluate the non-linearity of the
function. Indeed, for linear functions, all these three profiles
coincide, and their deviation from each other is a measure of
non-linearity. In practice, we adjust the dpj variation so that
the curves deviate from each other by ∼ 20%. This analysis
is performed for all j; the results are shown in Table I. Such
variations define a box-like trust region where a linear model
can be applied.

Another detail is the presence of failures in the definition
of the model function. Since this definition uses the solution
of a high degree polynomial system, the applied numerical
procedures can lose solutions sometimes. Such failures are
rare, estimated in ∼ 0.5% cases. However, this is sufficient
to destabilize the automatic minimization procedures, with
the result that achieving the true minimum is not guaran-
teed. The methods described in [1] help in this situation,
including finding the starting point manually and applying
random search with discarding the failed cases. Automatic
minimization algorithms were applied to the resulting starting
points, which slightly improved the objective function. Finally,
we made sure visually and by formal ε-criterion that the fit
has a good quality. Since the failures also occur when using

finite-difference schemes, some of the dpj parameters required
fine tuning to completely eliminate the failed cases.

The next surprise was the degeneration of the matrix XTX ,
which makes the usage of the formulas (3), (4) impossible.
The degeneration is seen in Table II, where the last row has
a zero eigenvalue. The eigenvector for this value corresponds
to the simultaneous variation of the parameters δp13 = δp14.
Formally, this direction corresponds to the infinite scatter ak,
meaning that it is impossible to measure the corresponding
linear combination of constants. Indeed, a detailed analysis of
the model given in [1] shows that such a variation corresponds
to the exact symmetry of the system and does not change
the observed values. In fact, the system depends only on the
difference between the logarithmic parameters p13 − p14, or,
in the original notation, on the ratio of the corresponding
reaction constants. This symmetry takes place only for a
stationary system on the PC-part of the CV-curve. Dynamics
can break this symmetry and make these constants individually
measurable.

Further, in Table II, the first three lines correspond to the
variation ak that is located within the previously defined trust
region of the linear model. The fourth line is also located in
the trust region, with a tension. The following directions are
outside of the trust region. Thus, the first four directions appear
to be measured more or less accurately, while the rest of the
directions have too large scatter. This conclusion is the main
result of the PCA.

Note that the determination of the covariance and correlation
matrices in this problem becomes meaningless. The point is
not only that the sensitivity matrix is formally degenerate.
There are many directions along which the error ellipsoid is
strongly stretched, in the projections on axes of the initial pa-
rameters giving very large errors, strongly correlated between
different parameters. It is PCA/SVD method that sheds light on
the structure of solutions in the problem under consideration.

To improve the obtained result, in addition to considering
the complete dynamic problem, other experiments can be
included in the analysis. In particular, the experiments with
variations of the volume concentrations of the main reagents
c1,2 can be used. These concentrations enter polynomially in
the model [1], and accordingly extend the model response
Icell = f(η, c1, c2, p) and the sensitivity matrix X . The
reconstruction accuracy for such an extension can be analyzed
using the general methodology described here.

Implementation in Mathematica: we use Mathematica
[11] for the calculations described above. The NSolve
method is used to solve a stationary polynomial system; for
the obtained set of solutions, real roots are selected from the
interval θi ∈ [0, 1]. The system also has a spurious solution
(θi = δi4, Icell = 0), which also needs to be removed.
As a result of numerical instabilities, with these selections,
the roots sometimes disappear, leading to the aforementioned
failures of the algorithm. To solve the dynamic system,
NDSolve method is used, able to integrate both ODE and
the partially reduced DAE system [2]. Systems are highly
stiff and the integration algorithm also fails sometimes. In
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the fitting algorithm [1], to select the starting point, the
interactive configuration tool Manipulate is used. After
that, we used automatic methods for minimizing the L2-
norm, local FindMinimum and global NMinimize. In this
work, we have used NonlinearModelFit, which provides
a convenient interface to the same optimization methods. The
differentiation algorithm requires setting up finite-difference
schemes, which can be passed to the fitting method via the
Gradient option. Further, the calculation of the covariance
and correlation matrix turns out to be impossible due to the
degenerations described above. At this point, the standard
computation should be replaced with PCA using the available
method SingularValueDecomposition.

IV. CONCLUSION AND FUTURE WORK

We considered an algorithm for reconstructing the reaction
constants from the experimentally measured polarization curve
for the electrochemical alkaline methanol oxidation process.
Our approach combines statistical and principal component
analysis. We define formal criteria for reconstruction accuracy
based on the estimate of the trust region for the linearized
model. As a result of the analysis, it turned out that the
described experiment does not make it possible to determine
precisely all 14 reaction constants, but only 4 their certain lin-
ear combinations. Of the remaining orthogonal combinations,
one corresponds to the symmetry of the stationary system and
is fundamentally indeterminate in the described experiment.
The remaining 9 combinations have insufficient reconstruction
accuracy. To improve this result, other experiments should
be involved in the analysis, including fully dynamic cyclic
voltammetry and variations in the concentration of the main
reagents. We are going to expand the developed methodology
for additional experiments elsewhere.
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