
Fixed and Variable Sized Block Techniques for Sparse Matrix
Vector Multiplication with General Matrix Structures

Javed Razzaq, Rudolf Berrendorf, Soenke Hack, Max Weierstall
Computer Science Department

Bonn-Rhein-Sieg University of Applied Sciences
Sankt Augustin, Germany

e-mail:{javed.razzaq, rudolf.berrendorf, soenke.hack, max.weierstall}@h-brs.de

Florian Mannuss
EXPEC Advanced Research Center

Saudi Arabian Oil Company
Dhahran, Saudi Arabia

e-mail: florian.mannuss@aramco.com

Abstract—In this paper, several blocking techniques are applied
to matrices that do not have a strong blocked structure. The aim
is to efficiently use vectorization with current CPUs, even for
matrices without an explicit block structure on nonzero elements.
Different approaches are known to find fixed or variable sized
blocks of nonzero elements in a matrix. We present a new matrix
format for 2D rectangular blocks of variable size, allowing fill-ins
per block of explicit zero values up to a user definable threshold.
We give a heuristic to detect such 2D blocks in a sparse matrix.
The performance of a Sparse Matrix Vector Multiplication for
chosen block formats is measured and compared. Results show
that the benefit of blocking formats depend – as to be expected
– on the structure of the matrix and that variable sized block
formats can have advantages over fixed size formats.

Keywords–Sparse Matrix Vector Multiplication; Blocking; Vec-
tor Intrinsics

I. INTRODUCTION
In many fields, such as natural or financial science, compu-

tational problems arise, in which the multiplication of a sparse
matrix with a dense vector (SpMV) Ax = y is an important
operation that may be executed repeatedly [1]. Moreover, the
SpMV may also be the most time consuming operation and
consequently the bottleneck of such a computational problem.
It is therefore desired to optimize the SpMV operation, to solve
such a problem faster. The efficiency of the SpMV operation
highly depends on the used sparse matrix format, the matrix
structure and how the SpMV operation is implemented and
optimized according to the format. One category of sparse
matrix formats that has a good optimization potential are block
formats. The fundamental idea of block formats for sparse
matrices is to exploit the block structure of nonzero elements in
a matrix and to store dense blocks of nonzero values. Storing
nonzero values together in a block can lead to an improved
data locality and, by addressing more than one nonzero value
by one index entry, the overall index structure and the memory
indirections are reduced [2] [3]. By using a block, the index
of a value is reused for the whole block and it is expected
that the value will stay in the cache of the CPU or even in a
register.

Another advantage of block formats is the possibility of
unrolling the SpMV operation and the use of the proces-
sor’s Single Instruction Multi Data (SIMD) extension [4],
i.e., the processor’s vector units. This approach works for
dense nonzero block structures in sparse matrices and increases
the performance of the SpMV operation significantly, even if
explicit zeros are used to fill the blocks [5].

There are two groups of blocking formats: fixed size
blocking formats, which use the same fixed block size for

the whole matrix, and variable sized block formats, which use
the structure of the matrix to build variable sized blocks. The
advantages of fixed sized blocking formats are the possibility
of optimizing the SpMV for certain, at compile time known,
block sizes and the rather simple building of blocks by storing
explicit zeros. The advantages of variable blocking formats are
the exploitation of the matrix structure and the ability to store
different sized blocks for a matrix.

Additionally, the two types can be combined with differed
other optimization-techniques, like using bitmaps [6] [7] or
relative indexing [8] [9]. There are also some block formats
that do not fit in either of these categories or use both
techniques.

Sparse matrices with an inherent block structure (usually
arising from a 2D/3D geometry) can certainly benefit from
blocking techniques [10]. A question is, whether rather general
matrices, without a clear block structure, can also benefit from
blocking techniques.

The paper is structured as follows. In Section II, an
overview on related work is given. In Section III, our own
newly developed dynamic block format is described, including
an algorithm for block determination, the SpMV operation and
optimization. In Section IV an experimental setup is shown. In
Section V experimental results, which compare and evaluate
relevant blocking formats on matrices without an explicit block
structure, are presented. At last, in Section VI a conclusion is
given.

II. RELATED WORK
In this Section, a comprehensive overview of block formats

is given, including formats where blocks are used aside with
other optimization techniques.

The Coordinate Format (COO) [1] is the most simple
format to store a sparse matrix. It consists of three arrays.
The nonzero values, as well as the row and column index of
each value are each stored explicitly in an array. The size of
each array is equal to the number of nonzeros.

The Compressed Sparse Row (CSR) [11] [1] [12] format
is one of the most commonly used matrix format for sparse
matrices. The index structure in CSR is, in relation to COO,
reduced by replacing the row index for every nonzero value
with a single index for all nonzero values in row. This row
index indicates the start of a new row within the other two
arrays.

The Block Compressed Sparse Row (BCSR) [12] [2]
format is similar to the CSR format, but instead of storing
single nonzero values, the BCSR format stores blocks, i.e.,
dense submatrices. Only submatrices with at least one nonzero

84Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

element are stored. The matrix is partitioned into blocks of
fixed size r× c, where r and c represent the number of rows
and columns of the blocks. The optimal block size differs
for different matrices and different platforms. Advantages
of the BCSR format are: possible reduction of the index
structure, possible loop unrolling per block, using vector units
through intrinsics [13] and many other low level optimization
techniques [14]. However, it may be necessary to store explicit
zero values for blocks that are not fully filled with nonzero
values. In the worst-case, this could lead to the same index
structure as with CSR, but with additional zeros stored for
each nonzero value.

The Mapped Blocked Row (MBR) [6] format is similar to
the BCSR format. Like BCSR, MBR uses blocks of a fixed size
r× c. In addition to BCSR, bitmaps that encode the nonzero
structure for each block are stored. An advantage of this bitmap
array is, that only actual nonzero values need to be stored in
the values array, even though filled in zeros exist. In exchange
for the reduced memory use, additional computation time is
needed during the SpMV operation.

The Blocked Compressed Common Coordinate (BCCOO)
[15] format uses fixed size blocks. It is based on the Blocked
Common Coordinate (BCOO) format, which stores the matrix
coordinates of a fixed sized block to address the value. BCCOO
relies on a bit_flag to store information about the start of
a new row. By using a bit array instead of an integer, a
high compression rate is archived. One disadvantage of the
bit_flag array is, that an additional array is needed to execute
the SpMV operation in parallel.

The Unaligned Block Compressed Sparse Row (UBCSR)
[5] [16] format removes the row alignment of the BCSR format
by adding an additional array. However, this optimization
appears to be only applicable to a special set of matrices where
blocks occur in a recurring pattern in a row and are all shifted.

The Variable Block Row (VBR) [5] format analyses rows
and columns that are next to each other. Their nonzero val-
ues are stored in blocks, if they have the identical pattern
of nonzero values in a row or in a column. Hereby, only
completely dense blocks are stored by VBR. It is possible
to relax the analyses of rows and columns by the use of a
threshold, which allows VBR to store explicit zeros to build
larger blocks [16].

The Variable Block Length (VBL) [3] [17] [10] format,
which is also referred as Blocked Compressed Row Storage
(BCRS) format, is likewise similar to the CSR format. But,
rather than storing a single value, all consecutive nonzero
values in a row are stored in 1D blocks. The blocks of the
VBL format do not have a fixed size and only nonzero values
are stored. VBL may reduce the index structure depending on
the stored matrix, but an additional loop inside the SpMV is
required to proceed through a block.

The aim of the Compressed sparse eXtended (CSX) [18]
format is to compress index information by exploiting (ar-
bitrary but fixed) substructures within matrices. CSX iden-
tifies horizontal, vertical, diagonal, anti-diagonal and two-
dimensional block structures in a pre-process. The data struc-
ture, which is used by CSX to store the location information,
is based on the Compressed Sparse Row Delta Unit (CSR-
DU) [19] format. The advantages of CSX are the index
reduction by using the techniques of CSR-DU and, at the
same time, the provision of a special SpMV implementation for
each substructure. However, implementing CSX seems to be

rather complex and determaning the substructures may cause
perceptible overhead.

The Pattern-based Representation (PBR) [7] format aims to
reduce the index overhead. Instead of adding fill-in or relying
on dense substructures in a matrix, PBR identifies recurring
block structures that are sharing the same nonzero pattern. For
each pattern that covers more nonzero values than a certain
threshold, PBR stores a submatrix in the BCOO format plus
a bitmap, which represents the repeated nonzero pattern. For
each of these patterns, an optimized SpMV kernel is provided
or generated. Belgin et al. state in their work [7] that it is
possible to use prefetching, vectorization and parallelization
to optimize each kernel individually. Advantages of PBR are
the possibility of providing special SpMV kernels for each
occurring block pattern as well as low level optimisation for
these SpMV kernels.

The Recursive Sparse Blocks (RSB) [20] [21] format aims
to reduce the index overhead while keeping locality. By build-
ing a quadtree, which represents the sparse matrix, the matrix
is recursively divided into four quadrant submatrices, until
a certain termination condition is reached. The termination
condition for the recursive function is defined in detail by
Martone et al. in [22] [23]. The submatrix is stored in the leaf
node of the quadtree in COO or CSR format. All nodes before
the leaf node do not contain matrix data and are pointers, which
build the quadtree.

The Compressed Sparse Block (CSB) [8] [9] format aims
to reduce the storage needed to store the location of a value
within a matrix by splitting the matrix into huge square
blocks. Further, row and column indices of each value are
stored relatively to each block. Due to the relative addressing
of the values, it is possible to use smaller data types for
the row and column index arrays, which leads to an index
reduction per nonzero. It is possible to order the values inside
the values array to get better performance of the SpMV
operation. The authors of the original work suggest a recursive
Z-Morton ordering to provide spatial locality. The parallel
SpMV implementation of CSB, uses a private result vector
per thread, but also provides a optimization in case the vector
is not required for a block row [8].

III. DEVELOPMENT OF A 2D VARIABLE SIZED BLOCK
FORMAT

In this section, a newly developed variable sized block
format, called DynB, is described. The goal of DynB is, to
find rectangular 2D blocks within a matrix, to efficiently utilize
a processor’s vector units for the SpMV. At first, a simple
algorithm for the determination of variable sized 2D blocks is
introduced. Then, the overall structure of the format is given.
Afterwards, the SpMV kernel is presented and at last code
optimization techniques are considered.

A. Finding Variable Sized Blocks
As described in Section II, the CSX format uses a so-

phisticated (and probably time consuming) algorithm to find
complex nonzero substructures within the entire matrix. Al-
though the speedup of the SpMV operation may be high, many
SpMV operations may be neccessary to compensate the cost
of the detection algorithm. In contrast, the VBL format uses
a simple (and fast) algorithm to find just 1D blocks within a
row of the matrix. However, the speedup of the SpMV may
not be as high as for CSX. For DynB a simple algorithm
to find rectangular 2D blocks over the entire matrix should

85Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

Input: A[][], T , Smax
Output: B[][]

1: for i← 1,nRows
2: for j← 1,nColumns
3: if A[i][j] ̸= 0∧A[i][j] /∈ B
4: r← 1, c← 1, rr← 0, cc← 0
5: added← T RUE
6: while added
7: added← FALSE
8: rr← r−1, cc← c−1
9: search(next column n with A[i : i+ rr][n] ̸= 0)

10: search(next row m with A[m][j : j+ cc] ̸= 0)
11: if r∗ (n+1− j)≤ Smax∧ t(A[i : i+ rr][j : n])≥ T
12: c← n+1− j
13: added← T RUE
14: end if
15: if (m+1− i)∗c≤ Smax∧t(A[i : m][j : j+cc])≥ T
16: r← m+1− i
17: added← T RUE
18: end if
19: end while
20: B← B+A[i : i+ rr][j : j+ cc]
21: end if
22: end for
23: end for

Figure 1: Heuristic for Dynamic 2D Blocks.

be developed. With these 2D blocks, a reasonable runtime
improvement for the SpMV operation should be achieved, by
using advantages similar to BCSR, while possibly generating
less fill-in.

The algorithm, we developed to find 2D block structures
of nonzero elements, is a greedy heuristic. It tries to find
possible block candidates that should be as large as possible,
even if nonzeros are not direct neighbors, i.e, fill-ins of
explicit zeros are allowed up to a certain amount per block.
Consequently, a threshold T is used that indicates how dense
a block candidate, which has been found by the heuristic,
needs to be in order to be stored as a block. That means T
is a measure for how many fill-in is allowed in a block. The
nonzero density t(block) of a block has to satisfy the relation
t(block) = nnzblock/blocksize = nnzblock/(nnzblock + zeros) =
nnzblock/(r ∗ c) ≥ T , where nnzblock represents the number of
nonzero values in the block and r,c the number of rows,
columns of that block.

The algorithm shown in Fig. 1 describes a simplified
version of the heuristic, which is used to find the blocks in
a matrix, in pseudo code. The heuristic takes a sparse matrix
A[][], the desired threshold T (maximum portion of nonzero
values in a block) and a maximum blocksize Smax (according
to the size of the vector units) as an input. It gives the converted
blocked Matrix B[][] as output. The algorithm iterates rowwise
over the nonzero elements of original matrix. If a nonzero
of the original matrix is not already assigned to a block, a
new 1× 1 block will be created. Then this block will be
expanded successively with new columns and rows in each
iteration of the while loop. Adding a new column or row
means, adding the column/row with the next nonzero element
and all fill-in columns/rows with zeros that are located between
the outermost block column/row and the column/row with the

A =

0 a01 a02 0 0 0 0 0

0 a03 a04 0 0 0 0 0

0 0 a05 0 0 0 a06 a07

0 0 a08 0 0 0 a09 a10

a11 0 0 a12 a13 a14 0 0

a15 0 0 a16 0 a17 0 0

a18 0 0 a19 a20 a21 0 0

0 a22 0 0 0 0 0 0

values = {a01,a02,a03,a04,0,a05,0,a08,

a06,a07,a09,a10,
a11,a15,a18,
a12,a13,a14,a16,0,a17,a19,a20,a21,
a22}

block_start = {0,8,12,15,24}
row_index = {0,2,4,4,7}

column_index = {1,6,0,3,1}
block_row = {4,2,3,3,1}

block_column = {2,2,1,3,1}

Figure 2: The DynB Format storing Matrix A with a Threshold of 0.75.

next nonzero. Column/rows are only added to the block, if the
nonzero density of the block after adding these columns/rows
would be large enough. If not enough nonzero elements would
be added, i.e., the if statements for both column and row fail,
the heuristic will finish the block. After the blocks are found,
the memory for the DynB data structure is allocated and filled
with the actual values and index structure. This data structure
is described in the following section.

B. Structure of the format
The DynB format relies on six arrays. In the values array

the nonzero values (plus fill-in zeros) are consecutively stored
in block order (rowwise within a block). The block_start

pointer stores the starting position of each block in the
values array. The row_index and the column_index store
the location of the upper left corner of each block. This is
similar to the COO format for single values, but here, fewer
indices are stored explicitly, because the indices are used to
address a whole block of values. Finally, the block_row and
block_column arrays store the column and row size of each
two dimensional block, i.e., the block size is variable. Below,
the purpose of the six arrays are described as well as why
certain data types were chosen and how many entries they
contain:
• values[nnz+zeros] : double contains the values of

the matrix.
• rowIndex[blocks] : int stores the row index in

which a block starts.
• columnIndex[blocks] : int stores the column index

in which a block starts.
• blockStart[blocks] : int stores the start point of

each block inside the values array.
• blockRow[blocks] : unsingned char stores the

number of rows a block contains. The unsigned char
data type is used because the maximum block size is
64, according to the size of the vector units, which
means that blockRow×blockColumn≤ 64.

86Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

• blockColumn[blocks] : unsigned char stores the
number of columns a block contains.

• nonZeroBlocks : int stores the quantity of blocks.
• threshold : float needs to be set prior conversion

of a matrix into the DynB format. The thresholds
needs to be positive and smaller or equal to 1.0 (e.g.,
1.0= 100% nonzero values, 0.5= 50% nonzero values
in a block).

Fig. 2 shows how a matrix A is stored using the format.

C. SpMV Kernel
The SpMV implementation of DynB iterates over the

blocks, which have been build before. It is shown in Fig. 3 in a
general and simplified version. Additionally, we implemented
optimized code version for some block structures (1 × 1,
1× column, 1× row and other block sizes).

D. Optimization
It was shown that, using vector intrinsics, to adress the

vector untis of a processor, can lead to a performance gain
for the SpMV operation [14]. However, with this technique
the programmer needs to write code on an assembler level,
which can be teadious and error prone. Another approach,
which showed good results in [14], is the use of compiler
optimization. With the fast and Ofast option of the Intel
Compiler [13] and GNU Compiler [24], processor specific
code that may also adress the vector units efficiently, using
the highest available instruction set, can be generated by the
compiler. For the Intel Compiler, vectorization is enabled for
O2 and higher levels [13].

IV. EXPERIMENTAL SETUP
The experiments to evaluate block formats were run on

a system with an Intel Xeon E5-2697 v3 CPU (Haswell
architecture) [25] and the Intel C++ Compiler [13]. A set
of 111 large test matrices from the Florida Sparse Matrix
Collection [26] and SPE reference problems [27] was taken
as test matrices. The chosen matrices do not have an overall
explicit nonzero block structure. The specifications of the ma-
trices were: real, square, more than 5,000,000 nnz, no graph
or model reduction problem, no pattern format. Additionally
the matrices sherman1-5, nlpkkt-problems, bone010, boneS10,
Cube Coup dt0, ML Geer were used. Compiler optimization
and vecotor intrinsics were used, if possible. The following
matrix formats were chosen to be compared in the experiments:
• DynB (variable): own implementation according to

Section III, with and without intrinsics, threshold T
varied from 0.55 (slightly more nonzeros than fill-in)
to 1.0 (only nonzeros, no fill-in).

• VBL (variable): own implementation according to [3],
with and without intrinsics.

• CSX (variable): library taken from the authors of the
original work on CSX [18] [28], no influence on
implementation.

• BCSR (fixed): own implementation according to [12],
with and without intrinsics, supported block dimen-
sions: 2×2, 3×3, 4×4

For all experiments, the SpMV operation was executed 100
times and the median of these execution times was taken as
the resulting execution time, to exclude uncertainty of the
measurements. Subsequently, this is referred to as execution
time.

for (int i = 0; i < nonZeroBlocks; ++i){
//general SpMV for any blocksize
for (int ii = 0; ii < blockRow[i]; ++ii){
double s = 0.0;
int jj = blockStart[i] + (blockColumn[i]*ii) ;
for (int j = 0 ; j < blockColumn[i]; ++j, ++jj){

s += values[jj] * x[columnIndex[i]+j];
}
y[rowIndex[i]+ii]+=s;

}
}

Figure 3: SpMV implementation of DynB for general blocks.

V. RESULTS
In this section we present selected results of the executed

experiments. When boxplots are shown, the quartiles over the
results for all 111 matrices are given, whiskers extend to the
last datapoint within 1.5× interquartile range and outliers are
drawn as points.

Fig. 4 shows the execution times of the SpMV for the
implemented formats with different configurations, if possible.
For all formats the SpMV was executed with compiler opti-
mization level O0, O3 and fast and an implementation using
intrinsics (with fast). For DynB only the results for selected
configurations are presented. For the CSX only one result is
presented, because the library settings could not be controlled.
Overall it can be seen that, using compiler optimization O0

(no optimization and vectorization) and O3 results in slower
execution times than using fast and intrinsics, which confirms
the results found in [14]. This can be explained, because with
the compiler option fast processor specific code is generated.
Hence, with fast and intrinsics the CPU specific vector
instructions can be used. Moreover, the difference between
fast and intrinsics for DynB and BCSR seems to be marginal.
For DynB, there seem to be hardly any differences dependent
on the threshold T , except when looking at the outliers. For
BCSR, the compiler with the fast option does even a better
optimization than handwritten intrinsics. For the VBL format,
the intrinsic implementation performed better than the fast

optimization. Comparing the VBL intrinsics with the CSX
shows that these two versions are on a similar level. However,
the (one-time) creation times for the VBL format were much
shorter than for the CSX format, due to the simpler heuristics
used in VBL. For the DynB format the implementation of the
heuristic is currently a prototype and needs improvement in
runtime. A possible reason for the better performance of the
1D VBL format compared to the 2D formats DynB and BCSR
could be, that for 1D blocks there are no jumps within the
result vector y of the multiplication Ax = y. Thus, 1D blocks
may benefit from better spatial locality, while still being large
enough to use vector units efficiently.

Fig. 5 shows the coefficient of variation of the SpMV
execution time for the DynB format for the 111 test matrices,
over all thresholds (optimization fast). It can be seen that, for
some matrices varying the threshold T has a significant impact
on the execution time. This is due to the different blocks that
were found by the heuristic. Fig. 6 shows the found blocks
and their execution times according to the threshold for the
nlpkkt80 matrix. This matrix has the highest coeffiecient of
variation. It can be seen that, for several thresholds the same
blocksizes were found. Consequentliy, the execution times for

87Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

C
S

X

V
B

L

D
yn

B
 0

.5
5

D
yn

B
 0

.7
5

D
yn

B
 1

.0

B
C

S
R

 2
x2

B
C

S
R

 3
x3

B
C

S
R

 4
x4

T
im

e
[m

s]
O0 O3 fast intrinsics

0.
01

0.
1

1
10

10
0

10
00

Figure 4: SpMV with all Blocking Formats, Different Configurations.

Matrix

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
[%

]

0
5

10
15

20

CV in [0−5): 61
CV in [5−10): 16
CV in [10−20): 30
CV > 20: 4

nlpkkt80

Figure 5: Coefficient of Variation of SpMV with DynB over all Thresholds
per Matrix.

same blocksizes do not differ. Moreover, when blocksize 1×1,
i.e., the block consists of a single nonzero, is predominant the
execution times are highest. Here, a lot of overhead arises due
to the indices that have to be stored for only single values.
The best execution times are achieved, when the threshold is
higher, i.e., less fill-in occurs, and (for this matrix) a lot of
1D blocks are found. For the G3 circuit matrix the results
are similar, but its coefficient of variation is lower, what can
be explained by the lower number of nonzeros, so execution
time is primarily lower. The matrix with the lowest coefficient
of varience is the kkt power. For this matrix, changing the
threshold did not result in different blocks, due to its structure.
Hence, the execution time was the same for all thresholds.

0.55
(75.6)

0.6
(79.7)

0.65
(92.5)

0.7
(83.3)

0.75
(83.5)

0.8
(97.3)

0.85
(53.5)

0.9
(52.5)

0.95
(53.2)

1
(54.5)

Threshold
(Time [ms])

0
1

2
3

4
5

N
um

be
r

of
 B

lo
ck

s
[x

10
6]

[1x1]
[1x3]

[2x1]
[2x2]

[2x3]
[2x4]

[3x1]
[3x2]

[3x3]
[3x4]

[3x5]
[4x2]

[4x3]
[4x4]

[4x5]
[5x3]

[5x4]

Figure 6: Blocks Found for DynB with Different Thresholds, nlpkkt80 Matrix.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Threshold

R
an

kc
ou

nt

0
5

10
15

20
Rank 1 Rank 2 Rank 3

Figure 7: Ranking of DynB Thresholds.

Fig. 7 shows the count of the ranking (rank 1 to rank 3,
related to time) of the thresholds across all matrices (optimiza-
tion fast), i.e, how often a threshold resulted in the fastest,
2nd fastet and 3rd fastest time. Overall it can be seen that, a
threashold of 0.9 could lead mostly to a ranking. Although a
threshold of 0.9 more often lead to rank three, this might be a
good indicator that this is a well enough threshold for general
use. A threshold between 0.7 and 0.8 did not result in a good
ranking for the testmatrices. A lower threshold of 0.55 (adding
more fill-in) could, in some cases, result in better rankcounts
again.

This is further shown in Fig. 8. Here, the normalized
times (Time ∈ [0.0,1.0]), for selected matrices with different

88Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
im

e

Matrix

M
L_

G
ee

r
M

L_
G

ee
r

M
L_

G
ee

r
M

L_
G

ee
r

M
L_

G
ee

r
M

L_
G

ee
r

M
L_

G
ee

r
M

L_
G

ee
r

M
L_

G
ee

r
M

L_
G

ee
r

nd
24

k
nd

24
k

nd
24

k
nd

24
k

nd
24

k
nd

24
k

nd
24

k
nd

24
k

nd
24

k
nd

24
k

nd
6k

nd
6k

nd
6k

nd
6k

nd
6k

nd
6k

nd
6k

nd
6k

nd
6k

nd
6k

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

m
at

rix
_s

pe
10

_d
pd

p_
a

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

bo
ne

01
0

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

at
m

os
m

od
l

nl
pk

kt
12

0
nl

pk
kt

12
0

nl
pk

kt
12

0
nl

pk
kt

12
0

nl
pk

kt
12

0
nl

pk
kt

12
0

nl
pk

kt
12

0
nl

pk
kt

12
0

nl
pk

kt
12

0
nl

pk
kt

12
0

sh
er

m
an

3
sh

er
m

an
3

sh
er

m
an

3
sh

er
m

an
3

sh
er

m
an

3
sh

er
m

an
3

sh
er

m
an

3
sh

er
m

an
3

sh
er

m
an

3
sh

er
m

an
3

sh
er

m
an

5
sh

er
m

an
5

sh
er

m
an

5
sh

er
m

an
5

sh
er

m
an

5
sh

er
m

an
5

sh
er

m
an

5
sh

er
m

an
5

sh
er

m
an

5
sh

er
m

an
5

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

G
3_

ci
rc

ui
t

nl
pk

kt
20

0
nl

pk
kt

20
0

nl
pk

kt
20

0
nl

pk
kt

20
0

nl
pk

kt
20

0
nl

pk
kt

20
0

nl
pk

kt
20

0
nl

pk
kt

20
0

nl
pk

kt
20

0
nl

pk
kt

20
0

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

nl
pk

kt
80

sh
er

m
an

1
sh

er
m

an
1

sh
er

m
an

1
sh

er
m

an
1

sh
er

m
an

1
sh

er
m

an
1

sh
er

m
an

1
sh

er
m

an
1

sh
er

m
an

1
sh

er
m

an
1

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

tm
t_

sy
m

af
_0

_k
10

1
af

_0
_k

10
1

af
_0

_k
10

1
af

_0
_k

10
1

af
_0

_k
10

1
af

_0
_k

10
1

af
_0

_k
10

1
af

_0
_k

10
1

af
_0

_k
10

1
af

_0
_k

10
1

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

at
m

os
m

od
j

nl
pk

kt
16

0
nl

pk
kt

16
0

nl
pk

kt
16

0
nl

pk
kt

16
0

nl
pk

kt
16

0
nl

pk
kt

16
0

nl
pk

kt
16

0
nl

pk
kt

16
0

nl
pk

kt
16

0
nl

pk
kt

16
0

nl
pk

kt
24

0
nl

pk
kt

24
0

nl
pk

kt
24

0
nl

pk
kt

24
0

nl
pk

kt
24

0
nl

pk
kt

24
0

nl
pk

kt
24

0
nl

pk
kt

24
0

nl
pk

kt
24

0
nl

pk
kt

24
0

sh
er

m
an

4
sh

er
m

an
4

sh
er

m
an

4
sh

er
m

an
4

sh
er

m
an

4
sh

er
m

an
4

sh
er

m
an

4
sh

er
m

an
4

sh
er

m
an

4
sh

er
m

an
4

af
_2

_k
10

1
af

_2
_k

10
1

af
_2

_k
10

1
af

_2
_k

10
1

af
_2

_k
10

1
af

_2
_k

10
1

af
_2

_k
10

1
af

_2
_k

10
1

af
_2

_k
10

1
af

_2
_k

10
1

af
_4

_k
10

1
af

_4
_k

10
1

af
_4

_k
10

1
af

_4
_k

10
1

af
_4

_k
10

1
af

_4
_k

10
1

af
_4

_k
10

1
af

_4
_k

10
1

af
_4

_k
10

1
af

_4
_k

10
1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

af
_s

he
ll1

0
af

_s
he

ll1
0

af
_s

he
ll1

0
af

_s
he

ll1
0

af
_s

he
ll1

0
af

_s
he

ll1
0

af
_s

he
ll1

0
af

_s
he

ll1
0

af
_s

he
ll1

0
af

_s
he

ll1
0

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

af
_s

he
ll5

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

at
m

os
m

od
d

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Figure 8: Normalized Times for selected Matrices with DynB, Different
Thresholds.

TABLE I: Selected DynB Times for ML Geer

Threshold Predominant
Block

Compileroption Time [ms]

0.55 8×8 fast 175.2
O0 554.5

0.95 2×2 fast 251.0
O0 513.9

structures, is given for different thresholds (optimization fast).
It can be seen that, not for all matrices a higher threshold
leads to short execution times of the SpMV operation. For
example, the matrix ML Geer shows the best results with
lowest threshold (thus more fill-in). Table I shows the absolute
results for this matrix. With a higher amount of fill-in it
is possible to find more 8× 8 blocks. Looking at the times
dependent on compileroptions, it can be seen that, when fast

(and thus vectorization) is used SpMV is faster when using
vectorization. Moreover, the fast works better when the 8×8
blocks are predominant. Thus this matrix has shortest SpMV
execution times with a threshold of 0.55 and compileroption
fast. Another interesting fact that can be derived fom Table I
is, when O0 is used the higher threshold with predominant 2×2
blocks is faster than the lower threshold with 8×8 blocks.

Finally, Fig. 9 shows a summary for all formats. Here,
only the minimal execution time of a format (over all con-
figurations) is given. It can be seen, that the varible formats
perform better than the static BCSR for these matrices without
explicit blockstructure. For the variable formats, CSX and
VBL perform best. Table II shows the different outliers of the
formats. It can be seen that nlpkkt160, nlpkkt200, nlpkkt240
and HV15R are outliers across all formats. These matrices
have the biggest ammount of nonzeros (> 200,000,000) in
the testset. The other outliers are mostly different between the
formats.

CSX VBL DynB BCSR

Format

T
im

e
[m

s]

0.
01

0.
1

1
10

10
0

10
00

Figure 9: SpMV with all Blocking Formats, Best Results.

TABLE II: Outliers of SpMV in Fig. 9

Matrix CSX VBL DynB BCSR
circuit5M x

Cube Coup dt0 x
dielFilterV2real x x
dielFilterV3real x x x

Flan 1565 x x
HV15R x x x x

matrix spe5Ref dpdp a x
matrix spe5Ref dpdp b x
matrix spe5Ref dpdp c x x
matrix spe5Ref dpdp d x x
matrix spe5Ref dpdp e x

ML Geer x
nlpkkt120 x
nlpkkt160 x x x x
nlpkkt200 x x x x
nlpkkt240 x x x x

VI. CONCLUSIONS

In this paper, an overview of different variable and fixed
blocking techniques for SpMV was given. Moreover, a new
matrix format for storing variable sized 2D blocks, called
DynB, was introduced. For this format, a prototype algorithm
for finding variable blocks and an implementation of the SpMV
operation was presented. Furthermore, several optimization
techniques, such as using vector intrinsics, were examined.
For this, the execution time of SpMV using DynB and three
other blocking formats was measured. Results showed, for a
test set of 111 matrices, that using the fast option of the
Intel Compiler could lead to good results, by effectively using
CPU specific vector instructions. Using vector intrinsics with
hand tuned code for the use of vector units did not result in
better performance compared to just using the compiler option
fast. Furthermore, variable blocking techniques showed better
performance than static blocking techniques for these matrices.
For the DynB format, the structure of the matrix can have a
significant impact on the dimension of the found blocks and
thus on the execution time of the SpMV operation. Moreover,
the choice of an appropiate threshold for DynB is dependent

89Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

on the matrix structure. Future work on the DynB format
will include improvements in finding variable sized rectangular
blocks as well as further optimization and parallelization of
block handling inside the SpMV operation.

ACKNOWLEDGEMENTS

Jan Ecker and Simon Scholl at Bonn-Rhein-Sieg University
helped us in many discussions. We would like to thank the
CMT team at Saudi Aramco EXPEC ARC for their support and
input. Especially we want to thank Ali H. Dogru for making
this research project possible.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM,
2003.

[2] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” The International Journal of High Perfor-
mance Computing Applications, vol. 18, no. 1, pp. 135–158, 2004.

[3] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proc. ACM/IEEE Conference on Supercom-
puting (SC’99), pp. 30 – 39. IEEE, Nov. 1999.

[4] S. Williams et al., “Optimization of sparse matrix-vector multiplication
on emerging multicore platforms,” in Proc. ACM/IEEE Supercomputing
2007 (SC’07), pp. 1–12. IEEE, 2007.

[5] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,”
Ph.D. dissertation, University of California, Berkeley, 2003.

[6] R. Kannan, “Efficient sparse matrix multiple-vector multiplication using
a bitmapped format,” in Proc. 20th International Conference on High
Performance Computing (HiPC), pp. 286–294. IEEE, 2013.

[7] M. Belgin, G. Back, and C. J. Ribbens, “Pattern-based sparse matrix
representation for memory-efficient smvm kernels,” in Proc. 23rd In-
ternational Conference on Supercomputing (SC’09), ser. ICS ’09, pp.
100–109. ACM, 2009.

[8] A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” in Proc. 21th Annual Symp. on
Parallelism in Algorithms and Architectures (SPAA’09), pp. 233–244.
ACM, 2009.

[9] A. Buluc, S. Williams, L. Oliker, and J. Demmel, “Reduced-
bandwidth multithreaded algorithms for sparse matrix-vector multipli-
cation,” in Proc. Intl. Parallel and Distributed Processing Symposium
(IPDPS’2011), pp. 721–733. IEEE, 2011.

[10] V. Karakasis, G. Goumas, and N. Koziris, “A comparative study of
blocking storage methods for sparse matrices on multicore architec-
tures,” in Proc. 12th IEEE Intl. Conference on Computational Science
and Engineerging (CSE-09), pp. 247–256. IEEE, 2009.

[11] Y. Saad, “Sparskit: a basic tool kit for sparse matrix computations,” http:
//www-users.cs.umn.edu/∼saad/software/SPARSKIT/, 1994, [retrieved:
August, 2016].

[12] R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed. SIAM, 1994.

[13] User and Reference Guide for the Intel C++ Compiler 15.0, https:
//software.intel.com/en-us/compiler\ 15.0\ ug\ c ed., Intel Corpora-
tion, 2014, [retrieved: August, 2016].

[14] R. Berrendorf, M. Weierstall, and F. Mannuss, “Program optimization
strategies to improve the performance of SpMV-operations,” in Proc. 8th
Intl. Conference on Future Computational Technologies and Applica-
tions (FUTURE COMPUTING 2016), pp. 34–40. IARIA, 2016.

[15] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: yet another SpMV
framework on GPUs,” in Proc. 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’14), pp. 107–
118. ACM, 2014.

[16] R. W. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multiplication
by exploiting variable block structure,” in Proc. First Intl. Conference
on High Performance Computing and Communications (HPCC’05), pp.
807–816. Springer-Verlag, 2005.

[17] V. Karakasis, G. Goumas, and N. Koziris, “Performance models for
blocked sparse matrix-vector multiplication kernels,” in Proc. 38th
Intl. Conference on Parallel Processing (ICPP’09), pp. 356 – 364.
IEEE, 2009.

[18] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N. Koziris,
“An extended compression format for the optimization of sparse matrix-
vector multiplication,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 10, pp. 1930–1940, Oct. 2013.

[19] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing sparse matrix-
vector multiplication using index and value compression,” in Proc. 5th
Conference on Computing Frontiers (CF’08), pp. 87–96. ACM, 2008.

[20] M. Martone, S. Filippone, S. Tucci, P. Gepner, and M. Paprzycki, “Use
of hybrid recursive csr/coo data structures in sparse matrix-vector multi-
plication,” in Computer Science and Information Technology (IMCSIT),
Proceedings of the 2010 International Multiconference on, pp. 327–335.
IEEE, 2010.

[21] M. Martone, S. Filippone, M. Paprzycki, and S. Tucci, “Assembling
recursively stored sparse matrices.” in IMCSIT, pp. 317–325, 2010.

[22] ——, “On the usage of 16 bit indices in recursively stored sparse ma-
trices,” in Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2010 12th International Symposium on, pp. 57–64. IEEE,
2010.

[23] M. Martone, S. Filippone, S. Tucci, M. Paprzycki, and M. Ganzha,
“Utilizing recursive storage in sparse matrix-vector multiplication-
preliminary considerations.” in CATA, pp. 300–305, 2010.

[24] GCC, the GNU Compiler Collection, Free Software Foundation, https:
//gcc.gnu.org/, [retrieved: August, 2016].

[25] Intel R⃝ Haswell, Intel, http://ark.intel.com/products/codename/42174/
Haswell, [retrieved: August, 2016].

[26] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
Nov. 2010.

[27] SPE Comparative Solution Project, Society of Petroleum Engineers,
http://www.spe.org/web/csp/, [retrieved: August, 2016].

[28] V. Karakasis, T. Gkountouvas, and K. Kourtis, CSX libryry v0.2, https:
//github.com/cslab-ntua/csx, [retrieved: August, 2016].

90Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

