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Abstract—This paper is devoted to mathematical modeling
processes of water treatment from iron impurities. This
problem is relevant for many applications, including the
preparation of ultrapure water for medicine. The paper deals
with a process of removing iron ions and iron oxides from
water by means of a magnetic field. The two-dimensional
formulation of the model problem is examined through the
incompressible flow approximation in a channel with
rectangular cross section. A special numerical method and
parallel program were designed to solve the problem. The
distributions of the concentration of the iron ions under the
effect or lack of transverse magnetic field were obtained in
numerical experiments.

Keywords-mathematical modeling; numerical methods;
parallel algorithms; water treatment processes.

I. INTRODUCTION

This paper deals with modeling the processes of
magnetic treatment of water. The processing can be applied
to many industries, such as heat energetics and related
industries. Water treatment of impurities and hardness salts
(carbonate, chloride and sulfate salts of Ca2+, Mg2+, Fe2+ and
Fe3+) is used in the heat exchangers, piping and plumbing
systems in various ways, including mechanical, chemical,
electrophysical ones, etc. Nowadays, one of the most acute
problems deals with obtaining drinking water and ultrapure
water for pharmacology. For these purposes, all possibilities
of water purification are used (water structuring and
catching finely dispersed salts of heavy metals by a
magnetic field). Magnetic water treatment is widely
implemented in different industries, such as construction
industry and agriculture. In the construction industry, the
use of magnetic water in the hydration phase of cement
processing reduces the time of solidification of cement
clinker components with water. A fine-grained structure of
the generated solid hydrates makes the product far stronger
and increases its resistance to aggressive environmental
influences [1]. In agriculture, five-hour seed soaking in
magnetized water improves seed germination and can
significantly increase the yield. Watering with magnetized
water stimulates 15-20% growth and yield of soybean,
sunflower, corn, tomatoes [2]. In medicine, the use of
magnetized water helps to dissolve kidney stones and has a
bactericidal effect.

It is well known that the effect of magnetic fields on
water is of a complex multifactorial nature. It results in

water structure changes, its physical and chemical properties
and dissolved inorganic salts behavior in water [1].
Chemical reactions in water have different speeds under the
influence of amagnetic field. Magnetic treatment water
softening appears to be very promising. Scale-forming salts
accelerated crystallization in water occurs during such
processing. This leads to a significant reduction of

concentrations of dissolved ions 2Ca+ , 2Mg+ , and other

metals. The crystals size reduction under heating is also the
result of water magnetic treatment. The magnetized water
can change the aggregate stability and accelerate
coagulation (adhesion and sedimentation) of suspended
particles with subsequent formation of finely dispersed
sediment. This ability is implemented to remove sediments
from water. Magnetization of water can also be applied for
water supply plants with significant turbidity of natural
waters. Such magnetic treatment of industrial waste water
allows us to precipitate fine dirt quickly and effectively.
Magnetic treatment of water helps to prevent the scale-
forming salts precipitation and significantly reduces the
organic substances deposits, such as paraffin. Magnetic
treatment is useful for the high paraffin crude oil
production. The influence of magnetic field increases
provided the oil contains water.

In this work, the influence of the magnetic field on water
is studied. A water stream contains ions of iron and/or iron
salts ions and flows through a nonmetallic pipe. A
magnetohydrodynamic model was created for this problem.
The model takes into account the magnetic induction direct
effect on the stream of water. In this case, the ion flux
generates a secondary electric field. The paper deals with
the two-dimensional plane-parallel flow. The flow is formed
in the middle section of a rectangular tube with a strong
anisotropy of sides. A magnetic field is applied in the
transverse direction of the flow and generates circular
motions in this section of the tube. In this case, the flow
structure is similar to the two-dimensional model and can be
seen as an initial approximation for the three-dimensional
problem [3] [4]. The isothermal laminar flow of fluid is
examined to simplify the analysis. The drift-diffusion
approximation is used to describe the behavior of the finely
dispersed impurities.

This paper is organized as follows. In Section 2, we
describe the mathematical model of the problem. We then
present, in Section 3, some details of the numerical
algorithm. In Section 4, the main results obtained for the
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steady state distribution in the stream are shown, including
distribution of electrical potential, distribution of impurity
concentration, and distribution of electrical field.

This paper discusses water purification of iron
impurities processes. We propose some approaches to the
issue in question, and finally we offer some conclusions.

II. MATHEMATICAL DESCRIPTION

An isothermal variant of water flow with impurity of iron
is considered. The flow is studied in the non-conductive pipe
with rectangular cross-section and with a big difference
between the sizes of sides (Fig. 1).

The impurities are finely dispersed and we do not take
into account the processes of association and dissociation of
individual ions in clusters.

The basic equations describe water motion with impurity
in the computational domain Ω [5]. This area is section z=0
of the original three-dimensional domain and its size is
L H× . The equations (1)-(3) in dimensional variables have
form [6]:

( ) , 0,p div
t

ρ ρ η
∂

+ ∇ = −∇ + ∆ =
∂

u
u u u u (1)

( ) ( ), ,
n

div D n q n u n
t

µ
∂

= ∇ − + ∇
∂

F (2)

( ) ( )* , ,div q n nε ϕ= − = −∇E E (3)

where ( ), ,0x yu u=u – velocity vector of water stream,

( )0 Tρ ρ ρ= – water density at the specified temperature T,

p – pressure in water stream, ( )0 Tη η η= – dynamic

viscosity coefficient of water stream at the specified
temperature, *n and n – equilibrium and non-equilibrium

concentrations of impurity ions in water, ( )0D D D T= ,

( )0 Tµ µ µ= – diffusion coefficient and coefficient of ion

mobility, q – ion charge, [ ]= + ×F E u B – the total vector

field acting on the ions, E and ϕ – strength and potential of

the electric field, 0 zB=B e – vector of magnetic field

strength ( ( )0,0,1z =e ), div and ∇ – operators of

divergence and gradient in the spatial coordinates ( ),x y , ε

– dielectric constant of water.
Initial conditions (4):

( )0 0, , 0, , .n n t x y= = = ∈Ωu u (4)

Boundary conditions (5) - (7):

( ) 00 : , 0, , 0;x n yx u u y u n n
x

ϕ∂
= = = = =

∂
(5)

: 0, 0, 0, 0;
yx

uu n
x L

x x x x

ϕ∂∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂
(6)

0, : 0, 0, 0, 0.x
y

u n
y H u

y y y

ϕ∂ ∂ ∂
= = = = =

∂ ∂ ∂
(7)

At low speeds, the flow becomes stationary and can be
determined by the transition to the variables ψ (current

function) and ω (vortex). If we assume that the flow is
irrotational, the Laplace’s equation (8), (9) can be used to
calculate water stream [7]:

( )
2 2

2 2
0, , ;x y

x y

ψ ψ
ψ

∂ ∂
∆ ≡ + = ∈Ω

∂ ∂
(8)

( ), , , .x yu u x y
y x

ψ ψ∂ ∂
= = − ∈Ω
∂ ∂

(9)

The boundary conditions for the current function are
expressed as follows (10), (11):

( ) ( ) ( )
0

0, ; , 0;
y

ny u y dy L y
x

ψ
ψ

∂
= =

∂∫ (10)

( ) ( ),0 0; , 0.x x H
x x

ψ ψ∂ ∂
= =

∂ ∂
(11)

The equation for the concentration can be written in form
(12):

( ), ,
n

div Qn
t

∂
= + +

∂
W R W (12)

where ( )D n n= ∇ −W P , 1q Dµ −=P F , 1D−=R u ,

( )1 ,Q q Dµ −= u F .

For solving of the problem we used the dimensionless
variables ' /x x H= , ' /y y H= , 0' /t t t= , 0' / uψ ψ= ,

0' / u=u u , 0' /n n n= , 0' /ϕ ϕ ϕ= , 0' / E=E E ,

( ) ( ) ( ){ }' ', ' 0, 0,1x y LΩ = ∈ × , 0 0/t H u= , 2
0 0 /qn Hϕ ε= ,

0 0 /E Hϕ= .

We neglect the temperature dependence of the diffusion
coefficient and the mobility coefficient.

