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Abstract—The vibration signal of a rotating machine always 

carries the dynamic information of the machine. Its analysis is 

very useful for the condition monitoring and fault diagnosis. 

Many signal analysis methods are able to extract useful 

information from vibration data. In this paper, bearing fault 

diagnosis is performed using Wavelet Transform (WT) and 

Parseval’s theorem. The WT is used to decompose the original 

signal into several signals in order to obtain multiple data 

series at different resolutions. The fault can be detected from a 

given level of resolution. For this purpose, Parseval’s theorem 

is used as an evaluation criterion to select the optimal level. 

Associated to envelope analysis, it allows clear visualization of 

fault frequencies. Vibration signals from a pilot scale are used 

to demonstrate the usefulness of the proposed method. The 

results of the application in inner and outer races bearing 

diagnosis are satisfactory. 

Keywords-vibration; fault diagnosis; wavelet transform; 

Parseval’s theorem; bearing. 

I.  INTRODUCTION 

Fault diagnosis is extremely important task in process 
monitoring. During the two past decades, various 
monitoring methods have been developed, such as 
dynamics, vibration, tribology and non-destructive 
techniques [1][2]. The vibration signal analysis is essential 
in improving condition monitoring and fault diagnosis of 
rotating machinery, because it always carries the dynamic 
information of the system. Effective utilization of the 
vibration signals depends upon the effectiveness of the 
applied signal processing techniques. A wide variety of 
techniques have been introduced such as: time domain and 
frequency domain [3][4]. Unfortunately, they are not 
suitable for non-stationary signal analysis [5]. In order to 
solve this problem, Wavelet Transform (WT) has been 
developed. The WT, also called time-frequency analysis, is 
a kind of variable window technology, which uses a time 
interval to analyze the frequency components of the signal. 
This makes the application of the WT for non-stationary 
signal processing an area of active research over the past 
decade. An overview of the WT used in vibration signal 
analysis was provided in [6][7][8]. 

The original signal using WT can be decomposed into 
approximations and details versions with different 
frequency bands by using a successive low-pass and high-

pass filtering. The decomposed levels will not change their 
information in the time domain [9]. However, useful 
information can be contained in some sub-bands. So, the 
fault can be detected from a given level of resolution. This 
is based on a choice of an indicator to determine the optimal 
level where failure can occur. The selection of the most 
reliable indicator has been studied by several authors. 
Prabhakar et al. [10] selected the periodic impulses of 
bearing faults in time domain based on low and high 
frequency nature of decomposed levels. Similar analyses 
were carried out by Purushotham et al. [11] in order to 
extract the periodic impulses from the time signals using 
discrete wavelet transform at Mel-frequency scales. 
Chinmaya and Mohanty [12] used the sidebands of the gear 
meshing frequencies as an evaluation criterion for gear 
faults diagnosis. Djebala et al. [13] analyzed the vibration of 
faults inducing periodical impulsive forces by selecting the 
kurtosis as indicator.  

In this work, the measured vibration signals are 
decomposed using the Daubechies wavelet. Clearly, useful 
information is contained in some decomposition levels. In 
order to extract useful information, the energy distribution is 
established by Parseval’s theorem. The latter is used as 
principal criterion to select the optimal level of resolution. 
The proposed method is evaluated using the vibration 
measurements obtained from accelerometer sensors. The 
aim of this method is to provide a solution of bearing fault 
diagnosis. 

The remainder of this paper is structured as follows. 
Section II presents the experimental rig used. Section III 
describes the fault diagnosis method. Results and discussion 
are presented in Section IV. Finally, the main conclusions 
are outlined in Section V.  

II. EXPERIMENT DATA ACQUISITION 

Vibrations caused by defective bearing elements account 
for the vast majority of problems with rotating machinery. 
Each element such as inner race or outer race has a 
characteristic rotational frequency. With a fault on a 
particular element, an increase in the vibration energy at this 
element rotational frequency may occur. The monitoring of 
these elements has a primary importance for the correct 
operation of the machine. 

The experimental measurements presented in this paper 
are entirely based on the vibration data obtained from the 
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Case Western Reserve University Bearing Data Centre [14]. 
As shown in Figure 1, the motor is connected to a 
dynamometer and torque sensor by a self-aligning coupling. 
The vibration signals were collected from an accelerometer 
mounted on the motor housing at the drive end of the motor. 
The vibration data was obtained from the experimental 
system under the four different operating conditions: (1) 
normal condition; (2) with inner race fault; (3) with outer 
race fault; and (4) with ball fault. The data is sampled at a 
rate of 12 kHz and the duration of each vibration signal was 
10 seconds. More details about experimental setup were 
reported in [14]. 

The bearings used in this study are deep groove ball 
bearings manufactured by SKF. Faults were introduced to 
the test bearings using electro-discharge machining method. 
The defect diameters of the three faults were the same: 
0.018, 0.036, and 0.053 mm. The motor speed during the 
experimental tests is 1797–1720 rpm. Each bearing was 
tested under the four different loads: 0, 1, 2, and 3 horse 
power (hp).  

In order to evaluate the proposed method, the data 
measured under 0-load (0 hp) at rotation speed of 1797 rpm 
(30 Hz) including the faults on the inner and outer races 
were used. The original signal is divided into segments of 
samples that each sample covered 4096 data points.  

Figures 2a, 2b and 2c represent respectively a vibration 
signal collected at 1797 rpm from the normal state, inner 
race fault and outer race fault. 

The fault frequency can be calculated from the geometry 
of the bearing and element rotational speed. Frequencies 
associated with defective inner and outer races are as 
follows: 

 ( ) ( )( )α+= cosDdfnf rIR 12  (1) 

 ( ) ( )( )α−= cosDdfnf rOR 12  (2) 

where, fr is the rotational frequency, d the ball diameter, D 
the pitch diameter, n the number of balls and α the contact 
angle. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  (a) Bearing test rig and (b) its schematic description [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Vibration signals of: a) normal state, b) inner race fault and c) 

outer race fault. 

The fault frequencies of inner race and outer race are 
calculated, respectively, according to (1) and (2), which are 
162 Hz and 107 Hz. 

III. FAULT DIAGNOSIS METHOD 

In this section, a diagnosis method, which consists of 
two approaches, namely, the WT and Parseval’s theorem, is 
described to monitor the bearing inner and outer races.  

A. Wavelet Transform 

The WT is one of the most important methods in signal 
analysis. It is a time-frequency analysis technique. Due to its 
strong capability in time and frequency domain, it is applied 
recently by many researchers in rotating machinery. The 
WT decomposes a signal in both time and frequency in 
terms of a wavelet, called mother wavelet (3). The mother 
wavelet must be compactly supported and satisfied with the 
admissibility condition (4). 

 )a/)bt(()a()t( −ψ=ψ 1  (3) 

 ∫
+∞

∞−

∞<ψ dww)w(ˆ
2

 (4) 

where )w(ψ̂  is the Fourier transformation of )t(ψ . 

Two variations of the WT exist: Continuous Wavelet 
Transform (CWT) and Discrete Wavelet Transform (DWT). 
They are described below: let s(t) be the original signal, the 
CWT of s(t) is defined as: 
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 ∫
∞

∞−

ψ= td)ab)-(t()ts()a((a,b)CWT
*

1  (5) 

where * denotes complex conjugate, a and b are the 
dilation (scaling) and translation (shift) parameters, 
respectively. 

The DWT is derived from the discretization of the CWT 
by discrete values of a and b. The DWT is given by: 

 ∫
∞

∞−

ψ= td))k2-(t()ts()()k,jDWT( jj*j 221  (6) 

where a and b are replaced by 2
j
 and 2

j
k, j is an integer.  

The DWT can be regarded as a multiresolution analysis 
technique [16], as illustrated in Figure 3. The DWT analyzes 
the signal at different scales or resolutions. It employs two 
sets of functions, called scaling functions and wavelet 
functions [16][17], which are associated with low pass (L) 
and high pass (H) filters, respectively. The discrete signal is 
convolved with L and H, resulting in two vectors A1 and D1 
on a first level. The vector A1 is called approximation and 
the vector D1 is called detail. The application of the same 
transform on the approximation A1 causes it to be 
decomposed further into approximation A2 and detail D2 on 
a second level. Finally, the signal is decomposed at the 
expected level.  

The selection of the appropriate wavelet is very 
important in signals analysis. There are many functions 
available can be used, such as Haar, Daubechies, Meyer, 
and Morlet functions [18][19]. In the present study, we use 
the Daubechies wavelet to identify the inner and outer races 
bearing frequencies. 

B. Parseval’s Theorem 

The Parseval’s theorem refers to the result that the sum 
of square of a function is equal to the sum of the square of 
its transform. 

In the wavelet domain, the Parseval’s theorem can be 
defined as the energy of a function in the time domain is 
equal to the sum of all energy concentrated in the different 
decomposition levels. This can be described by [20]: 

 ∑∑∑∑ +=
m N

m
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N

)t(D)t(A)t(s
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2
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2
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2
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Figure 3.  Principal of DWT decomposition. 

where N is the number of samples and m is the maximum 
level of wavelet decomposition. The left-hand term of (7) 
represents the total energy of the signal s(t), the first and the 
second term on the right denote respectively, the total 
energy of the approximation in the level m and the total 
energy of the detail from level 1 to m. 

The time domain information will not be lost when the 
signal is decomposed. In order to extract the maximum 
information in the different resolution levels, the energy 
distribution of the approximation and the detail of the signal 
is calculated. It is given by: 
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where  denotes the norm operator. 

IV. MONITORING RESULTS 

The proposed method is applied to the diagnosis of the 
SKF bearing with inner race fault and outer race fault. The 
motor runs at a speed of 1797 rpm (30 Hz). 

The multiresolution analysis is applied by using the 
Daubechies wavelet of order 4 (db4). Here, level 4 
decomposition is employed to extract approximations and 
details coefficients from vibration signals. The result of db4 
decomposition is given in Figures 4 and 5, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Wavelet decomposition of inner race fault. 
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Figure 5.  Wavelet decomposion of outer outer fault.  

The objective of the proposed method is to demonstrate 
the effectiveness of the energy distribution as principal 
criterion for selecting the optimal decomposition level. The 
level having the largest value indicates the desired level.  

The energy distribution of each level is shown in Figure 
6. The decomposition levels 1 to 4 represent the detailed 
version and the levels 5 stand for the approximated version 
of the signal. The figure shows the obvious difference 
between levels. From this figure, it can be seen that the 
energy distribution using db4 occurs in the second level for 
each fault. So, our choice is attached to the detail D2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Energy distribution: a) inner race and b) outer race. 

In order to diagnose the inner race fault and the outer 
race fault from the selected level, we use envelope analysis. 
Figures 7a and 8a show respectively the selected 
decomposition level (D2) of inner race fault and outer race 
fault. It is clear that this level shows the shocks generated by 
the considered faults. 

Figures 7b and 8b illustrate respectively the envelope 
spectrum of D2 of inner race fault and outer race fault. The 
frequency spectra clearly show many frequency 
components, at the rotation frequency (30 Hz), also at the 
characteristic frequencies of the inner race (162 Hz) and the 
outer race (107 Hz) and their harmonics, which indicates a 
defective bearing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.   (a) Selected level of inner race fault and (b) its envelope 

spectrum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.   (a) Selected level of outer race fault and (b) its envelope 

spectrum. 
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V. CONCLUSION AND FUTURE WORK 

This paper presented a method for improving the bearing 
fault diagnosis based on WT and Parseval’s theorem. It is 
adapted to obtain multiple data series at different resolutions 
by wavelet decomposition and calculate the energy 
distribution using Parseval’s theorem in order to select the 
optimal decomposition level, for a possible diagnosis. A 
case study on SKF bearing diagnosis with defective inner 
race and outer race has shown that this method can greatly 
improve the accuracy of diagnosis. Hence, the proposed 
method is a successful approach for vibration monitoring. It 
remains to test its application on a signal containing other 
types of faults. 
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