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Abstract—In this paper, a new velocity-based finite element
approach for non-linear dynamics of beam-like structures is
briefly introduced. The additivity of angular velocities in local
frame description, which are taken as primary unknowns along
with the linear velocities, brings several benefits, such as trivial
discretization and update procedure for the primary unknowns
and improved stability properties of the time integrator. The novel
approach introduces some new issues that need to be treated
properly, such as compatibility of angular velocities over the
finite element boundaries. A computationally cheap solution of
the problem is presented.

Keywords–non-linear dynamics; spatial beams; finite-element
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I. INTRODUCTION
The total set of equations in solid mechanics consists

of non-linear equilibrium, kinematic and constitutive equa-
tions that need to be solved for displacements, strains and
stresses. Many practical problems in solid mechanics deal
with structures that have one dimension larger than the other
two, e.g., columns and girders in civil engineering, robotic
arms, rotor blades and aircraft wings in mechanical engi-
neering, deoxyribonucleic acid (DNA) molecules in biology
and medicine, nanotubes in nanotechnology. Such structures
are usually modelled as beams. For beam-like structures the
kinematics of a body becomes simplified but the equations
remain non-linear, see, e.g., Antman [1]. Additionally, the
reduced kinematics introduces the three-dimensional rotations
of rigid cross-sections to describe the configuration of a beam.
The solution algorithms for beams usually reduce the total set
of equations in such a way that the configuration variables
(displacements and rotations) become the only unknowns of
the problem. For numerical solution methods, such reduction
means that the configuration variables need to be discretized
with respect to space and time. The three-dimensional rota-
tions, which are important members of configuration variables,
represent a demanding mathematical structure, characterized
by multiplicative nature (non-additivity), orthogonality and
non-commutativity. These properties need to be properly con-
sidered in the numerical solution methods to gain a sufficient
performance of calculations and accuracy of the results. Such
demands highly increase the complexity of algorithms and dis-
able direct applicability of the methods developed for standard
Euclidean spaces [2]–[5].

The alternative approach employed here exploits computa-
tionally simpler angular velocities as the primary quantities for
the description of rotational degrees of freedom. Such approach
brings several advantages to non-linear beam dynamics:

• when expressed in local bases, the components of an-
gular velocity vector become additive, which enables
the use of standard discretization and interpolation
techniques;

• the stability of implicit time integrators is improved
by taking the derivative of configuration quantities as
the iterative unknowns, see Hosea and Shampine [6];

• the time discretization, linearization of equations and
the update procedure are much simpler compared to
standard beam elements.

Besides the advantages, this new approach brings some
novel issues that need to be properly solved. The crucial idea
of the finite element method (FEM) lies in subdivision of a
larger structure into smaller parts called finite elements. An
important part of the solution procedure is the assembly of
equations of finite elements into a larger system of equations
that describe the problem at the structural level. The simplest
assumption used in the assembly procedure is that the elements
are rigidly connected so that the displacements and rotations
are continuous over the boundaries. When the displacements
and rotations are chosen as the primary variables, a simple
Boolean identification of degrees of freedom can be used. This
yields that velocities and angular velocities are continuous over
the finite element boundaries as well, but only when expressed
with respect to a fixed basis.

For the sake of computational advantages at the element
level, we express the angular velocities with respect to the
moving frame. Because of this choice, the simple identification
of degrees of freedom that belong to the joints between ele-
ments can no longer be used due to different initial orientations
of elements. Thus, the continuity of configuration quantities
in a fixed frame leads to a more complicated relation in the
local frame. This relation could be introduced at the structural
level using the method of Lagrange multipliers, but such an
approach would increase the number of degrees of freedom
and the computational complexity of the overall algorithm.
An elegant and computationally cheap alternative is presented
here. Excellent properties of the proposed numerical model are
demonstrated by numerical examples.

The rest of the paper is structured as follows. Section II
introduces Cosserat beam model. In Section III, we describe
a novel numerical solution method for Cosserat beams. The
treatment of boundary conditions is presented in Section IV.
In Section V, some numerical examples are given. The paper
ends with concluding remarks.
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II. COSSERAT BEAM MODEL
Among beam models, the Cosserat theory of rods, [1], is

widely used. The numerical implementation of the model is
usually attributed to Reissner [7] and Simo [8], where it is also
called the geometrically exact beam. Only a brief description
of the model is presented here.

The centroidal line
{
⇀
r (x, t) , x ∈ [0, L] , t ≥ 0

}
and the

family of cross-sections {A (x, t) , x ∈ [0, L] , t ≥ 0} of the
beam are parametrized by the arc-length parameter x and the
time t, where L is the length of the beam in its initial position,
see Figure 1. We assume that cross-sections are bounded plane
regions that preserve their shape and area during deformation.
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Figure 1. A three-dimensional beam.

For the description of beam equations and the quan-
tities therein, we introduce the local orthonormal basis{
⇀

G1 (x, t) ,
⇀

G2 (x, t) ,
⇀

G3 (x, t)

}
, which defines the orienta-

tion of each cross-section, and the global orthonormal basis{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
, which is fixed in time and space. A rotation

between the global and the local basis, defined by the quater-
nion multiplication (◦) reads

⇀

Gi (x, t) = q̂ (x, t) ◦⇀g i ◦ q̂ ∗ (x, t) , i = 1, 2, 3, (1)

where q̂ denotes the rotational quaternion and q̂ ∗ its conjugate.

III. NUMERICAL SOLUTION METHOD
The total set of governing equations describing dynamics

of Cosserat rods in terms of quaternions can be found, e.g.,
in [9] or [10]. Following the classical Galerkin finite-element
approach and introducing a family of interpolation functions
Ip (x), p = 1, 2, ..., N , the discretized balance equations of a
beam read:

L∫
0

[
nI ′p − ñIp + ρA

··
rIp

]
dx− δpf = 0 (2)

L∫
0

[mI ′p − (r′ × n) Ip − m̃Ip + q̂ ◦
(

Jρ
·
Ω

)
◦ q̂ ∗Ip

+ ω × (q̂ ◦ (JρΩ) ◦ q̂ ∗) Ip] dx− δph = 0. (3)

The bold-face letters represent vector quantities in the com-
ponent form. The lower case letters are used when a vector
is expressed with respect to the fixed frame and the upper

case letters are used for the local basis description. A hat
over the letter denotes a four-dimensional vector, a member
of the algebra of quaternions. Here, n and m are the resultant
force and moment vector of the cross-section expressed in fixed
frame, i.e.,

n (x, t) = q̂ (x, t) ◦N (x, t) ◦ q̂ ∗ (x, t) , (4)
m (x, t) = q̂ (x, t) ◦M (x, t) ◦ q̂ ∗ (x, t) , (5)

where N and M are the same vectors expressed in local basis;

Ω and
·
Ω are the angular velocity and angular acceleration;

··
r is

the linear acceleration; ρ is the density of the material; A is the
area of the cross-section; Jρ is the matrix of mass moments
of inertia; ñ and m̃ are vectors of applied distributed force
and moment; δpf (t) and δph (t) are the applied concentrated
forces and moments at ends of the beam:

δpf (t) =


f0 (t) , p = 1

fL (t) , p = N

0, otherwise

δph (t) =


h0 (t) , p = 1

hL (t) , p = N

0, otherwise

.

Equations (2)–(3) represent a system of 6N equations discrete
in time but still continuous in space. The dependency of
quantities on space x and time t has been omitted for better
readability. They need to be solved together with kinematic
and constitutive equations. Kinematic equations of Cosserat
beam are as follows

Γ = q̂∗ ◦ r′ ◦ q̂ + Γ0, K = 2q̂∗ ◦ q̂′, (6)

where Γ and K denote the translational strain vector and
the shear strain vector, respectively. For constitutive equations
various models could be taken, but here we limit ourselves to
the simplest case of linear elastic material, where

N = diag [ EA GA2 GA3 ]Γ (7)
M = diag [ GI1 EI2 EI3 ]K. (8)

Here, EA/L is the axial stiffness, EI2 and EI3 denote the
bending stiffness, GI1/L is the torsional stiffness, GA2 and
GA3 are the shear stiffnesses.

A. Time discretization
For the time discretization, we use the approximation of

displacements at tn+1 following from the mean value theorem:

r[n+1] = r[n] + h
v[n] + v[n+1]

2
,

which yields
r[n+1] = r[n] + hv,

where v denotes the average velocity

v =
v[n] + v[n+1]

2

and h = tn+1 − tn is the time step of the scheme.
For accelerations we can similarly employ

a[n] + a[n+1]

2
=

v[n+1] − v[n]

h
.
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After some rearrangement of terms, the scheme for transla-
tional degrees of freedom reads

r[n+1] = r[n] + hv

v[n+1] = −v[n] + 2v (9)

a[n+1] = −a[n] − 4

h
v[n] +

4

h
v.

This scheme can be interpreted as a modification of the
classical implicit Newmark scheme, where the average velocity
becomes the iterative unknown.

A similar approach can be used for rotational degrees of
freedom with an important exception stemming from the non-
linear relationship between angular velocities and rotational
quaternions. The exponential mapping is used to map from
incremental angular velocities to incremental rotations. The
incremental rotation is then multiplied with the current one.
The scheme for rotational degrees of freedom reads

q̂[n+1] = q̂[n] ◦ exp
(
h

2
Ω

)
Ω[n+1] = −Ω[n] + 2Ω (10)

α[n+1] = −α[n] − 4

h
Ω[n] +

4

h
Ω,

where exp denotes the quaternion exponential

exp (x̂) = 1̂ +
x̂

1!
+

1

2!
x̂ ◦ x̂ +

1

3!
x̂ ◦ x̂ ◦ x̂ + .... (11)

B. Spatial discretization
In the present time discretization, the average velocities

v and Ω are the only unknown functions along the length
of the beam at each particular time step. They are replaced
by a set of nodal values vp, Ω

p
at discretization points xp,

p = 1, . . . , N , with x1 = 0 and xN = L, and interpolated by
a set of interpolation functions Ip(x) in-between:

v (x) =

N∑
p=1

Ip (x)vp, Ω (x) =

N∑
p=1

Ip (x)Ω
p
. (12)

The same discretization procedure is performed at every finite
element of the structure. Thus, boundary nodes x1 and xN
become members of the global notes important at the structural
level, while x2,... xN−1 are internal points of the element, often
but not necessarily condensed at the elements level. Angular
velocities in local basis description are additive quantities and
the standard aditive-type interpolation used is in complete
accord with the properties of the configuration space.

C. Newton iteration
After time and space discretization, the governing equa-

tions (2)–(3) are replaced by a set of nonlinear algebraic
equations that need to be solved at each discrete time for all the
nodal values. The non-linear equations are solved iteratively
using the Newton-Raphson method

K[i]δy = −f [i], (13)

where K[i] is the global Jacobian tangent matrix, f [i] the resid-
ual vector of discretized equations (2)–(3), both in iteration i,
and δy a vector of corrections of all nodal unknowns

δy =
[
δv1 δΩ1 · · · δvM δΩM

]T

A suitable choice of nodal variables allows the kinematically
admissible additive update:

v[i+1] = v[i] + δv, Ω
[i+1]

= Ω
[i]

+ δΩ (14)

at each discrete point of the structure.

IV. CONTINUITY OF BOUNDARY VALUES
Finite elements have equal displacements and rotations

at the rigid joints. However, the initial rotations of different
elements are not necessarily equal. When the initial orienta-
tions differ, we need to distinguish between the initial and
the relative rotations. Let us start with two elements having
different initial orientations, described by quaternions q̂I

0 and
q̂II
0 at the joint: q̂I

0 6= q̂II
0 . When the joint is rigid the position

vectors are equal, but the total rotations differ

rI = rII and q̂I 6= q̂II, (15)

as shown in Figure 2.

element I

element II

node 1

node 2

node 3
...