Then, the resulting formulation of the problem (13) - (15)
is written as [3], [4]:

0, , ,x yu u
y x

ψ ψ
ψ

∂ ∂
∆ = = = −

∂ ∂
(13)
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Figure 1. 3D (a) and 2D (b) computational domains.

( ), ,
n

div Qn
t

∂
= + +

∂
W u W (14)

( )* , ,n n Eϕ ϕ∆ = − − = −∇ (15)

where ( ) ,n nD n P n= ∇ −W F ( )0 0/ ,nD D Hu=
1

0 0 0 ,nP q E uµ −= ( ), ,nQ Q= u F 1
0 0 0 ,nQ q E HDµ −=

[ ],n zB= + ×F E u e 1
0 0 0nB u B E−= . The basic dimensionless

parameters of the problem are: L , nD , nP , nQ , nB .

The initial conditions take the form:

( ) ( ) ( ) ( )
2

0 1,0 , 1, 1 2 1 .n nu y n u y y= = × = ≡ − −u u (16)

The boundary conditions for 0x = (17):

( ) ( )
0

' ', , 0, 1, 0.
y

n x n yu y dy u u y u n
x

ϕ
ψ

∂
= = = = =

∂∫ (17)

The boundary conditions for x L= take the form (18):

, , , , 0.
yx

uu n

x x x x x

ψ ϕ∂∂∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂
(18)

The boundary conditions for 0, 1y = are formulas (19):

, , , , 0.x
y

u n
u

x y y y

ψ ϕ∂∂ ∂ ∂
=

∂ ∂ ∂ ∂
(19)

III. NUMERICAL ALGORITHM

The finite difference method is proposed to solve the
problem. To do this, we introduce a uniform grid

h x yω ωΩ = × in domain Ω . The grid is multiplication of 1D

grids { }, 0,..., , /x i x x x xx h i i N h L Nω = = ⋅ = = and

{ }, 0,..., , 1 /y j y y y yy h j j N h Nω = = ⋅ = = , where xN , yN

– the number of network segments on x and y. We introduce

also grid h x yω ωΩ = × , where we use 1D grids

( ){ }1/2 10.5 , 1,..., ,x i i i xx x x i Nω − −= = + = and

( ){ }1/2 10.5 , 1,...,y j j j yy y y j Nω − −= = + = , and uniform grid

on time { }, 0,...,t k tt k k Nω τ= = ⋅ = (τ – the time step, tN

– number of steps). The current function is defined on hΩ

grid (in grid nodes), other functions – on the grid hΩ (in the

centers of the cells).
Standard differential equations are written for the current

function, of the velocity vector and the potential of electric
field [5][6]. They can be supplemented with boundary
conditions (20), (21), if it is necessary:

( ) ( ) ( )0, , ;h h h h hxx yy
x yψ ψ ψΛ ≡ + = ∈Ω (20)

( )
( )

( )
, , ,

, , ,

0.5 ,
, ;

0.5 ,

x h h y h y

h

y h h x h x

u
x y

u

ψ ψ

ψ ψ

 = + +
∈Ω

= − +

( ) ( ) ( ) ( )* , , ;h h h h h hxx yy
n n x yϕ ϕ ϕΛ ≡ + = − − ∈Ω (21)

( ), , .h h h hE x yϕ= −∇ ∈Ω

To approximate the equation for the concentration, we
write it in a modified form (22), using a double integral
transformation [7][8]:

( ) ( )1 1
,x x y y

x y

n
g W g W Qn

t g x g y

∂ ∂ ∂
= + +

∂ ∂ ∂
(22)

where ( ) ,n x x y yQ Q u F u F= + ,x x n yF E B u= +

,y y n xF E B u= −
0

exp ' ,
x

x xg u dx
 

=  
 
∫

0

exp ' ,
y

y yg u dy
 

=  
  
∫

( )
1

,x n x

x

W D e n
e x

∂
=

∂
( )1

,y n y

y

W D e n
e y

∂
=

∂

0

exp ' ,
x

x n xe P F dx
 

= − 
 
∫

0

exp ' .
y

y n ye P F dy
 

= − 
  
∫

Explicit-implicit difference scheme is written,
supplemented by appropriate boundary conditions (23), (24):

0

ˆ
ˆ ˆ , 1,h h

h h h h h t

n n
n Q n n

τ =

−
= Λ + = (23)
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( )( ) ( )( ), , , ,

, ,

1 1
ˆ ,h h x h x h y h y hx xx x

x h y h

n g W g W
g g

Λ = + (24)

where ,
0 '

exp ,x h x x
x x

g u h
≤ ≤

 
=  

 
∑ ,

0 '

exp ,y h y y
y y

g u h
≤ ≤

 
=  

 
∑

( ), ,

,

1
,x h n x h h x

x h

W D e n
e

= ( ), ,

,

1
,y h n y h h y

y h

W D e n
e

=

, ,
0 '

exp ,x h n x h x
x x

e P F h
≤ ≤

 
= − 

 
∑ , ,

0 '

exp .y h n y h y
y y

e P F h
≤ ≤

 
= − 

 
∑

The implementation of schemes is performed by using
iterative algorithms of alternating directions [9] and methods
of non-monotonic sweep.

The parallel realization of the algorithm is based on the
methods of domain decomposition [10] [11], and [12] and a
sweep parallel algorithm. Computer implementation is
performed by using Message Passing Interface (MPI) and
Open Multi-Processing (OpenMP) technologies [13], [14].

There are both advantages and disadvantages of the
proposed mathematical approach.

Firstly, the proposed model, of course, is incomplete
because it does not take into account the reverse influence of
changes of the ions concentration on flow characteristics.
However, in many cases, these corrections are of little
significance. At the same time, the rejection enables us to
calculate relatively easily the basic process of an
electromagnetic treatment of water.

Secondly, the transition to the current function enables us
not to worry about condition 0div =u , that (in alternative

numerical algorithms) is a big problem.
Thirdly, the rejection of the calculation of the vortex

structure of flow at low speeds does not have much value,
but saves computation time.

Fourthly, the use of staggered grids enables us to reduce
errors during interpolation of solution from one grid to
another.

Fifthly, the application of exponential schemes releases
from the problem of stability of the solution equation
algorithm for the concentration and separation of boundary
layers. Of course, the implementation of an exponential
scheme increases the computation time. However, this
increase is not catastrophic and can be compensated by using
parallel computing.

Thus, the proposed approach has the following
advantages: low time-consuming and highly stable
calculations.

IV. COMPUTATIONAL RESULTS

In this section of the paper, the data on numerical
experiments are described. To test the numerical algorithm,
we chose the calculation variant with values of the
dimensionless parameters 6L = , 1nD = , 1nP = , 1nQ = ,

1nB = . Grid parameters are equal: 300xN = , 50yN = ,

0.02x yh h= = , 410τ −= .

Figure 2. The stream function distribution in the computational domain.

Figure 3. The velocity modulus distribution in the computational domain.

Figure 4. The steady state distribution of impurity concentration.

Figure 5. The steady state distribution of electrical potential.

Figure 6. The steady state distribution of impurity concentration for 2nB = .
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Figure 7. The steady state distribution of impurity concentration into and

near localized area for 1nB = .

Figure 8. The steady state distribution of electrical potential into and near

localized area for 1nB = .

Figure 9. The steady state distribution of electrical field into and near

localized area for 1nB = .

The results of calculations are shown in several figures.
Fig. 2 presents the stream function distribution in the
computational domain. The velocity modulus distribution in
the computational domain is displayed in Fig. 3. The steady
state distribution of impurity concentration is given in Fig. 4.
We can estimate the distribution of electrical potential from
Fig. 5.

Analysis of the data shows the following. The influence
of the magnetic field leads to decreasing ions concentration
at the top of the area for positive values of nB parameter and

formation of increased ion concentration at the bottom layer.
Thus, the purification effect of the upper liquid layer is
realized.

The value of cleaning depends on the nB parameter. It

becomes noticeable when the Lorentz force is comparable to
the hydrodynamic pressure forces, that is 1nB = . Our

executed calculations show that reduction of impurity
concentration is achieved approximately 2 times for 1nB = .

If parameter 2nB = , the reduction of impurity concentration

at the upper liquid layer is about 3.5 times (Fig. 6).
The space localized effect of magnetic field is

implemented in industrial purification systems. In our work,
we introduce nB parameter dependence on the longitudinal

coordinate x . For example, we consider a localization of a

magnetic field in the area [ ]1.5,4.5x∈ and value 1nB = .

