
Learning Method by Sharing Activity Logs in Multiagent Environment

Keinosuke Matsumoto, Takuya Gohara, and Naoki Mori
Department of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka, Japan

email: {matsu, gohara, mori}@cs.osakafu-u.ac.jp

Abstract—Applications of multiagent systems are expected
from the point of view of the parallel and distributed
processing. Reinforcement learning is used as an
implementation method for learning agents’ actions. However,
the problem is that, the higher the number of agents to deal
with, the slower the speed of learning becomes. To solve this
problem, this paper proposes a new reinforcement learning
method that can learn quickly by using past actions of its own
and of other agents. Agents can learn good actions in the early
stage of learning by this method. However, if agents keep
learning, learning efficiency will deteriorate. The method
controls to reduce effects of other agents’ actions in the later
stage of learning. In experiments, agents learned good actions
in various environments. Thus, the success of the proposed
method was verified.

Keywords- machine learning; Q-learning; sharing of activity
history; agents; hunter game

I. INTRODUCTION

In recent years, information has distributed and grown by
the rapid development of the Internet and multimedia.
Systems also become large and complicated. It is difficult for
centralized systems, that make decisions by bringing
information in one place, to deal with a lot of information
and to process it. From the viewpoint of the parallel and
distributed processing, the application of multiagent systems
[1] that exchange information between agents [2] is expected.

It is difficult to follow environmental changes that
humans could not forecast and do not carry out suitable
actions. The most important thing for each agent in a
multiagent system is to learn by itself. Each agent needs to
learn a suitable judgment standard from one’s experience
and information collected from other agents. Reinforcement
learning [3][4] attracts attention as an implementation
method of multiagent systems. It can be very effective
means, because it autonomously learns by setting only a
reward, if a goal has been given.

In this study, reinforcement learning is applied to a
multiagent problem, a hunter game [5]. It is widely used as a
cooperative problem solving [6][7] under multiagent
environment as a benchmark. If a hunter game becomes
complicated and the number of agents increases, the number
of states increases exponentially. The problem is that the
speed of learning slows down. Ono et al. proposed Modular
Q-Learning (MQL) [8] to solve this problem, but it had a

disadvantage of using much memory. With respect to
memory, another method that reduced memory [9] was
proposed. In this method, each agent has only one Q-value
table by not distinguishing each agent with the same purpose.
On the basis of these methods, this study proposes a method
that increases learning efficiency by using each agent’s
activity log [10][11] of hunter agents.

This method does not need to prepare any special
communication algorithms between agents, strategies to
exchange information [12][13], special exploration agents
[14][15][16] etc., according to various situations. This
method saves only activity history and updates the Q-value
using its own or other hunters’ activity history. In this way,
the method shares experiences between agents by simple
way of adding other hunters’ activity history to Q-value table,
and picks up learning speed. It makes collective intelligence
efficient.

The rest of the paper is structured as follows. In Section
II, the explosion of the number of states in reinforcement
learning is explained. In Section III, conventional methods
are described. In Section IV, the proposed method is
explained. In Section V, the results of application
experiments to confirm the validity of the proposed method
are given. Finally, in Section VI the conclusion and future
work are presented.

II. HUNTER GAME

This section describes a hunter game and the explosion of
the number of states.

A. Definition of hunter game

A hunter game is one of the standard problems in
multiagent systems. It is a game in which multiple hunters
catch a prey (runaway) chasing in on a two-dimensional field.
The definition of hunter game in this study is shown below.

-A field is a two-dimensional lattice and torus space as
shown in Fig. 1.

-It is possible for multiple agents to take one lattice space.

-Each agent can take five actions of moving right, left, up,
down or stop.

71Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences



-A hunter has perfect perception, and it recognizes a prey
and other hunters in relative coordinates from itself.

-A unit time during which each agent takes one action is
called a time step, and a period of time from an initial state to
a goal (i.e., hunters catch a prey) is called an episode.

B. Explosion of the number of states

Q-Learning [17] is one of bootstrap type reinforcement
learning. In Markov decision process, like Q-Learning, if a
learning rate is appropriately adjusted, convergence to an
optimal solution in infinite time has been proven [18].

