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Abstract—In this paper, we propose a new time integration
scheme for rigid and flexible body dynamics, where rotational
degrees of freedom are incorporated into the model. To prop-
erly consider the multiplicative and non-commutative nature of
three-dimensional rotations, the integration scheme is designed
in a special way. It employs the representation of rotations
with quaternions and quaternion exponential to preserve the
orthogonality condition. The scheme is implicit and its accuracy
is of the third order. To gain the desired order of the scheme for
rotational degrees of freedom, an additional correction function is
introduced that compensates the non-commutativity of rotations.
The performance of the scheme is demonstrated by several
examples.

Keywords–time integrators; three-dimensional rotations; quater-
nions; dynamics.

I. INTRODUCTION

Problems in structural dynamics can be very demanding.
The differential equations that govern the problem are often
stiff and the configuration space usually consists of three-
dimensional rotations. Because the spatial rotations are ele-
ments of the multiplicative SO (3) group, the configuration
space becomes a non-linear manifold. Thus, numerical solution
methods need to be specially designed to properly consider
non-commutativity and non-additivity of three-dimensional
rotations. Simo and Vu-Quoc [1] proposed an adjustment of
the implicit Newmark method to treat the spatial rotations.
Their method is of second order and can be considered a
special case of the methods on Lie groups, later presented by
Munthe-Kaas [2]. The crucial idea employed in [1] and [2] is
to approximate the update in the tangent space and map it onto
the configuration space via an exponential function. However,
the non-commutativity of rotations demands the construction
of correction functions when higher orders of approximation
are desired.

After introducing a basis into the three-dimensional Eu-
clidean space, members of SO (3) group are represented by
orthogonal 3 × 3 matrices. The orthogonality condition in-
troduces six constraints to their components and their treat-
ment is highly important, see e.g., [3]. It seems natural to
choose a three-component parametrization of rotations, but no
such parametrization is free from singularities. A promising
alternative, employed here, is the algebra of quaternions [4].
Quaternions are members of a four dimensional space, there-
fore a single scalar constraint needs to be satisfied in the
quaternion representation of rotations. It was only recently
that novel quaternion-based rigid and flexible-body dynamic
formulations were proposed, see [5]-[7]. All these approaches

treat the unity constraint of rotational quaternions as a member
of the governing equations of the problem. This allows the
use of standard time integration methods, but increases the
computational demands.

In the present paper, we therefore develop a time in-
tegration scheme of third-order that is properly adapted to
quaternion representation of rotations. Our scheme exactly
preserves the unit norm constraint of rotational quaternions
following the approach of Munthe-Kaas [2] and Zanna [8] and
adopts it to quaternion algebra. The correction function needed
to compensate the non-commutativity is derived to introduce
an implicit time integration scheme of the third order. The
proposed method consists of two implicit stages of second
order followed by an explicit third-order step, which allows
local error control without any additional computational costs.

The rest of the paper is structured as follows. Section II
introduces some primary definitions. In Section III, we de-
scribe a novel time integration method for dynamic problems.
Numerical examples are presented in Section IV. The paper
ends with concluding remarks.

II. PRIMARY DEFINITIONS
Two orthogonal reference frames are introduced (see Figure

1):
(i) a reference frame with a reference point O and a set

of fixed orthonormal base vectors
{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
, and

(ii) a body frame rigidly attached to the body
defined by three orthonormal base vectors{
⇀

G1 (t) ,
⇀

G2 (t) ,
⇀

G3 (t)

}
.

The body frame is at an arbitrary time, t, uniquely
defined by the position vector

⇀
r (t) of its origin and by

the rotation between the base vectors
{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
and{

⇀

G1 (t) ,
⇀

G2 (t) ,
⇀

G3 (t)

}
. Here, we employ rotational quater-

nions to parametrize the rotations. Using the algebra of quater-
nions, the relation between the moving and the fixed basis is
written as

⇀

Gi (t) = q̂ (t) ◦⇀g i ◦ q̂ ∗ (t) , i = 1, 2, 3, (1)

where q̂ is the rotational quaternion, q̂ ∗ is the conjugated
quaternion, and (◦) denotes the quaternion product.

The set of quaternions IH is a four-dimensional Euclidean
space. Quaternions can be described as the sum of a scalar and
a vector: x̂ = s +

⇀
v =

(
s,
⇀
v
)

, s ∈ IR,
⇀
v ∈ IR3. Addition
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Figure 1. Base vectors.

and scalar multiplication are inherited from IR4, while the
quaternion multiplication is defined as:

x̂ ◦ ŷ =
(
s c−⇀

v ·⇀w
)
+
(
c
⇀
v + s

⇀
w +

⇀
v ×⇀

w
)
, (2)

where ŷ = c +
⇀
w ∈ IH and (·) and (×) are the scalar

and the cross-vector product, respectively. The quaternion
multiplication is associative but it is not commutative, which
makes the set of quaternions an associative non-commutative
algebra over IR. In what follows, abstract elements of IR3 and
IH will be replaced by one-column representations and will be
denoted by bold face symbols. The additional base vector of
quaternion space is taken to be the identity element 1̂ = 1+

⇀
0 .

An arbitrary quaternion, x̂ = s+
⇀
v , can thus be expressed with

respect to either of the two bases

x̂ = s 1̂+v1
⇀
g 1+v2

⇀
g 2+v3

⇀
g 3 = S 1̂+V1

⇀

G1+V2
⇀

G2+V3
⇀

G3

and the components are gathered in one-column matrices. For a
more detailed presentation of the quaternion algebra, the reader
is referred to the textbook [4].

The differentiation of quantities with respect to time t is
essential for dynamics. To describe the rate of change of the
position vector, we introduce

v =
·
r, (3)

describing the velocity in the global frame. The differentiation
of equation (1) with respect to t gives a measure for the rate
of change of the local basis:

Ω = 2q̂∗ ◦
·
q̂, (4)

where Ω denotes the angular velocity with respect to the
local basis. Furthermore, we define acceleration as a =

·
v and

angular acceleration as α =
·
Ω.

As they are a part of many engineering problems, spatial
rotations often need to be reconstructed from the prescribed,
measured or assumed angular velocity field, i.e., an efficient
solution for equation (4) is desired. For the special case of
constant angular velocity, a closed form analytical solution of
the initial value problem

·
q̂ (t) =

1

2
q̂ (t) ◦Ω, q̂ (t0) = q̂0, (5)

can be found. It reads

q̂ (t) = q̂0 ◦ exp
(
t

2
Ω

)
, (6)

where the quaternion exponential exp is defined by infinite
power series:

exp (x̂) =

∞∑
k=1

x̂k

1!
= 1̂+

x̂

1!
+

1

2!
x̂◦ x̂+

1

3!
x̂◦ x̂◦ x̂+ .... (7)

The result (6) indicates that the exponential map may also be
a suitable choice for the approximation of the general solution.
We need to point out that, without some additional effort, its
direct use results in only second-order approximations of the
exact solution. The details are presented in [9].

After we introduce the rotational vector ϑ = ϑn, where ϑ
is the angle of rotation and n denotes the unit vector on the axis
of rotation, any rotational quaternion can also be expressed as

q̂ (ϑ) = cos
ϑ

2
+ sin

ϑ

2

ϑ

ϑ
, (8)

which gives a firm physical meaning to its components.

III. TIME DISCRETIZATION

To solve the set of differential equations of a moving
body, a third-order integration scheme is proposed. Since the
equations we are dealing with are often stiff, we stem from
the well known combination of trapezoidal rule and backward
differentiation formula (TR-BDF2 method) [10], adopt it to
differential equations of the second order and extend it to
properly consider the rotational degrees of freedom. The TR-
BDF2 scheme consists of three-stages: the first two stages
are implicit schemes of second order while the third stage is
explicit and of the third order of accuracy. The corresponding
Butcher array [10] reads

0 0 0 0
τ τ/2 τ/2 0
1 w w τ/2

w w τ/2
(2− τ) /6 (3τ + 2) /6 τ/6

, (9)

where τ = 2 −
√
2 and w =

√
2
4 . The difference between

the formulae of third and second order allows the local error
control without any additional computational costs.