The calculation results are presented in Fig. 7 and Fig. 8.
They show that the layer of purified water is situated in the
upper part of the localized area. Water taking may be done
from the region, for example, through a special membrane.
The steady state distribution of electrical field into and near

localized area for 1nB = is shown in Fig. 9.

V. CONCLUSIONS

The issue of water purification of iron impurities by
means of electro-magnetic methods is discussed in this
paper. A simplified mathematical model was developed for
the model problem, describing the the purification process. A
numerical algorithm was proposed and the parallel code was
constructed for computer experiments. Tests of the code with
various sets of parameters confirmed the operability of the
proposed computational approach.

ACKNOWLEDGMENT

This work was supported by Russian Foundation for
Basic Research (grants №№ 15-01-04620-а, 16-07-00206-а). 

REFERENCES

[1] O. V. Mosin, E. N. Karnaukhova, A. B. Pshenichnikova, and O. S.
Reshetova, “Electron impact spectrometry in bioanalysis of stable
isotope labeled bacteriorhodopsin.” Sixth International Conference on
Retinal Proteins. Leiden. The Netherlands. . P.115, 19-24 June 1994.

[2] V. I. Shvets, A. M Yurkevich, O. V Mosin., and D. A Skladnev,
“Preparation of deuterated inosine suitable for biomedical
application.” Journal of Medical Sciences. V. 8. № 4. Pp. 231-232, 
1995.

[3] B.N. Chetverushkin, “Kinetic Schemes and Quasi-Gasdynamic
System of Equations,” Barcelona: CIMNE, 2008.

[4] T.G. Elizarova, “Quasi-Gas Dynamic Equations,” Berlin Heidelberg
New York: Springer-Verlag, 2009.

[5] A.A. Samarskii, “The Theory Of Difference Schemes,” New York:
Marcel Dekker, Inc., pp. 1-762, 2001.

[6] A.A. Samarskii and P.N. Vabishchevich, “Numerical methods for
solving inverse problems of mathematical physics,” Walter de
Gruyter, pp. 1-438, 2007.

[7] S.V. Polyakov, “Exponential Difference Schemes with Double
Integral Transformation for Solving Convection-Diffusion
Equations,” Mathematical Models and Computer Simulations, Vol. 5,
No. 4, pp. 338-340, 2013.

[8] A.A. Samarskii and E.S. Nikolaev, “Numerical Methods for Grid
Equations,” Vol. I: Direct Methods, Vol. II: Iterative Methods, Basel-
Boston-Berlin, Birkhäuser Verlag, pp. 1-502, 1989.

[9] I.A. Graur, T.G. Elizarova, T.A. Kudryashova, and S.V. Polyakov,
“Numerical investigation of jet flows, using multiprocessor computer
systems.” Mathematical Modelling, 14(6), pp. 51-62., 2002.

[10] T.A. Kudryashova, S.V. Polyakov, V. Podryga, and Yu. Karamzin,
“Multiscale modeling of nonlinear processes in technical
microsystems.” Mathematical modelling, № 7, V 27, pp. 65-74, 2015. 

39Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences



[11] A. Toselli and O. Widlund, “Domain Decomposition Methods” -
Algorithms and Theory. Springer, 2004.

[12] N. Wilt, CUDA Handbook: “A Comprehensive Guide to GPU
Programming,” 2013, [Online]. Available from:
http://www.cudahandbook.com/..

[13] Official documentation and manuals on OpenMP. [Online]. Available
from: http://www.openmp.org, http://www.llnl.gov/computing/
tutorials/openMP

[14] Yu. Karamzin, T. Kudryashova, V. Podryga, and S. Polyakov, “Two-
Scale Computation of N2-H2 Jet Flow Based on QGD and MMD on
Heterogeneous Multi-Core Hardware, Advances in Engineering
Software,” Engineering Computational Technology (ECT 2014):
Book of Summaries of The Ninth International Conference, 2-5
September 2014, Naples, Italy. - Stirlingshire, Scotland: Civil-Comp
Press, p. 28, 2014.

40Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences


