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Abstract—This paper presents the design of a fuzzy tracking 

controller for uncertain Single Link Manipulator (SLM) 

moving in the vertical plane. A Takagi-Sugeno (TS) fuzzy 

model of the uncertain nonlinear plant is constructed using 

sector nonlinearity approach and a set of operations point 

technique. The controller design for TS fuzzy plant is then 

carried out using Francis-Isidori-Byrnes (FIB) nonlinear 

regulation theory and parallel distributed compensation (PDC) 

technique. MATLAB simulations are performed to validate the 

designed controller for tracking constant and sinusoidal 

reference signals. 

Keywords- Uncertain single link manipulator; TS fuzzy 

model; Parallel distributed compensation; Linear matrix 

inequalities; Francis-Isidori-Byrnes nonlinear regulation theory; 

MATLAB/Simulink. 

I.  INTRODUCTION 

Single Link Manipulators (SLM) are popular platforms to 
study control algorithms. Two types of SLM are often 
deployed by researchers to validate their control techniques. 
These include flexible joint and flexible link manipulators 
which can be made to operate either in horizontal or vertical 
plane. The vertical plane motion introduces an additional 
factor of gravity in the model. A variety of linear and 
nonlinear techniques are found in literature for the control of 
SLM. The design of H-∞ based Proportional-Derivative-
Integral (PID) control is presented in [1] for tip regulation 
task in SLM. The method considers the model uncertainty as 
a result of neglecting high frequency modes and computes 
the gain space for PID controller using H-∞ optimization 
criterion. Real-time implementation results using a digital 
signal processor validates the proposed controller which is 
also found to outperform the Ziegler-Nichols-PID controller 
in terms of the transient performance and robustness. Back 
stepping method tuned by Genetic algorithm is used by Ali 
Sahab and Modabbernia [2] to control SLM. Through a 
series of virtual control inputs and control Lyapunov 
functions, convergence of tracking error is shown. A fitness 
function is formed to minimize the settling time and 
percentage overshoot. Based on this function, Genetic 
algorithm finds optimal gains for back stepping controller. 
The proposed algorithm is shown to perform better than 
robust control methods for stabilization and reference 
tracking tasks. An adaptive controller is proposed in [3] to 
control a SLM which adjusts the position and velocity gains 

based on the tracking error. The controller demands large 
bandwidth (as a function of error) during startup to provide 
fast response and bandwidth decreases as the error converges 
to zero which helps to eliminate the overshoot in system 
response. A notion of dynamic pole motion explains the 
system stability under the presented design scheme. The use 
of fuzzy logic in controlling a SLM is also addressed [4]-[7]. 
A two stage fuzzy controller is presented in [4] for tip 
position tracking in SLM. The first stage employs two fuzzy 
logic controllers with motor angle and its derivative being 
the inputs of first 81-rule base controller while the second 
controller processes tip angle and its derivative using a rule-
base containing 49 rules. The outputs from these fuzzy logic 
controllers form input to a second stage fuzzy logic 
controller which generates pulse width modulated signal to 
drive the DC motor. Simulation and experimental results 
show the superior performance of the proposed controller in 
comparison to PID controller. The optimization of a fuzzy 
controller in terms of its scaling gains and membership 
functions is carried out using Genetic algorithm [5] which 
uses a weighted combination of conflicting objectives 
including the fast response and minimal overshoot as a 
fitness function. In addition, a command shaper is also 
integrated to modify the reference signal keeping in view the 
vibration modes. The command shaper is also tuned using 
genetic algorithm to give the optimal locations and 
amplitudes of impulses which are then convolved with 
desired reference signal to generate a modified reference 
signal. 

This paper follows a model-based approach for the 
design of fuzzy logic controller for stabilization and tracking 
control of SLM moving in vertical plane. By assuming the 
parameters to be uncertain, a TS fuzzy plant model is 
constructed which exactly represents the original nonlinear 
dynamics in compact region formed from parameter bounds 
and operating region [8]. Francis-Isidori-Byrnes (FIB) 
nonlinear regulation theory and Parallel Distributed 
Compensation (PDC) technique [9][10] is used to design a 
controller for tracking constant and sinusoidal references. 
Controller part based on FIB is responsible for directing the 
system motion towards the steady state manifold and 
generates steady state input for forcing the system to stay 
there while PDC part ensures the system stability during 
convergence to steady state manifold. FIB part is designed 
after solving time varying matrix differential equations in 
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terms of fuzzy sets, while PDC part is designed using linear 
matrix inequality techniques where the existence of a 
symmetric positive definite matrix for all fuzzy sub-systems 
proves the system stability. MATLAB simulations are 
performed to show the effectiveness of the designed 
controller for SLM. It is found that controller has remained 
successful in tracking the reference trajectories with good 
transient performance. The contribution of the paper lies in 
constructing a fuzzy model for uncertain single link 
manipulator based on the idea of set of operation point’s 
technique. The stabilization and tracking of the resulting 
model is achieved using exact output regulation theory. 

We start by constructing the TS fuzzy plant model in 
Section II. Controller design is presented in Section III 
followed by simulation results in Section IV. Conclusions 
are drawn in Section V. 

II. TS FUZZY MODEL OF SLM 

The dynamics of a SLM consisting of a rod with a 
circular disc at one end and moving in the vertical plane can 
be described by the following differential equation: 

 

( ) ( )
22 21

sin
3 2

ml
ml Ma M l a b g M a lθ θ θ τ

   
+ + + + + + + =   

   

ii i

              (1) 

Where m is the mass of the rod, l is the length of the rod, 

M is the mass of the circular disc, a is the radius of the disc, 

b is the coefficient of viscous friction at the pivot, θ is the 

angle of the link from vertical, g is the acceleration due to 

gravity and τ is the torque provided by the DC motor for 

reference tracking purposes. The numerical values of these 
parameters are listed in Table 1 where mass of the circular 
disc and the damping coefficient are assumed to be 
uncertain.  

By defining the state vector to be 

1 2

T

x xθ θ 
= = =  

x
i

the system in (1) can be represented 

as: 
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               (2) 

 
Where u represents the torque to be generated by the 

motor, 
1

y x= denotes the system output and the nonlinear 

functions are given as: 
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By assuming the angular displacement of the link to lie in 

the range ( )1
2 2

x t
π π

− ≤ ≤ , we can define the following 

compact region covering the parametric uncertainties and 
operating range as: 

 

( ) 3
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              (6) 
TS fuzzy model of the system in (2) can be constructed 

so as to exactly reproduce the plant dynamics over the 
compact region (6) by finding the extreme values of the 
nonlinear functions (3)-(5) for this region. This result is 
based on the following property and will ensure the 
stabilization of the plant over the compact region by using 
PDC controller: 

Property 1: Let 
p

p
I ⊂ � and 

q

q
I ⊂ � be compact subsets 

and
p q

I I I= × . Let : tf I ⊂ →� � be a continuous 

function with t p q= + . If for some given
0 p

p I∈ , 

( ){ }0
max ,

qq I
M f p q

∈
= , and ( ){ }0

min ,
qq I

m f p q
∈

= ; then 

( )
( ){ }

0

0
,

max ,
p q I

M f p q
∈

≤ , and 
( )

( ){ }
0

0
,

min ,
p q I

m f p q
∈

≥ . 

The variation of the functions (3)-(5) over the compact 
region (6) is depicted in Fig. 1 and the extreme values are 
found to be: 
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( )
22,max

,

0.2343
b M D

f
∈

= −                      (10) 
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M D
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M D

g
∈
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We can now define the following fuzzy sets with 

universe of discourse being the extreme values in (7)-(12) 
which will enable us to build the TS fuzzy plant model: 
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(a) 

 
(b) 

 
(c) 

Figure 1.  Plot of functins (3)-(5) over compact region (6)  (a) 
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Based on the fuzzy sets (13)-(15), we define the 

following plant rules: 
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Using the singleton fuzzification, product inference 

engine and average defuzzification technique, TS fuzzy plant 
model can be given as: 
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TABLE I.  PLANT PARAMETERS 

Parameter Value 

m 0.2 Kg 

l 0.5 m 

a 0.01 m 

M [0.01, 0.1] Kg 

b [0.01, 0.05] Nms/rad 

g 9.8 m/s2 

 

( )( )( )

( )( )

8
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8

1

i i i

i

i i

i
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∑

∑
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i

                    (17) 
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( )( ) ( ) ( ) ( )1, ,i i i it M M x N b M O Mρ = × ×z                (19) 

 

Where ( )( )i tρ z and ( )( )i tα z are the firing and 

normalized firing strengths of the ‘ th
i ’rule respectively 

which contains the fuzzy sets
i

M , 
i

N and
i

O . This degree of 

belongingness is determined based on the scheduling vector, 

( ) ( ) ( ) ( )21 1 22 2, ,t f M x f b M g M=   z . 

III. TS FUZZY CONTROLLER DESIGN 

TS fuzzy controller for SLM is designed based on 
Francis-Isidori-Byrnes (FIB) nonlinear regulation theory 
which guarantees exact tracking through the control law (20) 
subject to the solution of the differential equations (21): 

 

( ) ( ) ( )( )( ) ( )( )u t t t t= − − −K x π w γ w                    (20) 
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0 h π w w
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Where ( )( )tπ w is the steady state zero error manifold, 

( )( )tγ w is the steady state input, f is the system dynamics, 

s forms the exosystem to be tracked, h is the tracking error 

and K is the stabilizing gain. It is shown in [9] that these 
nonlinear equations can be exactly solved in terms of fuzzy 
sets with time varying degree of membership. We introduce 
the following fuzzy exosystem which will serve the purpose 
of reference signal generation:  
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Where 
1i

S and 
2i

S denote the constant and sinusoidal 

reference state matrices respectively while 
i

Q is the 

reference output vector. 
i

β is the normalized firing strength 

for the ‘ th
i ’rule of fuzzy exosystem. 
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T
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Using (17) and (22), the tracking error can be given as: 
 

( ) ( )( ) ( )( )
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21
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= =
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The above error will be converged asymptotically to zero 

using the control law (27): 
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i
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=
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Where ( )tΠ and ( )tΓ are updated as a result of the 

solution of following time varying matrix equations: 
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                         (28) 
The control objective of tracking the constant and 

sinusoidal references by SLM leads to the following 
mappings: 
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1 1 2 2

x t w t

x t w t x t w t

=

= ⇒ =
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(30) 
 

Where 
22n

f and 
2n

g denote the nominal function values. 

Using (28)-(30), we find the following steady state zero error 
manifold and steady state input matrices: 
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Where ( )1
tΓ and ( )2

tΓ govern the steady inputs for 

steady state zero error manifold corresponding to reference 

state matrices 
1i

S and 
2i

S respectively. The other part of the 

control law will ensure the stabilization of the equilibrium 
point. We will use PDC technique to design the stabilizing 
controller for SLM model (17) which will share the same 
fuzzy sets as that of plant to weight the control gains of fuzzy 

sub-systems. The ‘ th
i ’control rule will be defined as: 

     

Con. Rule i: IF 
21

f is 
i

M AND 
22

f is 
i

N AND 
2

g is 
i

O  

            THEN ( ) ( )Ki i
u t t= −K x  

 
The net stabilizing control gain is found as: 
 

( ) ( )( ) ( )
8

1

K i i

i

u t t tη
=

= −∑ z K x                     (34) 

 
Using (17) and (34), the closed loop dynamics can be 

given as: 
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t t t tα η
= =

= −∑∑x z z A B K x
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To ensure the closed loop system stability, the following 

Lyapunov inequality must hold: 
 

( ) ( ) 0, , 8
T

i i j i i j i j− + − < ∀ ≤A B K P P A B K            (36) 

 
Where P is a symmetric positive definite matrix. The 

above inequalities can be cast as LMIs whose solution can 
return the control gains for fuzzy sub-systems. By pre- and 

post-multiplying (36) with 1−P and re-defining, 1−=P P and 

defining
i i

=Q K P , we obtain the following LMIs with the 

inclusion of decay rate constraint: 
  

0

2 0, 8

4 0, 8

T T T

i i i i i i

T T

i i j j i j

T T T T

j i j i i j
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+ + + −
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P

A P PA B Q Q B P

A P PA A P PA B Q

Q B B Q Q B P

       (37)

  

The solution of LMIs will give P and 
i

Q matrices from 

which the control gains can be determined as: 

1, 1 8
i i

i−= ∀ = −K Q P                      (38) 

 
The above set of 37 LMIs (37) is solved using LMI 

toolbox of MATLAB with 1λ =  and following control gains 

and symmetric positive definite matrix are found: 
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1

2

3
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7
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2.4249 0.5923

1.5788 0.3869
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1.8637 0.3917
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=
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=
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K
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K

K

K

K
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                    (39) 

 

0.5153 2.1941

2.1941 11.2771

− 
=  − 

P                     (40) 

IV. SIMULATION RESULTS 

The designed controller is simulated in 
MATLAB/Simulink environment for stabilization and 
tracking control of SLM. We select M =0.05Kg and 

b =0.03Nms/rad from the compact region for simulation 

purpose. The stabilization result is depicted in Fig. 2 for 
various initial conditions. Note that the reference generator 

for the stabilization ( )tw   has zero initial conditions. It can 

be seen that controller has remained successful to stabilize 
the plant. The step response of the controller is shown in Fig. 
3. A set of constant reference points are also generated and 
controller is found to track these set points offering no 
overshoot, zero steady state error and less than 1sec settling 
time as evident from Fig. 4. Square wave reference tracking 
by the controller is shown in Fig. 5. It should be noted that 
the steady state input for all these reference signals is 

computed as: ( ) ( ) ( )1

ss
u t t t= −Γ w . Performance of the 

controller for sinusoidal reference signals is also evaluated. 
Perfect tracking is achieved as seen from simulation results 
in Fig. 6, where the tracking error converges to zero within 
1sec. Note that the steady state input in this case is generated 

as: ( ) ( ) ( )2

ss
u t t t= −Γ w . For the purpose of comparison, a 

pole placement controller is designed for the same transient 
performance as offered by fuzzy logic 

controller ( )0.6 , 1
s

T s ξ= = . The comparison result in the 

form of tracking error is depicted in Fig. 7 when both the 
controllers are made to track the sinusoidal reference signal 
with angular position varying in the range [-1,1] rad. It can 
be seen that steady state error exists in case of pole 
placement controller while fuzzy logic controller exactly 
tracks the input signal after a transient. 
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(a) 

 
(b) 

Figure 2.  Stabilization of SLM for various initial conditions (a) Angular 

position (b) Angular velocity 

 
(a) 

 
(b) 

Figure 3.  Step response (a) Angular position (b) Angular velocity 

 
(a) 

 
(b) 

Figure 4.  Reference tracking (a) Angular position (b) Angular velocity 
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(a) 

 
(b) 

Figure 5.  Square wave tracking (a) Angular position (b) Angular velocity 

 

(a) 

 

(b) 

 
(c) 

Figure 6.  Sine wave tracking (a) Angular position (b) Angular velocity (c) 

Tracking error 

 

Figure 7.  Comparison of TS FLC and PPC for Sine wave tracking 

94Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences



V. CONCLUSIONS 

TS fuzzy model of uncertain single link manipulator is 
derived using set of operations point technique. For the 
purpose of demonstration, mass of the disc and friction 
coefficient are assumed as uncertain parameters. For exact 
output regulation, a PDC controller in conjunction with FIB 
theory is designed. MATLAB simulations are then 
performed to validate the designed controller for tracking 
constant and time varying trajectories. A comparison with 
pole placement controller is also drawn. Future work 
involves the design of estimation law for immeasurable 
scheduling vector.  
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