...
r, qII

r, qII II

Figure 2. A rigid joint of two differently oriented elements.

The total rotations can be expressed as a composition of
initial and relative rotation

q̂I = q̂I
0 ◦ k̂I and q̂II = q̂II

0 ◦ k̂II, (16)

where the relative rotations are equal:

k̂I = k̂II. (17)

The continuity condition, which could also be called the
compatibility of rotations at the element boundaries, thus reads

q̂I ◦ q̂I∗
0 = q̂II ◦ q̂II∗

0 .

In configuration based approach we usually avoid enforcing
this condition by introducing the relative rotational quaternion
k̂ as the nodal variable. For the velocity-based approach, we
can similarly observe that

vI = vII and Ω
I 6= Ω

II
,

as the angular velocities are expressed in different local frames.
We will derive the compatibility condition for angular veloci-
ties at the joints and propose a similar strategy as for rotational
quaternions to avoid the use of Lagrange multipliers method by
the substitution of the primary unknowns of Newton’s iteration
at the structural level. The details are presented in the sequel.

A. Relation between boundary angular velocities
The angular velocity vector expressed in the local frame is

defined as
Ω = 2q̂∗ ◦

·
q̂, (18)

which yields the expressions for the nodal angular velocities
of elements I and II at the joint

Ω
I
= 2q̂I∗ ◦

·
q̂I and Ω

II
= 2q̂II∗ ◦

·
q̂II.
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After considering (16), we have

Ω
I
= 2q̂I∗

0 ◦ k̂I∗ ◦
·

k̂I ◦ q̂I
0 and Ω

II
= 2q̂II∗

0 ◦ k̂II∗ ◦
·

k̂II ◦ q̂II
0 .

Since the relative rotation k̂ is continuous over the boundaries
of elements, eq. (17), we are able to express the constraint
relation between the boundary angular velocities

q̂I
0 ◦Ω

I ◦ q̂I∗
0 = q̂II

0 ◦Ω
II ◦ q̂II∗

0 . (19)

For the clarity of further derivation, it is convenient to express
(19) in terms of rotation matrices:

RI
0Ω

I
= RII

0 Ω
II
, (20)

where RI
0 and RII

0 denote the standard rotation matrices
equivalent to quaternion-based rotations expressed with q̂I

0 and
q̂II
0 .

B. Algorithmically enforced boundary conditions
A solution of two moment equilibrium equations (3) ex-

pressed at the same node, here formally written as

MI
(
Ω

I
)
= 0 and MII

(
Ω

II
)
= 0, (21)

needs to be found. The solution must also satisfy the algebraic
constraint

RI
0Ω

I −RII
0 Ω

II
= 0. (22)

Following the method of Lagrange multipliers the constraint
equation is multiplied by a multiplier λ and linearized. The
corresponding partial derivatives are then added to the initial
variational problem to obtain the weak form of Lagrange
function. For the present case it reads

MI
(
Ω

I
)
+ RI

0λ = 0 (23)

MII
(
Ω

II
)
−RII

0 λ = 0 (24)

RI
0Ω

I −RII
0 Ω

II
= 0. (25)

The method thus increases the size of the system and
the computational demands. It introduces three additional
scalar unknowns and three additional equations for each rigid
joint between two elements. To avoid this, we introduce the
following change of variables describing the nodal rotation-
related unknowns:

Ω
I

R = RI
0Ω

I
and Ω

II

R = RII
0 Ω

II
. (26)

Based on the substitution of unknowns (26), the method of
Lagrange multipliers gives

MI
(
RIT

0 Ω
I

R

)
+ λ = 0 (27)

MII
(
RIIT

0 Ω
II

R

)
− λ = 0 (28)

Ω
I

R −Ω
II

R = 0. (29)

The system (27)–(29) can be easily reduced since the nodal
unknowns are now identical: Ω

I

R = Ω
II

R. These new variables
can be interpreted as the relative angular velocities in a relative
local frame. After the summation of the first two equations, we
obtain the reduced moment equilibrium equation at the joint:

MI
(
RIT

0 Ω
I

R

)
+MII

(
RIIT

0 Ω
I

R

)
= 0.

Translational degrees of freedom are left unchanged. The
correction vector of iteration method thus becomes

δyR =
[
δv1 δΩR,1 · · · δvM δΩR,M

]T
.

Note that the corrections of newly introduced variables (26)
can still be directly summed up to the current iterative values.
This property follows from the distributivity of multiplication
of time-constant matrix R0 with the sum of angular velocity
and its update. The original quantities Ω

I
and Ω

II
remain to

be the interpolated quantities at the elements level. Hence in
each iteration step i the variables Ω

I
and Ω

II
are extracted

from Ω
I

R = Ω
II

R and applied for further calculations.
With this procedure only six variables per node are needed

and computational complexity is only slightly increased due to
reconstruction of average angular velocities at the element’s
level from the relative ones at the structural level. This
procedure is done by applying a simple time-independent
rotation. The main advantage, i.e., the additivity of the iterative
and the interpolated unknowns, is preserved. The size of the
problem for each element thus remains to be 6N , which means
that on the structural level we need to solve 6(N · E − n)
equations, where E denotes the number of elements and n the
number of rigid joints. To enforce the boundary conditions,
the proposed method requires additional n matrix products
of the initial transposed rotation matrix, RT

0 , and the relative
angular velocity, ΩR. As we will show by numerical example,
these costs are negligible with respect to the overall numerical
procedure.

V. NUMERICAL STUDIES

The applicability and an excellent performance of the
proposed method will be demonstrated on standard examples
for flexible beam-like structures with finite strains where the
structure undergoes large displacements and rotations. Equidis-
tant discretization points were chosen for spatial discretization
and standard Lagrangian polynomials were taken to be inter-
polation functions. Integrals were evaluated numerically using
the Gaussian quadrature rule. The Newton-Raphson iteration
scheme was terminated when the Euclidean norm of the vector
of corrections of all primary unknowns was under 10−9. The
geometric and material data chosen in the examples are

EA = GA2 = GA3 = 106,

GI1 = EI2 = EI3 = 103,

ρA = 1.

Other data are provided for each example separately .

A. Free flight of a beam: the computational performance
In our first example, we analyse the computational perfor-

mance of the present approach when solving a problem similar
to the one introduced by Simo and Vu-Quoc [2]. The beam
is initially inclined and subjected to a piecewise linear point
force fX and point moments hY and hZ at the lower end, as
shown in Figure 3. The mass-inertia matrix of the cross-section
is taken to be: Jρ = diag [ 10 10 10 ].

For this particular problem, all elements have equal initial
orientations. A simple Boolean identification of degrees of
freedom is therefore reasonable even if angular velocities in
local frame description are the primary unknowns, which is
the case in our approach. This allows us to solve the problem
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in two different ways: i) with Boolean identification and ii)
using the proposed algorithm. By doing so, we will be able to
compare the computational times and demonstrate the demands
of the presented algorithm. Note that the Boolean identification
is not appropriate when solving problems, where elements have
different initial inclinations, which limits its applicability and
generality.
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Figure 3. Unsupported beam that is initially straight but inclined.

To compare both methods, a dense mesh of 100 linear
elements has been used. For this problem a small number of
elements would be sufficient, but by increasing their number
the complexity of the overall algorithm raises so the additional
demands of the proposed algorithm can be easier observed. The
average computational times of the same evaluation in seconds
are presented in Table I.

TABLE I. COMPUTATIONAL TIMES OF INITIALLY STRAIGHT BEAM.

Method initial time step ten time steps
Boolean identification 3.415 42.820
proposed algorithm 3.508 34.011

We can observe that computational times of the proposed
method are only slightly larger after the first time step. How-
ever, in the time stepping procedure the proposed algorithm
behaves better since the newly introduced relative velocities
seem to be more suitable computational unknowns, which
leads to a lower number of total iterations needed and therefore
lower computational times.