In Q-Learning of the hunter game, an action is evaluated
on pair (s, a) considering all observable states s and each
possible action a. The evaluated value is utilized for the
same pair of state and action. It requires a lot of information
on (s, a) to make Q-Learning effective. For example, if the
size of field is m x m and the number of hunters is n, one
hunter can see m2n identifiable states (positional
combinations of other hunters and the prey). Because each
state has five kinds of actions, state and action pair is 5m2n.
In the hunter game with multiple hunters, state explosion
cannot be avoided because the exponent includes n.

By the explosion of the number of states, the learning
speed will become slow. Therefore, in Q-Learning in
multiagent environment, it becomes an important subject to
figure out how the number of states can be reduced.

III. CONVENTIONAL METHODS

This section describes related work of this study.

A. Modular Q-Learning

Ono et al. proposed MQL [8] to solve the state explosion
in hunter games. Completely Perceptual Q-Learning (CPQL)
[19] is perfect perception learning, and it uses relative
coordinates of all hunters in order to define states. On the
other hand, MQL uses a partial state that consists of a hunter
and another one. The number of states of field size m x m

and n hunters is m4. Since the exponent is a constant and it is
not influenced by the number of hunters, it can prevent the
state explosion.

The learning accuracy of MQL deteriorates because of
imperfect perception by observing partial states. In addition,
if n hunters exist, the number of partial states becomes n-1,
and n-1 learning machines are prepared per hunter. A total of
n(n-1) learning machines are needed. The size of Q-value
tables tends to become large and the amount of memory will
increase.

B. Centralized Modular Q-Learning

Matsumoto et al. proposed Centralized Modular Q-
Learning (CMQL) [9] to solve the memory problem that is
one of the problems of MQL. In a hunter game, hunters
should just surround a prey. It is not necessary to recognize
the kind of hunters that surround the pray. Therefore, CMQL
does not distinguish the characteristics of each hunter and n-
1 learning machines that the hunter has in MQL can be
reduced to one learning machine. In CMQL, a hunter has
only one Q-value table of the partial state. Since the number
of Q-value tables becomes one per hunter, only n Q-value
tables are required in all if n hunters exist.

IV. PROPOSED METHOD

In this section, a method that raises learning efficiency is
described on the basis of MQL and CMQL. Fig. 2 shows the
basic concept of the proposed method.

A. Learning method by sharing activity logs

In the hunter game, all hunters have the common purpose
of catching a prey. In such environment, it is useful to use
learned actions of other hunters to catch the prey.
Appropriate actions can be learned with fewer number of
trial times by learning actions of other hunters. In this study,
a method of updating Q-value on the basis of other hunters’
activity logs is proposed. The number of times of updating
for every episode increases, but the method raises the
learning efficiency for every episode. The algorithm of the
proposed method is shown below.

Figure 2. Architecture of the proposed method.

Figure 1. Hunter game.

72Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences



The number of hunters is n and a prey is captured at q
steps. Each hunter is observing states s1, s2, ---, sn and actions
are a1, a2, ---, an.
(1) In each episode, save hunters’ coordinates and actions for

every step, and for up to t steps. These are activity logs.
(2) Give awards to all hunters’ Q-value Q (s1, a1), Q (s2, a2),

---, Q(sn, an) if the prey is captured.
(3) i = q
(4) Q(si-1, ai-1) ← (1-α) Q(si-1, ai-1)+ α [r+γ maxa Q (si, ai)]
(5) Replace i by i-1 and repeat (4) until i ≤ q-t or i≤1. 

In the above-mentioned algorithm, t is t=1000.
Combining this algorithm with CMQL makes a more
efficient learning method.

Although learning has become early in the proposed
method, final learning results tend to deteriorate compared
with the conventional methods without sharing activity logs.
The learning accuracy of the proposed method becomes bad
by learning actions of other hunters at the final learning stage.
For this reason, the learning rate using other hunters’ actions
is decreased according to the number of episodes. An
influence on learning by other hunters’ actions is lessened as
learning progresses. This will be an approach that utilizes
other hunters’ activity logs at the early learning stages and
uses only each hunter’s log at the final learning stage.

B. Control of learning rate

It is difficult to find an optimal action if a hunter learns
other hunters’ actions in the final stage of learning. Learning
rate of learning other hunters’ activity logs should be
decreased in proportion to the number of episodes. If other
hunters’ activity logs are used at the last stage of learning,
learning accuracy will reduce a little. It does not become bad
by learning only for one’s own log, and the learning rate at
the time of updating for other hunters’ activity logs should be
gradually made small.

The influence of other hunters’ activity logs on learning
was reduced with the number of times of learning. This
method (hereinafter referred to as Turned Experience CMQL
(TECMQL)) is a learning approach that utilizes other
hunters’ activity logs in the early stage of learning and only
its own log in the final stage.

The following formula defines the learning rate at
learning other hunters’ activity logs.

)/(1 rateepisode
other

+
=

α
α

(1)

where, αother is a learning rate updating Q-value using other
hunters’ activity logs and rate is a constant that determines
reduction rate of the learning rate. The learning rate at
learning using other hunters’ actions should be decreased
according to the number of episodes. The value of learning
rate is determined to eliminate the effect of other hunters’
actions in proportion to the number of episodes.

V. EXPERIMENTS

In this section, the proposed method was applied to
hunter games to confirm its validity.

A. The outline of experiments

The experiments compare the learning efficiency of the
following three methods.
- Proposed method: CMQL using other hunters’ activity logs
(referred to as Sharing Experience CMQL (SECMQL)).
- Comparison method: CMQL using only each hunter’s log
(referred to as Own Experience CMQL (OECMQL)).
- Conventional method: CMQL that does not use activity
logs.

These three methods were applied to a hunter game in a
maze environment and two-prey hunter game.

B. Experiment 1: Hunter games in maze environment

The performances of the above-mentioned three methods
were compared in the hunter game in a maze environment. In
this case, hunters learn ways of bypassing walls in the maze
and leading a prey to the place where is easy to catch it using
the walls. The positions of walls do not change from the
beginning of this experiment. Walls are grasped by absolute
coordinate system. In this experiment, a partial state of
CMQL consists of a relative coordinate from a hunter to any
other one hunter, a relative coordinate from the hunter to a
prey, and an absolute coordinate of the hunter. By this means,
actions can be learned considering the positions of walls in
each partial state.

Experimental conditions were as follows:
- Size of field: 8 x 8
- Number of walls in the mazy field: 21
- Number of hunters: n =3
- Action selection strategy: ε-greedy (ε = 0.01) 
- Prey’s action: It escapes from hunters.
- Capture state: Four lattices in left, right, top and bottom
of a prey’s position are surrounded by hunters or walls.
- Cost per one time step: 0.05
- Learning rate: α=0.2 
- Discount rate: γ=0.8 
- Maximum number of learning episodes: 300000
episodes
- Reward of hunter that caught a prey directly: 5
- Reward of hunter that did not caught the prey directly: 4
In this experiment, only three hunters cannot catch a prey

without making use of walls. Hunters will learn actions that
guide a prey near walls and catch a prey using the walls. At
least two or less hunters can catch a prey if they make use of
walls. In this case, one hunter could guide a prey for other
two hunters to catch it. A reward reduced a little bit was
given to the hunter that did not catch a prey directly since it
contributed to the catch.

The results are shown in Fig. 3. The horizontal axis
indicates the number of episodes and the vertical axis
indicates the time steps to catch a prey from an initial state.
Every plot shows average time steps to catch a prey of
every 100 episodes. The fewer the time steps are, the better
action patterns can be learned.

The learning of SECMQL became earlier until near
episode no. 5000 than other methods, but the final learning
result was bad compared with other methods. On the other

73Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences



Figure 3. Results of the proposed method for maze task.

Figure 4. Results of the proposed method for two-prey game.

74Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences



hand, OECMQL could catch with fewer number of steps
compared with CMQL. SECMQL’s learning accuracy was
deteriorated by learning other hunters’ actions in the final
stage of learning.

C. Experiment 2: Two-prey hunter games

Performances of the above-mentioned three methods
were compared in a hunter game that has two preys. In this
game, hunters’ purpose is to catch one of two preys. Since
the candidate actions of a hunter increase in number, learning
becomes difficult compared with the problem of one prey. In
this experiment, a partial state of CMQL consists of a
relative coordinate from a hunter to any other one hunter and
two relative coordinates from the hunter to two preys. Since
the positions of both preys can be seen, actions can be
learned considering two preys.

Experimental conditions were as follows:
- Size of field: 8 x 8
- Number of hunters: n =3
- Action selection strategy: ε-greedy (ε = 0.01) 
- Prey’s action: They escape from hunters.
- Capture state: At least two hunters exist in left, right,
top and bottom of one prey.
- Cost per one time step: 0.05
- Learning rate: α=0.2 
- Discount rate: γ=0.8 
- Maximum number of learning episodes: 300000
episodes
- Reward of hunter that caught a prey directly: 5
- Reward of hunter that did not caught the prey directly: 4
In this experiment, preys observe all hunters’ positions

and they escape from hunters on the basis of hunters’
coordinates. A reward reduced a little bit was given to the
hunter that did not catch a prey directly since it contributed
to catch.

The results are shown in Fig. 4. In this experiment, the
learning efficiency of SECMQL is the best in the early stages
of learning. Since action patterns that lead to catch in early
stages of learning by only one hunter are insufficient, it is
useful to use other hunters’ activity logs for learning.
However, OECMQL found good action strategies over
100000 episode. The way a hunter individually learned in the
final stage is better to get good action strategies.

D. Experiment 3: Hunter games in maze environment after
control of learning rate

Performance was compared with the cases where they are
with or without reducing learning rate of hunter games in a
maze environment. TECMQL was added to the three
methods of experiments 1 and 2 as a compared method.
Experimental conditions were the same as experiment 1, and
rate of TECMQL was 500.

Results are shown in Fig. 5. In this experiment,
OECMQL shows the best learning result. TECMQL also
showed equivalent learning result to OECMQL, while
TECMQL maintained good efficiency in the early stage of
learning.

E. Experiment 4:Two-prey hunter games after control of
learning rate

Performance was compared with the cases where they are
with or without reducing learning rate of hunter games that
have two preys. The compared method was the same as
experiment 3. Experimental conditions were the same as
experiment 2, and rate of TECMQL was 10000.
Results are shown in Fig.6. In this experiment, TECMQL
discovered the policy that could catch a prey with fewer
steps than other methods. From these results, it seems to be
effective to assemble a rough action strategy using actions of
other hunters in early stages of learning, and then to learn the
action strategy that is suitable for each hunter by individual
learning.

In addition to experiment 3, TECMQL found actions that
were easy to catch a prey rather than the conventional
methods in various environments. However, it is necessary
to adjust learning rate according to the environments.

Figure 6. Results of the proposed method for two-prey game after
control of learning rate.

Figure 5. Results of the proposed method for maze task after
control of learning rate.

Number of episodes (* 100)

75Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences



VI. CONCLUSION

In this paper, a method, which can learn in fewer trials by
sharing activity logs among hunters, was proposed. The
method is based on MQL and CMQL that are methods to
prevent explosion of the number of states. The performance
of the proposed method was compared with CMQL. To
solve the problem that the learning performance of the
proposed method deteriorates in the later stage of learning
when using other hunters’ activity logs, it makes learning
rate decrease according to the number of episodes. At the
present method, the control of learning rate is dependent on
the number of episodes, but it is not controlled by the
contents of learning. As a future task, an index should be
established to control the learning rate according to Q-value
during learning.

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI
Grant Number JP16K06424.

REFERENCES

[1] G. Weiss, Multiagent Systems: a modern approach to
distributed artificial intelligence, MIT Press, 1999.

[2] S. J. Russell and P. Norving, Artificial intelligence: a modern
approach, Prentice-Hall, Englewood Cliffs, 1995.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: an
introduction, MIT Press, 1998.

[4] H. Van Hasselt, “Reinforcement learning in continuous state
and action spaces,” in Reinforcement Learning, Springer
Berlin Heidelberg, pp. 207-251, 2012.

[5] M. Benda, V. Jagannathan, and R. Dodhiawalla, On optimal
cooperation of knowledge sources, Technical Report, BCS-G
2010-28, Boeing AI Center, 1985.

[6] I. Nahum-Shani, M. Qian, D. Almirall, W. E. Pelham, B.
Gnagy, G. A. Fabiano, and S. A. Murphy, “Q-learning: A data
analysis method for constructing adaptive interventions,”
Psychological methods, vol. 17, no. 4, p. 478, 2012.

[7] S. Shamshirband, A. Patel, N. B. Anuar, M. L. M. Kiah, and
A. Abraham, “Cooperative game theoretic approach using
fuzzy Q-learning for detecting and preventing intrusions in
wireless sensor networks,” Engineering Applications of
Artificial Intelligence, vol. 32, pp. 228-241, 2014.

[8] N. Ono and K. Fukumoto, “Multi-agent reinforcement
learning: a modular approach,” Proc. of AAAI ICMAS-96,
pp.252-258, 1996.

[9] K. Matsumoto, T. Ikimi, and N. Mori, “A switching Q-
learning approach focusing on partial states,” Proc. of the 7th
IFAC Conference on Manufacturing Modelling, Management,
and Control (MIM 2013) IFAC, pp. 982-986, ISBN: 978-3-
902823-35-9, June 2013.

[10] M.Tan, “Multi-agent reinforcement learning : independent vs.
cooperative agents,” Proc. of the 10th International
Conference on Machine Learning, pp.330-337, 1993.

[11] R. M. Kretchmar, “Parallel reinforcement learning,” Proc. of
the 6th World Conference on Systemics, Cybernetics, and
Informatics, vol.6, pp.114-118, 2002.

[12] H. Iima and Y. Kuroe, “Swarm reinforcement learning
algorithm based on exchanging information among agents,”
Transactions of the Society of Instrument and Control
Engineers, vol. 42, no. 11, pp. 1244-1251, 2006 (in Japanese).

[13] S. Yamawaki, Y. Kuroe, and H. Iima, “Swarm reinforcement
learning method for multi-agent tasks,” Transactions of the
Society of Instrument and Control Engineers vol. 49, no. 3, pp.
370-377, 2013 (in Japanese).

[14] T. Tateyama, S. Kawata, and Y. Shimomura, “Parallel
reinforcement learning systems using exploration agents,”
Transactions of the Japan Society of Mechanical Engineers
Series C vol. 74, no. 739, pp. 692-701, 2008 (in Japanese).

[15] Y. M. De Hauwere, P. Vrancx, and A. Nowe, “Future
Sparse Interactions: A MARL approach,” Proc. of the 9th
European Workshop on Reinforcement Learning, pp. 1-3,
2011.

[16] H. Igarashi, M. Handa, S. Ishihara, and I. Sasano, “Agent
control in multiagent systems– Reinforcement learning of
weight parameters in particle swarm optimization,” The
Research Reports of Shibaura Institute of Technology,
Natural Sciences and Engineering vol. 56, pp. 1-8, 2012 (in
Japanese).

[17] C. J. C. H. Watkins and P. Dayan, “Technical note Q-
learning,” Machine Learning, vol. 8, no. 3, pp. 279-292, 1992.

[18] S. J. Bradtke and M. O. Duff, “Reinforcement learning
method for continuous-time Markov decision problems,”
Advances in Neural Information Processing Systems, vol. 7,
pp. 393-400, 1994.

[19] A. Ito and M. Kanabuchi, “Speeding up multi-agent
reinforcement learning by coarse-graining of perception —
hunter game as an example—,” IEICE Trans. Information and
Systems D-I, vol. J84-D-I, no. 3, pp. 285-293, 2001 (in
Japanese)

76Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences


