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Abstract—The paper investigates the application of
evolutionary algorithms (EA) for solving a two-objective

prioritisation problem. We propose two evolutionary
computing approaches, based on single-objective anghulti-

objective EA. Our preliminary results from a Monte-Carlo

simulation show that the multi-objective EA outperbrms the

single-objective solution approach with respect tocaccuracy
and computational efficiency.
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l. INTRODUCTION

The assessment of weights of criteria and scores gfroblem

alternatives is one of the most important tasksthia
multicriteria decision-making. In the Analytical étarchy
Process (AHP), proposed by Saaty [1], the valueseijhts
and scores are assessed
judgments. The elicitation process for both weightd
scores is the same, so they are often calliemtities.

The pairwise comparison process in the AHP assumegliminate the drawbacks of the numerical methods,

that the decision-maker can compare any two elesrané
given hierarchical level and to provide a numerigle of
the ratio of their importance. Comparing any twenetnts
E and E, , the decision-maker assigns a ratjo, which

represents a judgment concerning the relative itapoe of
preference of the decision elemeft over E, . If E is
preferred toE; thena, >1, otherwise0<a, <1.

A full set of ratio-scale judgments for a level hvib
elements requires(n-1)/2 comparisons. In order to derive a
priority vector from a given set of judgments, $aat
constructs a positive reciprocal matix={ ;} of the type

1 a12 a:Ln
A - l/ a12 l a?n
l/a, 1l/a, 1

introduce an objective function, which measuresdbgree
of approximation or the distance between the initia
judgments and the solution ratios [2]. Thus, thebfgm of
priority derivation is formulated as an optimizatitask of
minimizing the objective function, subject to nofiaation
and some additional constraints.

Despite the multicriteria nature of the requirersent
regarding the properties of their solutions, alltimopl
prioritization methods optimize single objective function.
However, a single objective function cannot encosspand
satisfy all requirements about the quality of Solu.

A new two-objective prioritization (TOP) method was
proposed recently by the author [3], where therjiisation
is formulated as an optimization task for
minimization of the Euclidean norm and the numideraok
violations. The TOP method derives Pareto optimal
solutions, which requires the application of e#idi

indirectly from comparisgromputational algorithms.

The paper investigates the application of evolaign
computing for solving the TOP problem. In order to
w
propose two evolutionary computing approacheshénfirst
one, the TOP problem is transformed into a singjedive
one, which is then solved by a standard singleeatibje EA.
The second approach applies a multi-objective EA
solving the TOP problem without such transformation

In order to compare the solution approaches, wiiper
Monte-Carlo  simulation experiments, by randomly
generating a large number of pairwise comparisotrices.
The paper presents some initial results from tinsukation.
Both computational approaches are also illustrated by a
numerical example.

The paper is organized as follows: Section Il foates
the TOP problem; Section Il discusses computationa
approaches to solving the problem; Sections IV &hd
provide some initial results from the simulatiorpeXments,
and Section VI concludes the paper.

fo

THE TwO OBJECTIVEPRIORITISATION PROBLEM

and proposes the Eigenvector of this matrix as an Let S:{a,.j|j>i} be a set of pairwise comparison

estimation of the priority vectow = (w,,w,,...,.w,)".

With the exception of the traditional Eigenvector priority vectors w=(w,,...w,)"

prioritization method, all other methods for demiyi
priorities in the AHP are based on some optimizatio
approach. The optimal prioritization methods, as €oal
programming, the Direct Least Squares, the Logaiith

Least Squares and the Fuzzy Preference Programming
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judgments. The feasible s€ is defined as the set of all
. which satisfy the
normalization and non-negativity constraints:

(1)
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The accuracy of the each priority vectovOQ |,
approximately satisfying the comparison judgmergs be
measured by the Total deviation criterion:

n

=%, -y

i=1 j=i+l

@

This criterion is equivalent to the squared Eudide
distance for the upper triangular part of a Saatgtsprocal
comparison matrix.

The rank preservation properties of the soluticars loe
measured by the Number of Violations criterion [2]:

n-1 n

NV :ZZVij . (3
izl j=i+l
where
1 if w>w and a <Lor w<w and a; >,
v, =112 if w=w,and a; #L, or w #w; and a; =1,
0, otherwise.

The Number of Violations criterion (3) can be reganeted in
the following compact form:
1 n-1 n ) ) Ww.
V(w) == signum(a, —1) —signum(—--1)| ,

where thesignum function is defined as:

1, ifb>1
signumb) =< 0, if b=0
-1 ifb<l

The TOP problem is to find a feasible priority v@cthat
‘simultaneously’ minimizes the Total deviation artbde
Number of violations:

Minimize (T(w), V(w))
subject tow1Q,

(4)

whereT:R" -~ R* andV:R" - R are real-valued objective
functions.

Ill.  COMPUTATIONAL APPROACHES FOFRSOLVING THE
TOPPROBLEM

A. Multiobjective Numerical Algorithms

Some classical multi-objective optimization (MOO)
methods, which can be applied for finding Parettinogl
solutions to the TOP problem are the Weighting Méeitthe
e-Constraint Method, the Goal Programming Methodher
Proper Equality Constraints method [4]. Generalig, main
strength of classical MOO methods is their efficierand
ability to generate strong Pareto optimal solutidthawever,
these methods have some weaknesses in generating th
Pareto optimal solutions, when specific problemvidedge
is not available. Additionally, they cannot generall Pareto
optimal solutions with non-convex surfaces. From
computational point of view, many optimization ruase
required to obtain an approximation set of the @avptimal
solutions [5].

Recently, the evolutionary algorithms have become a
alternative to the classical methods for generafageto
optimal solutions; since they can eliminate sometra
drawbacks of the classical MOO methods.

B. Sngle-Objective Evolutionary Algorithms

Taking into account the specific properties of TeP
problem (4), we can transform it into a single-chje
optimisation problem, which is easily solved bynsiard
single-objective EA.

By associating weight& and (1-k) to both objective
functions in (4), we obtain

J(W) =KT(w) + L= k)V (W),

which is used as a fitness function of a singlesctiye EA.

The value of the weight coefficieltis given by the user.
This value represents his/her preferences witherdp the
relative importance of those two objectives.

C. Multi-Objective Evolutionary Algorithms

Some multi-objective EA, as the Vector Evaluated
Genetic Algorithm (VEGA), the Non-dominated Sorting
Genetic Algorithm (NSGA), the Niched Pareto GA (N®G
the Multi-objective Genetic Algorithm (MOGA) [5] dnthe
Pareto Envelope-based Selection Algorithm (PESAA])
However, it is well known that the presence of txaists

Each feasible vecton1Q determines a unique value of Scientifically affects the performance of multi-ebifive EA.

the objective function vectoy = (T (w), V(w)) . Therefore, the

feasible setQ in the space of decision variables can beunique [7]

transformed into apayoff set Y in the two-dimensional
objective space. The payoff set representsaaible region
of the admissible values af(w) andV(w), and can be
considered as the image of the feasiblesit the objective
space.

Additionally, as opposed to the single objectivese;athe
ranking of a population in the multi-objective casenot

In order to assess the applicability of EA for sujvthe
TOP problem, we perform a series of computational
experiments by Monte-Carlo simulation. In our study use
the PESA-II, which has some advantages compareth&y
EA. PESA-II follows the standard procedures of & But

The payoff sely of the TOP prob|em consists in para”e] with the difference that two pOpUlationS of solaBoare

line segments, as the function(w) takes non-negative
discrete values in some range, and the function) is
bounded.
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maintained: an internal population (IP) of fixedesiand an
external population (EP) of non-fixed but limiteides The
internal population's job is to explore new solngipand it
achieves this by the standard EA processes of daption
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and variation (i.e., recombination and mutation)heT
purpose of the external population is to store ergloit

good solutions; it does this by maintaining a lamysd

diverse set of the non-dominated solutions disax/euring

search [8].

An important advantage of PESA-II is that its nighi
policy uses an adaptive range equalization and aliration
of the objective function values. This means thifficdlt
parameter tuning is avoided, and objective funetionat
have very different ranges can be readily used.

IV. MONTE-CARLO SIMULATION

Monte-Carlo simulation experiments have been darrie
out, consisting in generation of comparison masrieéth
different dimensions and applying the single-oljectand
multi-objective evolutionary approaches. Initiallandom
consistent pairwise matrices are generated; thegy #re
perturbed by a user-driven parameter, denoteq, aghich
determines the degree of inconsistency.

The matrices for this comparison study are of disiaTs
n=3, 4,5, 6, 7, 8 and 9. For every valuapthe parametgp
takes 9 valueg=10, 20,..., 90 and each combination af {
p} is replicated 30 times, which gives a total numbg&810
n-dimensional matrices with different degrees of
inconsistency. The overall number of generated oand
matrices is 5670.

The single-objective EA (a standard Genetic Aldoni}
and PESA-II have been applied for solving the T@bjem
for each pairwise comparison matrix, using the pletolkit

ineering Computing and Applications in Sciences

El EZ E3 E4 E5

1 5 13 7 2/3|E

1/5 1 2 1/2 4 |
A=| 3 1/2 1 1/2 1/4|E,

17 2 2 1 13|E,

3/12 1/4 4 3 1 |E

The TOP problem is formulated as a single-objeative
by the Weighting method and solved by the singleaive
EA. The parameters of the EA are selected as fstlow

- Population size = 100;

- Crossover probability=0.9;

- Mutation probability=0.01.

In this example, we have 5 Pareto optimal solutions
which are obtained by the EA. Due to the non-ttaritsi of
the pairwise comparison problem, there are no ipyior
vectors with less than two violations.

The results are given in Table 1.

TABLE I. PARETO OPTIMAL SOLUTIONS OBTAINED BY A SINGLE
OBJECTIVE EVOLUTIONARY ALGORITHM

W W, Wa W, Ws T \%
0.309 | 0.113 | 0.096| 0.135] 0.347% 50.048 2
0.34¢ | 0.07t | 0.10¢ | 0.111 | 0.361 | 39.80¢t | 3
0.345 | 0.058 | 0.140| 0.071] 0.38¢ 20.717 4
0.36% | 0.067 | 0.14¢ | 0.05¢ | 0.367 | 26.96 | 5
0.381 | 0.076 | 0.139| 0.062] 0.347 26.720 6

[9]. In the single-objective EA each chromosome

represented by a string of n components, assocrdtedhe

n-dimensional priority vector w. The EA performe thasic

genetic operators, which are roulette wheel selecti
crossover with random mating and simple mutation.

Elitism has also been applied as an additionalctete
strategy, to make sure that the best performingrobsome
always survives. The elitism has been realizeddmparing
the fithess of chromosomes from the current pojmuiaand
the fitness of the corresponding offspring. Thetesit
chromosome from the initial population survives thog next
generation.

At the beginning of each cycle, all chromosomes ar
normalised, so that the values of their genes sprtowne.
The stopping condition is the number of generatiovisich
is selected to be equal to 100. The experimensalteeshow
that the single-objective EA converges to the oatim
solution for less than 50 generation cycles.

PESA-II was applied for solving the same problem. A
30-bit Gray code was used to represent each offitiee
weights, giving a 150-bit binary chromosome. Unifior
crossover was applied with probability 0.2 andtefllg per-
gene mutation rate of 0.01 was used. It was fourad t
PESA-Il is not sensitive to these parameters, atigbro
values give similar performance.

The values of the PESA-II parameter settings are:

IPsize=10; EPsize=100; Generations=50; pm=0.01,;
Pc=0.2; #grid-cells (niches)=100; representationbis® per

é{veight.

The best values of the priority vectors obtainenfr20
runs of PESA-II are shown in Table 2.

The high-level pseudocode, showing the main steps i

the PESA-II algorithm, is given in [8].

V. NUMERICAL RESULTS

TABLE IL. PARETO OPTIMAL SOLUTIONS OBTAINED BYPESAII
Wy W, W W, Wy T \%
0.35¢ | 0.09¢ | 0.09¢ | 0.09¢ | 0.35€ | 39.46¢ | 2
0.362 | 0.078| 0.099 0.10( 0.36p  38.631
0.35¢ | 0.06% | 0.14¢ | 0.06% | 0.36% | 27.43t | 4
0.361 | 0.074 | 0.14« | 0.06C | 0.361 | 26.62: | 5
0.398 | 0.083]| 0.158 0.061 0296 26479 6

Consider a problem with 5 comparison elements [8]
where the DM provides the following pairwise comipan
matrix A:

Copyright (c) IARIA, 2015.  ISBN: 978-1-61208-419-0

By comparing the values of T for each value of Msi
seen that PESA-Il solutions outperform those okthiby
the single-objective EA, with respect to the accyra

Regarding the computational efficiency, the average
processing time of the single-objective EA for thisample
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is 1325 milliseconds, while the PESA Il algorithequires
622 milliseconds to find the optimal solution. [1]

The performance comparison was obtained using an
Intel-based PC with a Core2Duo T5500 CPU running at
1.66GHz and 2GB of physical memory. The tests werg]
executed on Windows 7 with Java NetBeans IDE rumirin
parallel.

The preliminary results from the Monte-Carlo sintigia
show that the multi-objective EA gives better aacyrthan [3]
the single-objective EA, especially for high-dimiemsl and
rather inconsistent pairwise comparison matrices.

Regarding the computation time, both approacheg hav
rather similar performance for pairwise comparigoairices  [4]
of lower dimension, n=3 and n=4. When the size hef t
matrices increases, PESA-II strongly outperfornessingle-  [5]
objective EA. The single-objective EA is particl§aslower
in inconsistent and non-transitive problems witmsnRareto (6]
optimal solutions.

VI. CONCLUSIONS

The paper investigates the application of evolaign [7]
algorithms for solving the TOP problem and shoveg they
are very good alternatives to the numerical mujeotive
optimization methods. Two evolutionary approaches a 8]
applied for obtaining Pareto optimal solutions toe t
problem.

The numerical example and the preliminary resutisf
a Monte-Carlo simulation experiment show that thatim
objective EA outperforms the single-objective EAthwi
respect to the computational efficiency and acgurat [9]
solutions.
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