B. Large deflections of right-angle cantilever
This classical example introduced by Simo and Vu-Quoc

[2] was studied by many authors. A right-angle cantilever beam
is subjected to a triangular pulse out-of-plane load at the elbow,
see Figure 4. Each part of the cantilever is dicretized with two
third-order elements. A dynamic responce of the cantilever
involves very large magnitudes of displacements and rotations
together with finite strains. After removal of the external force,
the cantilever undergoes free vibrations and the total mechani-
cal energy of the cantilever should remain constant. Therefore,
the stability of the algorithm is here checked through the en-
ergy behavior. The centroidal mass-inertia matrix of the cross-
section is diagonal: Jρ = diag [ 20 10 10 ]. Originally the
solution was computed on the time interval [0, 30] with fixed
time step 0.25, later the interval was extended to [0, 50] by
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Figure 4. The right-angle cantilever subjected to out-of-plane loading.

Jelenić and Crisfield [11] claiming that most of the algorithms
encounter numerical stability problems between times 30 and
50. Here on a longer time interval [0, 100] solution was
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Figure 5. The out-of-plane displacements at free-end and at elbow for the
right-angle cantilever.
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Figure 6. The time history of the total mechanical energy for the right-angle
cantilever.

obtained without any numerical problems noticed, see Figure
5. However the time step used had to be reduced by half,
h = 0.125, otherwise the iteration could not achieve the
prescribed tolerance condition at time 51.5. From Figure 6
we can observe almost constant total mechanical energy after
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time t = 5; only slight discrepancy of about 0.2% can be
observed, which indicates good stability of calculations. The
present results on the time interval [0, 30] agree well with the
results reported by other authors.

C. Large overall motion of a flexible cross-like structure
The large overall motion of completely free “cross” was

first presented by Simo et al. [12] to illustrate the performance
of the algorithm when calculating the dynamics response of a
reticulated structure. The geometry and the applied external
out-of plane forces are depicted in Figure 7. The centroidal
mass-inertia matrix of the cross-section is taken to be Jρ =
diag [ 10 10 10 ]. The solution was computed on a very

M t( )
M t( )

A

F t( ) F t( )

F t( ) F t( )

200

5.02.5 t

F t M t( )=0.1 ( )

5

Figure 7. The geometry and the loading of the “cross”.

large time interval [0, 1000] with time step h = 0.1. Because
the interval of calculation is so extremely long we present only
displacements on short intervals at the beginning and at the end
of calculation, see Figure 8. After removal of external forces at
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Figure 8. The displacements of the “cross” at point A at the beginning and
at the end of calculation.

time t = 5 the cross vibrates freely in a periodic-like dynamic
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Figure 9. The time history of the total mechanical energy for the “cross”.

pattern and the total mechanical energy is almost constant as
expected, see Figure 9. The calculations remain stable even
after 10 000 time steps.

VI. CONCLUSION
A novel finite-element approach for the beam dynamics

has been presented. The proposed method exploits the benefits
of the favourable properties of angular velocity in the local
frame description. The issue of the continuity of the structural
unknowns over the element boundaries has been resolved
with minimal computational cost. The classical benchmark
examples demonstrate the accuracy and numerical stability
of the proposed method. Its improved behaviour compared to
other solution method is evident.
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[11] G. Jelenić and M. A. Crisfield, “Geometrically exact 3D beam theory:
implementation of a strain-invariant finite element for statics and
dynamics,” Comput. Meth. Appl. Mech. Eng., vol. 171, no. 1-2, pp.
141–171, 1999.

[12] J. C. Simo, N. Tarnow, and M. Doblare, “Nonlinear dynamics of 3-
dimensional rods - exact energy and momentum conserving algorithms,”
Int. J. Numer. Methods Eng., vol. 38, no. 9, pp. 1431–1473, 1995.

22Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences


