
Speeding Up the Recommender Systems by Excluding the
Low Rated Items

Yousef Kilani

Faculty of Prince Al-Hussein Bin Abdallah II for Information Technology, Hashemite University,
Zarqa, Jordan

Email: ymkilani@hu.edu.jo

Abstract—Recommender systems (RSs) have become an impor-
tant tool to help users in searching for their favorite items in many
real life applications. A Collaborative Filtering is a commonly
used technique in RS. In order to recommend items to the
active user (the user we want to make recommendation for),
collaborative filtering-based RS uses similar users to the active
user and/or latent factor techniques. In our project, we show that
excluding the items I that have not been rated high by any user
speeds up the recommendation process and gives better accuracy,
precision, and recall. The RSs recommend the items that have
been rated high by the similar users to the active user. No item
from I has been rated high by the similar users and, hence, will
not be recommended to the active user. As far as we know, there
is no similar work in the literature.

Keywords–collaborative filtering; recommender systems; speed;
low rated items.

I. INTRODUCTION

Recommender systems (RSs) reduce the time users spend
while choosing an item in a supermarket, shopping mall,
movie shops, songs shops, travel agency, a book in book
store etc. While selecting any item, people usually ask others
who chose an item from the same category for a recom-
mendation. Currently, the number of items in any category
is increasing tremendously and the user has more and more
number of choices which makes him confused of which item
to choose. Currently, the fast increase of Web 2.0 has led
to the proliferation of collaborative websites in which the
number of elements that can be recommended (e.g., blogs)
can increase significantly when introduced (and not voted)
by the users, which generates new challenges for researchers
in the field of RSs [1]. RSs are currently being applied in
many different domains [2]. Because of the great important
of RSs, it is interesting to note that an improvement of
10% recommendation accuracy was awarded with 1 million
US dollars [3]. Applications of RSs include: DVD rental
provider Netflix [4], the online book retailer Amazon [5],
Album Advisor [6], the advisore at the Drugstore [7], the RS
for the purchase in eBay [8], an e-learning context [9], e-
commerce [10], music recommendation [11], healthcare [12],
document recommendation [13][14], stock prediction in the
PredictWallStreet company [15], recommending personalised
news [16] and e-government [17].

The unnecessary items are the items which have not been
rated high by any user. In this research, our interest is in
speeding up the RSs by obtaining better precision, accuracy,
and recall by excluding the unnecessary items. If the active
user A is similar to user B, then the Collaborative Filtering

(CF)-based RSs recommend the items to B which have been
rated high by A. In other words, the RS will not recommend
the items which have not been rated high by user A.

The rest of this paper is organized as follows. We start by
introducing the RSs in Section II followed by Section III which
shows the related work. Section IV presents our new idea. We
incorporate our idea into the Navgaran et al.’s algorithm [18]
and we show experimentally the results of the new algorithm
using MovieLens dataset in Section V. The last section gives
the concluding remarks.

II. THE RECOMMENDER SYSEMS

We can categorise RSs based on the filtering methods
into four categories: collaborative [19], content [3][20][21],
demographic filtering [22], and hybrid [23][24]. Kilani et al.
[25] mentioned that, currently, CF is probably the most known
and commonly used recommendation approach in RS [26]. CF
is an excellent method for recommendation systems and its
core scheme is to calculate the relation among the products
and users based on preferences [27]. Two users are similar if
they rated a set of items nearly the same.

The CF-based RSs uses either the Neighbourood (NM)
[28] or the Model (MM) [29] methods. In the NM, the RS
makes recommendation for the active user by finding the users
who are similar to this user and then recommending the items
which were rated high by these users. The user-based CF
RS assumes that if two users A and B rated a set of items
similarly and A rated a set of other items, x, high then most
probably B will rate x also high. Hence, this RS recommends
x for B. In the MM, the RS uses the models to recommend
items for the active user. The models learn using supervised
or unsupervised learning methods to make recommendation.
Examples of these models are: Bayesian hierarchical, cluster-
ing, and Latent Factor (LFM). Kilani et al. [25] mentioned
that Matrix Factorization (MF) methods have recently received
greater exposure mainly as an unsupervised learning method
for latent variable decomposition and dimensionality reduction
[29].

Lu et al. [30] mentioned that content-based RSs try to
recommend items similar to those a given user has liked in
the past [31]. These RSs compare between the content of the
items the active user rated high and the new items which are
considered for recommendations. They then recommend from
the new items, those that are most similar to the items which
have been rated high by the active user.

The demographic-based RSs recommend items for the
active user based on the demographic data like: age, gender,

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-677-4

ADVCOMP 2018 : The Twelfth International Conference on Advanced Engineering Computing and Applications in Sciences

race, place, material status, education level, etc. This data can
be leveraged to power the RSs and hence to improve the
accuracy of these RSs.

The hybrid RS merges any two or three techniques of
the previous three categories (for instance, see [23][24][30]).
Kilani et al. [25] mentioned that MF methods have recently
received greater exposure mainly as an unsupervised learning
method for latent variable decomposition and dimensionality
reduction [29].

III. RELATED WORK

This section presents the related works that have been done
to speed up the RSs.

Boim [32] built new techniques to boost CF based RS.
Boim focuses on four challenges: improving the quality of
the prediction, creating new methods to choose items from the
recommended items to the user, improving the efficiency of the
CF algorithms and related data structures, and incorporating
recommendation algorithms in different application domains.

Bachrach et al. [33] introduced a novel order preserving
transformation in order to match the inner product between the
active user and the items in the matrix factorization technique
to Euclidean space nearest neighbor search problem. Our final
solution is based on a novel use of the Principal Compo-
nent Analysis (PCA)-Tree data structure in which results are
augmented using paths one hamming distance away from the
query (neighborhood boosting). The end result is a system
which allows approximate matches (items with relatively high
inner product, but not necessarily the highest one) [33].

Formoso et al. [34] showed how compression techniques
using coding techniques from Information Retrieval reduces
the size of the rating matrix (up to 75 %) and hence speed up
(almost doubling) recommendations.

IV. PROPOSED METHOD

This section presents the details of our proposed method.
Each user gives a rate of 1, 2,..., or 5 to any item in the system.
The higher the value indicates that the user prefers this item
more; 1 is the lowest and 5 is the highest. Our idea states
that the RS recommends items that have been rated high by
similar users to the active user. Therefore, if an item has not
been rated high by any user, including the similar users, then
no need to consider this item in the recommendation process.
This improves the RSs’ accuracy. We show in Section V that
we may exclude the items which has not given any rate greater
than 2, 3, 4, or 5. Our idea can be implemented by any RS.

V. EXPERIMENTS

We have incorporated our idea into the Navgaran et al.’s
algorithm [18] (NA). We have chosen NA since we have
implemented its source code while experimenting with other
researches. We experiment in this section the results of NA
after excluding the items which have not given a rate value
greater than or equal to 1, 2, 3, or 4 by any user. We name
the new algorithm after excluding items, NAO. We use the
MovieLens (downloadable from [35]). MovieLens has 943
users and 1682 movies. It has 100,000 ratings, each from 1-5.
Each user has rated at least 20 movies. In our experiments, we
used the Visual Basic programming language [36], the Process
Explorer Software to measure the CPU time, and 8-GB-RAM
i7 PC.

TABLE I: THE NUMBER OF EXCLUDED ITEMS WHEN minRate =

1, 2, 3, 4, and 5.

minRate Number of Excluded Items (Number of Excluded Items)/
(Total Items) X 100%

1 0 0%
2 70 0.04%
3 108 0.06%
4 235 0.14%
5 510 0.3%

We split the items into two parts: training data and testing
data. We used 80% of the items as training data. The remaining
20% of the items are used for testing. The 20% of the whole
items are different for each users. To do so, we pass by every
user, we choose randomly 20% of the items that he/she rated
and we consider them as not rated.

We ran NA and NAO for 100 times for each user and
we take the average of the 100 runs. We used the default
parameters of the NA: mutation rate = 0.3, number of latent
features = 6, number of generations = 200, crossover rate is
equal to 0.8, population size = 50, α = 0.0002, and β = 0.02.
We calculated the Mean Absolute Error (MAE) in the same
way as calculated by Navgaran et al. [18].

Table I presents the number of excluded items and the
percentage of the excluded items to the total items when
excluding the items which have not given any rate greater than
(minRate) 1, 2, 3, 4, or 5. The percentage of the excluded
items is equal to (number of excluded items)/(total number of
items) X 100%. For instance, the number of excluded items
and the percentage of the excluded items to the total items
when minRate = 3 are 108 and 0.06 respectively. This means
that there is no need to consider 108 items while searching
for items to recommend to any active user since there is no
any user gave any of these items a rate value of 3 or more. In
other words, no any user gave a high rate to any of these items
and hence NAO will not recommend any of these items to the
active user. It is clear in Table I that the number of of excluded
items and the percentage of the excluded items are increased
as the minRate increased. This happens since the number of
items which has not given any rate greater than or equal to 1,
2, 3, 4 is less than the number of items which has not given
any rate greater than or equal to 2, 3, 4, 5 respectively.

Tables II and III present the results of NAO and NA
respectively. They show the average CPU time in seconds,
MAE, accuracy, precision, and recall. In Table II, we excluded
the results of NAO when minRate = 5 since it happens that
many users will not have similar users and NAO cannot give
recommendations for the users who has no other similar users.

It is clear from Table II that the average times in seconds
taken are decreasing slightly when minRate increased from
1 to 4. The MAE is decreasing as the minRate increased.
This happens since the number of items is decreased. The
accuracy is increased as the minRate increased since reducing
the number of items reduces the search space and hence NAO
needs to search fewer number of items as minRate increased.
There is a slight change in the precision as the minRate
increased. The recall is increased as minRate increases from
1-3. After that the recall is decreased as minRate is increased
to 4.

Tables II and III show that the average CPU time taken by

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-677-4

ADVCOMP 2018 : The Twelfth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE II: THE RESULT OF RUNNING NAO.

minRate Avg. Time(s) MAE Accuracy Precision Recall

1 2,775 2,866,456 0.6 0.67 0.8
2 2,679 2,825,625 0.64 0.6 0.93
3 2,685 2,805,111 0.73 0.71 0.96
4 2,652 2,794,745 0.87 0.7 0.87

TABLE III: THE RESULT OF RUNNING NA.

Avg. Time(s) 2,962
MAE 2,781,442
Accuracy 0.5
Precision 0.4
Recall 0.75

NA (2,962s) is greater than the average CPU time taken by
NAO for any value of minRate. In addition, it shows that the
accuracy, precision, and recall of NAO are better that of NA
for any value of minRate. But, the MAE of NA is less than
the MAE of NAO for for any value of minRate. This happens
since we have excluded some items and the MAE computed
the actual difference between the actual rate and the expected
rates.

VI. CONCLUSION AND FUTURE WORK

In this paper, we showed that if an item has not been
rated high by any user, then no need to consider this item in
the recommendation process. This reduces the time taken for
the recommendation process and results in a better accuracy,
precision, and recall values. We have proven this idea by
incorporating it into Navgaran et al.’s algorithm [18] and
testing it using the MovieLens dataset.

Nowadays, the RSs are overloaded with huge number of
users and items. Therefore, further research is needed to reduce
the number of items and users and to heuristically search
for the recommended items in order to enable the RSs give
recommendation in a short time.

ACKNOWLEDGMENT

Special thanks to my university, Hashemite University, for
providing me the environment to do this research, department
head, and my colleagues for their continuous encouragement.

Hashemite University supported us by a research grant to
do this research.

REFERENCES

[1] J. Bobadilla, F. Ortega, A. Hernando, and J. Alcala, “Improving col-
laborative filtering recommender system results and performance using
genetic algorithms,” Journal of Knowledge-Based Systems, vol. 24,
2011, pp. 1310–1316.

[2] P. Moradi and S. Ahmadian, “a reliability-based recommendation
method to improve trust-aware recommender systems,” Journal of
Expert Systems with Applications, vol. 42(21), 2015, pp. 7386–7398.

[3] X. Yang, Y. Guo, Y. Liu, and H. Steck, “A survey of collaborative
filtering based social recommender systems,” Journal of Computer
Communications, vol. 41, 2014, pp. 1–10.

[4] “http://www.netflix.com,” 2018, URL: [accessed: 2018-10-11].
[5] “amazon,” 2018, URL: http://www.amazon.com [accessed: 2018-10-

11].
[6] “cdnow,” 2018, URL: http://www.cdnow.com [accessed: 2018-10-11].
[7] “drugstore,” 2018, URL: http://www.drugstore.com [accessed: 2018-

10-11].

[8] “drugstore,” 2018, URL: http://www.eBay.com [accessed: 2018-10-11].
[9] R. Sikka, A. Dhankhar, and C. Rana, “A Survey Paper on E-Learning

Recommender System,” International Journal of Computer Applica-
tions, vol. 47(9), 2012, pp. 888–975.

[10] J. J. Castro-Sanchez, R. Miguel, D. Vallejo, and L. M. Lopez-Lopez, “A
highly adaptive recommender system based on fuzzy logic for B2C e-
commerce Portala,” Expert systems with applications, vol. 38(3), 2011,
pp. 2441–2454.

[11] S. Tan, J. Bu, C. Chen, and X. He, “Using rich social media information
for music recommendation via hypergraph model,” ACM Transactions
on Multimedia Computing. Communications, and Applications, vol.
7(1), 2011, pp. 213–237, article 7.

[12] L. Duan, W. Streat, and E. Xu, “Healthcare information systems: data
mining methods in the creation of a clinical recommender system,”
Enterprise Information Systems, vol. 5(2), 2011, pp. 169–181.

[13] C. Porcel and E. Herrera-Viedma, “Dealing with incomplete information
in a fuzzy linguistic recommender system to disseminate information in
university digital libraries,” Journal of Knowledge-based Systems, vol.
23(1), 2010., pp. 32–39.

[14] C. Porcel, A. Tejeda-Lorente, M. Martinez, and E. Herrera-Viedma, “A
hybrid recommender system for the selective dissemination of research
resources in a technology transfer office,” Information Sciences, vol.
184, 2012, pp. 1–19.

[15] “predictwallstreet,” 2018, URL: http://www.predictwallstreet.com [ac-
cessed: 2018-10-11].

[16] E. V. Epure, B. Kille, J. E. Ingvaldsen, R. Deneckere, C. Salinesi, and
S. Albayrak, “Recommending personalized news in short user sessions,”
Proceedings of the Eleventh ACM Conference on Recommender Sys-
tems, 2017, pp. 121–129.

[17] X. Guo and J. Lu, “Intelligent E-Government services with personal-
ized recommendation techniques ,” International Journal of Intelligent
Systems, vol. 22, 2007, pp. 401–417.

[18] D. Z. Navgaran, P. Moradi, and F. Akhlaghian, “Evolutionary based
matrix factorization method for collaborative filtering systems,” Iranian
Conference on Electrical Engineering, 2013.

[19] N. E. I. Karabadj, S. Beldjoudi, H. Seridib, S. Aridhic, and W. Dhifli,
“improving memory-based user collaborative filtering with evolutionary
multi-objective optimization.” Expert Systems with Applications, 2018,
pp. 153–165.

[20] M. Volkovs, G. W. Yu, and T. Poutanen, “Content-based neighbor
models for cold start in recommender systems ,” 11th ACM Conference
on Recommender Systems, 2017.

[21] S. B. CL1, C. Ramos, A. Rizo, and L. Fernandez-Luquecor, “HealthRec-
Sys: a semantic content-based recommender system to complement
health videos,” BMC Med Inform Decis Mak, vol. 17(1):63, 2017.

[22] L. Safoury and A. Salah, “Exploiting User Demographic Attributes for
Solving Cold-Start Problem in Recommender System,” Lecture Notes
on Software Engineering, vol. 1(3), 2013.

[23] H. R. Zhang, F. Min, X. He, and Y. Y. Xu, “A Hybrid Recommender
System Based on User-Recommender Interaction ,” Journal of Mathe-
matical Problems in Engineering, 2015, article ID 145636.

[24] S. Yanga, M. Korayemb, K. AlJadda, T. Grainger, and S. Natara-
jana, “Combining content-based and collaborative filtering for job
recommendation system: A cost-sensitive Statistical Relational Learning
approach,” Journal of Knowledge-Based Systems, vol. 136, 2017, pp.
37–45.

[25] Y. Kilani, A. Alsarhan, M. Bsoul, and S. El-Salhi, “Local search-
based recommender system for computing the similarity matrix,” Int.
Journal of Intelligent Systems Technologies and Applications, 2018,
forthcoming.

[26] Q. Shambour and J. Lu, “A hybrid multi-criteria semantic-enhanced
collaborative filtering approach for personalized recommendations ,”
Proceedings of the International Conferences on Web Intelligence and
Intelligent Agent Technology (WI-IAT), 2011, pp. 71–78.

[27] B. Jadoon, A. Mansha, F. H. Khan, and S. Bashir, “collaborative
filtering based online recommendation systems: a survey,” International
Conference on Information & Communication Technologies, 2017.

[28] C. C. Aggarwal, “recommender systems: chapter 2 ,” Springer Interna-
tional Publishing Switzerland, 2016.

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-677-4

ADVCOMP 2018 : The Twelfth International Conference on Advanced Engineering Computing and Applications in Sciences

[29] D. Bokde, S. Girase, and D. Mukhopadhyay, “Matrix Factorization
Model in Collaborative Filtering Algorithms: A survey ,” Procedia
Computer Science, vol. 49, 2015, pp. 136–146.

[30] Z. Lu, Z. Dou, J. Lian, X. Xie, and Q. Yang, “content-based collab-
orative filtering for news topic recommendation ,” Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp.
217–223.

[31] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recom-
mender systems: state of the art and trends,” Recommender systems
handbook, 2011, pp. 73–105.

[32] R. Boim and T. Milo, “Methods for boosting recommender systems,”
2011 IEEE 27th International Conference on Data Engineering Work-
shops, 2011.

[33] Y. Bachrach, Y. Finkelstein, and R. BachrachRan, “Speeding up the
xbox recommender system using a euclidean transformation for inner-
product spaces,” Proceedings of the 8th ACM Conference on Recom-
mender systems, 2014, pp. 257–264.

[34] V. Formoso, D. Fernandez, F. Cacheda, and V. Carneiro, “Using rating
matrix compression techniques to speed up collaborative recommenda-
tions,” Journal of Information Retrieval, vol. 16(6), 2013, pp. 680–696.

[35] “MovieLens,” 2018, URL: http://grouplens.org/datasets/movielens/
[accessed:2018-10-11].

[36] J. Foxall, “Visual Basic 2015 in 24 Hours,” Sams Publishing, vol. 1st
edition, 2016.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-677-4

ADVCOMP 2018 : The Twelfth International Conference on Advanced Engineering Computing and Applications in Sciences