The scheme (9) is adopted here to solve the equations of
dynamic equilibrium. Average velocities and average angular
velocities between the two successive times are chosen as the
primary iterative unknowns of the scheme. Such a choice is
especially important for rotational degrees of freedom since the
angular velocities, when expressed with respect to the moving
basis, are additive. This property simplifies the linearization
and update procedure needed in implicit schemes on non-
linear configuration spaces. A detailed description of each
stage of the proposed scheme will be presented in the sequel.
To indicate that a particular quantity (·) is evaluated at a time
tm we employ the notation: (·)[m].
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A. First stage
Let us assume that the configuration of a moving body is

known at the discrete time tn. The size of a current time step
is denoted by h. The first stage gives the approximation of
kinematic quantities at the intermediate time tn+τ = tn + τh.
Directly from the trapezoidal rule, we have:

v =
v[n] + v[n+τ ]

2
=

r[n+1] − r[n]

τh
, (10)

which yields
r[n+τ ] = r[n] + τhv.

An analogous formula can be used for linear accelerations:

a[n] + a[n+τ ]

2
=

v[n+τ ] − v[n]

τh
.

The average velocity v is chosen to be the iterative unknown
of the scheme while the remaining quantities are expressed
with the values at the current time tn and v. This gives

r[n+τ ] = r[n] + τhv

v[n+τ ] = −v[n] + 2v (11)

a[n+τ ] = −a[n] − 4

τh
v[n] +

4

τh
v.

A similar approach can be used for rotational degrees of
freedom, however the relation between rotational quaternions
and angular velocities is based on the result (6) which pre-
serves the configuration space and is second-order accurate.
The corresponding scheme then reads

q̂[n+τ ] = q̂[n] ◦ exp
(
τh

2
Ω

)
Ω[n+τ ] = −Ω[n] + 2Ω (12)

α[n+τ ] = −α[n] − 4

τh
Ω[n] +

4

τh
Ω,

where Ω denotes the average angular velocity vector

Ω =
Ω[n] + Ω[n+τ ]

2
, (13)

which is taken to be the iterative unknown of the scheme.
Two possible predictors of the first stage seem natural:

(i) v
[n+τ ]
0 = v[n] and Ω

[n+τ ]
0 = Ω[n] or (ii) a

[n+τ ]
0 = a[n]

and α[n+τ ]
0 = α[n]. The first one was found unsuitable as

it sometimes leads to the instability of long-term numerical
calculations. Therefore, the second predictor, based on the
accelerations from the previous time step, is used here. The
initial guess for the remaining quantities then follows directly
from (11)–(12)

B. Second stage
The second stage is based on second order approximation

at time tn+1 using the configuration values at times tn and
tn+τ . The third line of (9) gives:

r[n+1] = r[n] + h
(
wv[n] + wv[n+τ ] +

τ

2
v[n+1]

)
v[n+1] = v[n] + h

(
wa[n] + wa[n+τ ] +

τ

2
a[n+1]

)
.

We now use the notation

v = wv[n] + wv[n+τ ] +
τ

2
v[n+1] (14)

and treat v as the primary iterative unknown. The second stage
expressed with v now reads:

r[n+1] = r[n] + hv

v[n+1] = −2w

τ

(
v[n] + v[n+τ ]

)
+

2

τ
v (15)

a[n+1] = −2w

τ

(
a[n] + a[n+τ ]

)
− 4

τ2h

((
w +

τ

2

)
v[n] + wv[n+τ ]

)
+

4

τ2h
v.

Analogous scheme for rotational degrees of freedom is ob-
tained by considering (6):

q̂[n+τ ] = q̂[n] ◦ exp
(
h

2
Ω

)
Ω[n+τ ] = −2w

τ

(
Ω[n] + Ω[n+τ ]

)
+

2

τ
Ω (16)

α[n+τ ] = −2w

τ

(
α[n] + α[n+τ ]

)
− 4

τ2h

((
w +

τ

2

)
Ω[n] + wΩ[n+τ ]

)
+

4

τ2h
Ω,

where
Ω = wΩ[n] + wΩ[n+τ ] +

τ

2
Ω[n+1]. (17)

From the known values at tn and tn+τ we can evaluate a
better predictor for the second stage. A cubic Hermit interpola-
tion, see, e.g., [11], of velocities and angular velocities trough
tn and tn+τ yields

v
[n+1]
0 = v[n] +

2− 3τ

τ3

(
v[n] − v[n+τ ]

)
+
h (1− τ)

τ2

(
(1− τ)a[n] + a[n+τ ]

)
Ω

[n+1]
0 = Ω[n] +

2− 3τ

τ3

(
Ω[n] −Ω[n+τ ]

)
+
h (1− τ)

τ2

(
(1− τ)α[n] +α[n+τ ]

)
.

C. Third stage
Finally, we use an explicit third-order scheme to increase

the accuracy of the results at time tn+1. For the position vector,
we can directly employ the last line of Butcher’s array (9),
which gives

r[n+1] = r[n] + h

(
1− w
3

v[n] +
3w + 1

3
v[n+τ ] +

τ

6
v[n+1]

)
.

(18)
Analogous formula for rotational degrees of freedom can be
written as

q̂[n+1] = q̂[n] ◦ exp (Corr

+
h

2

(
1− w
3

Ω[n] +
3w + 1

3
Ω[n+τ ] +

τ

6
Ω[n+1]

))
,

(19)

where the correction term Corr is needed to gain the third
order of accuracy. Thus, the correction term is determined in
such a way that (19) agrees with the analytical solution of Eq.
(5) up to the third order. After a lenghty derivation and taking
into account the analytical solution presented in [9], we get

Corr =
h2

48τ (τ − 1)
Ω[n]×

(
τ2Ω[n+1] −Ω[n+τ ]

)
. (20)
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In contrast to the previous two stages, velocities and angular
velocities are left unchanged since their higher order approx-
imation quickly amplifies stiff components of the system and
the convergence of the method deteriorates.

IV. NUMERICAL STUDIES

We will demonstrate the performance of the proposed
method on several numerical examples. Quadratic convergence
of Newton iteration scheme was achieved in all examples due
to consistent linearization of equations with proper considera-
tion of rotational degrees of freedom.

A. Rotating body under prescribed torque
In the first set of examples, we consider a rotating rigid

body subjected only to the analytically prescribed external
torque M . Equations of motion are then as follows

J
·
Ω + Ω× JΩ = q̂∗ ◦M ◦ q̂, (21)

where J is the inertia matrix. When equation (21) is evaluated
at discrete time tn+1 and the proposed time discretization is
taken into account, the average velocities and angular veloc-
ities, v and Ω, become the only unknowns of the problem.
The obtained time-discrete equations are non-linear and are
therefore solved iteratively.

5 10 15 t

0

20

40

-20

-40

M1

M2

M3

torque

Figure 2. The torque applied to the rigid body. Load case (i).

We base this test on the assumed analytical field of rota-
tions, i.e., the components of the rotational vector are known
analytical functions of time. From (5), (8) and (21) we obtain
the analytical expression for the applied torque M and the
initial values q̂0 = q̂ (0) and Ω[0] = Ω (0). We employed
Mathematica [12] for these symbolic manipulations. From
the numerically obtained rotational quaternions the discrete
numerical solution in terms of rotational vectors is evaluated
using the Spurrier algorithm [13]. Numerical results are then
compared to the exact ones.

Two cases are considered for which the rotational vectors
are: (i) the quadratic function: ϑ (t) =

[
t2, 0, t/5

]T
and (ii) the

harmonic function: ϑ (t) = [t+ sin (t) , 0, cos (t)]
T of time.

The inertia tensor with respect to the principal axes of the
rotating body was taken to be J = diag (5, 5, 1). The results
were obtained on the time interval [0, 5π] using the present
method and in the field of structural dynamics widely used
Newmark algorithm for SO (3) by Simo and Vu-Quoc [1].
The absolute errors of the norm of rotational vector, i.e., the
absolute errors of the angle of rotation are presented and
compared.

5 10 15 t

5 10 15 t
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0.001

0.01

0.01

0.1

1

Present method

10
-4

10
-3

Simo and Vu-Quoc method

error

error

Figure 3. Load case (i). Absolute error of the angle of rotation for the time
step h = 0.05.
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-7

10
-7

0.001

0.01

Present method10
-4

10
-9

Simo and Vu-Quoc method

10
-6

error

error

Figure 4. Load case (i). Absolute error of the angle of rotation for the time
step h = 0.01.

The applied torque for the first load case is presented in
Figure 2. The magnitude of the torque is increasing with time
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Figure 5. The torque applied to the rigid body. Load case (ii).

and oscilating with increasing frequency, which makes this
example quite challenging. For the longer time step h = 0.05,
the absolute errors between the exact and numerically obtained
angle of rotation are shown in Figure 3. Note that the graphs
are presented in the logarithmic scale. The higher order of
accuracy of the proposed method is evident. This observation
is additionally confirmed when smaller time step h = 0.01 is
taken, see Figure 4. Again, the proposed method is advanta-
geous compared to the widely used method by Simo and Vu-
Quoc [1]. As expected, the absolute error is increasing with
time, but the higher order of local accuracy of the proposed
method results in much smaller global errors.

The applied torque for the second load case is shown in
Figure 5. For this load case, the magnitude of the torque is
not increasing, but we still cannot avoid the accumulation of
the error with large number of time steps.

5 10 15 t

5 10 15 t

10
-4

10
-5

10
-5

10
-6

10
-3

0.001

0.01

0.1

Present method

10
-4

Simo and Vu-Quoc method

error

error

Figure 6. Load case (ii). Absolute error of the angle of rotation for the time
step h = 0.05.

The results presented in Figure 6 were obtained using time
step h = 0.05. The maximum absolute error of the second-
order method was 0.084, while the proposed method is more
accurate with the maximum global error being 0.0022. The
accuracy is considerably improved by reducing the time step.
When h = 0.01, the maximum absolute error of Simo and
Vu-Quoc method [1] is 0.0035, while for the present method
it is no more than 0.000017.

B. Large deflections of right-angle cantilever
This classical benchmark problem for frame-like structures

was introduced by Simo and Vu-Quoc [1]. A right-angle
cantilever beam is subjected to a triangular pulse out-of-plane
load at the elbow, see Figure 7. After the removal of the
external force, the cantilever undergoes free vibrations. Each
part of the cantilever is dicretized with five third-order beam
elements. Details on the finite elements used are presented
in [14]. Both time integrators are employed to obtain the
solution. A dynamic response of the cantilever involves very
large magnitudes of displacements and rotations together with
finite strains. The centroidal mass-inertia matrix of the cross-
section is diagonal: Jρ = diag [ 20 10 10 ].

21

50

�

�

�

Y

Y

X

Z

O
1

3

g

g
�

�

10

10

free end

elbow

Figure 7. The right-angle cantilever subjected to out-of-plane loading.

The dynamic response of the beam was computed on the
time interval [0, 4] with different time steps. Since no analytical
solution exists for this problem, the solution obtained with very
small time step h = 0.00025 was taken as the reference one.

h

10
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10
-6

10
-7

Present method

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

Simo and Vu-Quoc method

error

Figure 8. Right-angle cantilever: logarithmic plot of the displacement errors
at the elbow.
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Figure 9. Right-angle cantilever: logarithmic plot of the rotation errors at the
elbow.

Figures 8 and 9 present the convergence plots of the results
at the elbow. Note that the proposed method gives more
accurate results than the scheme by Simo and Vu-Quoc. The
difference is evident but not as high as for the rigid body
motion. The main reason for this lies in the approximation of
strain vectors, which was taken the same for both integrators
and limits the benefits of the proposed method.

V. CONCLUSION

We have presented a third order time integrator for rigid
and flexible body dynamics. The proposed scheme is consistent
with the properties of three-dimensional rotations and allows
the rotational degrees of freedom to be treated with the same
accuracy as the translational ones. An additional benefit is
the local error control without any additional computational
demands. To achieve an additional order of accuracy, two
implicit and one explicit step are needed in our approach.
This means that by doubling the computational costs we gain
one order of accuracy and free local error control without any
additional computational time needed in contrast to second-
order schemes, where local error control demands additional
evaluations. The proposed method is thus competitive among
implicit methods for rigid body dynamics. The influence of
the strain approximation on flexible beam dynamics will be
the subject of further research.
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