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Abstract— The success of any advanced computing method
(ACM) depends as much on its excellence as it does on a) whether
it is optimally deployed and b) if it matches the problem at hand.
Neural Networks, which are ACMs of remarkable potential,
receive severe penalties in both of the latter aspects, due to
reasons, put forth and addressed herein. This paper presents a
theoretical foundation for an inference engine decision space and
a taxonomic framework for a knowledge base, which are part of
our proposed knowledge-driven decision support system (DSS)
for optimal matching of a neural network (NN) setup against the
given learning task. Such DSS supports solving a multiple criteria
optimization problem, considering specific design constraints of
the given NN-based machine learning application.

Keywords — Neural Networks; Decision Support System;
Knowledge base; Taxonomy; Multiple-Criteria Optimization
Problem.

I. INTRODUCTION

The compelling notion, that NNs are universal approxima-
tors [1], leads quickly to believe, that any NN will do well on
any presented machine learning task. However, the universal
approximation theorem only guarantees the existence of an
approximation, but not that it can be learned, nor that it would
be efficient. Practice shows that every given problem requires
a carefully crafted NN design and that advanced NN concepts,
tailored to specific types of tasks are necessary to attain best
results. This factor, among others, has led to the existence of
a large number of conceptually varying NN architectures and
learning algorithms [2].

For best results, any researcher or practitioner of today
needs to understand a vast domain of knowledge in order
to find a NN solution most suitable to their task. Due to
domain vastness, researchers often limit themselves to NN
domains they are familiar with, preventing new knowledge
from propagating efficiently among all who would benefit from
it. Specifically, we thus face a twofold handicap for progress
of NN research: a) practitioners use suboptimal NN setups for
real-world applications [2], inhibiting broader NN acceptance
in the industry and b) researchers delve into local extrema of
research (e.g., through jumping on the bandwagon of imminent
peers [3]), pushing frontiers of NN research in suboptimal
directions.

Figure 1 shows a simple flowchart view of the current
typical approach to selection of NNs for chosen learning task.
It can be seen, that the lack of systematic approach to NN
selection often yields suboptimal results. This has a negative
effect on a wider acceptance of NNs in the industry. A key
prerequisite in current NN design is expert intuition, which
can be attained either through significant experience with NN
implementation and applications in practice, or through access
to expert intuition in an environment of experienced NN users.
When expert intuition is present in early stages of design, the
subsequent efforts give good results (Figure 1, left); when not,
design efforts too often lead to suboptimal results (Figure 1,
right).

Figure 1. Typical design flow of selection and implementation of NNs for a
given learning task.

The NN community needs a streamlined way of enabling
existing and potential NN users to make optimal technological
choices efficiently and systematically. Having today’s foremost
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NN research applied in the industry can foster wider accep-
tance of NNs into practice and improve NN research. In 2006,
Taylor and Smith [4] created an important taxonomy-based
evaluation of NNs, which aids in validating whether a given
problem is solvable with a NN at all. The next concern, which
they point out and we hereby address, is to choose the right NN
architecture and its concrete implementation for the problem.
Our goal is to provide a decision support system (DSS) for
industry practitioners and researchers to systematically find the
right NN for their application or research interest. This paper
proposes a solution that enables (1) a systematical overview
of the complete NN knowledge domain to (2) compare NN
instances through their capabilities in a (3) quickly interpreta-
tive way using a framework that is (4) adaptable in terms of
NN properties, even classification dimensions.

The state of the art in NN design methodology can be
split into two groups. The first group focuses on choosing
the optimal NN macrostructure (e.g., Support Vector Machine
versus Recurrent Neural Network). In the second group, there
are guidelines and (semi)automated methods, that help find
the optimal microstructure (e.g., number of hidden layers
and neurons) of a selected macrostructure. The first group
of approaches consists of guidelines and overview literature
[5][6][7]. The problem (and virtue) with this set of methodolo-
gies is, that they require understanding of a vast set of NN con-
cepts, before the designer is able to make an optimal choice.
Dreyfus [5] states, for example: ”No recipes will be provided
here. It is our firm belief that no significant application can be
developed without a basic understanding of the principles and
methodology of model design and training.” Of course, we
agree with this position. However, it can be observed in prac-
tice, that there is a lack of systematic approach in choosing the
macrostructure. As a consequence, Feedforward NN (FFNN)
[1], learned with Backpropagation (BP) [21], is still chosen
in the majority of applications, which we consider a negative
trend [8]. The second group of approaches is necessary for the
fine microstructural tuning of a chosen macrostructure (also
usually demonstrated on FFNN with BP). These approaches
are either given as a set of rules and recipes, or as an automated
optimization tool. The most systematic approaches rely on
the Design of Experiments (DoE) method, involving Taguchi
principles [9][10][11]. Such methods systemize and automate
the selection of, e.g., number of hidden layers or neurons,
through experimenting with different setups. Similar methods
are constructive and pruning algorithms, that add or remove
neurons from an initial architecture [12][13]. Also, related are
evolutionary strategies, which employ genetic operators for
similar purposes [14][15][16].

Our proposed approach fits between these two groups and
improves the results of both group’s goals. It exhibits the main
qualities of the second group (ability to automate the decision
process) and applies them to the problematic of the first group
(i.e., choosing the macrostructure), which is a crucial step in
NN design, because the effect of any design actions depends
greatly on early decisions. The aim of our proposed DSS is to
improve the performance of NN-based based applications on

a large scale, through enabling designers to perform optimal
early design decisions. Figure 2 illustrates how our proposed
DSS improves the NN design process by enabling users to
systematically find optimal NN instances for their application.

Figure 2. Our proposed DSS improves the NN design process by enabling
users to systematically find optimal NN instances for their application.

At the heart of our proposed DSS is the taxonomic
framework that facilitates a qualitative measure between NN
instances. However, directly comparing NN instances from
literature in detail is prohibitively problematic due to bias or
lack of method in the description process [17]. In contrast to
related taxonomic efforts, our taxonomy must thus provide a
significant level of abstraction, allowing both a complete field
overview and sufficient depth to aid qualitative comparison,
while providing the flexibility for future adaptations of the
proposed classification.

The Andrews-Diederich-Tickle (ADT) taxonomy [18] en-
ables two NNs to be compared pairwise through ADT 5 crite-
ria (defined by Andrews et al. [18] and refined by Tickle et al.
[19]), but this taxonomy lacks orthogonality since some of its
taxonomical categories (dimensions) are interdependent. Other
taxonomies classify NNs purely through topology [20] or
realization method [21]. And more recently, researchers create
taxonomies that assist in choosing the best solution for the task
[3][22] within a limited application area and solve locally what
our work solves globally. Our generically specified ranking
between feasible solutions permits us to deliver rule-of-thumb
guidance that provides an excellent starting point for further
in-depth analysis based on, e.g., ADT 5 criteria.

After review of DSS theory in existing literature, we decide
to design our proposed DSS as a Knowledge-Driven DSS
[23], as it fits our application best. Therefore, our Knowledge-
Driven DSS will comprise the following components:
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1. Knowledge base
2. User interface
3. Inference engine model
4. Communications component
Corresponding to the above components, our proposed system
comprises the following: NN Knowledge base (Section III),
3D visualization of data and qualitative relations (Section
IV-A), inference engine and qualitative relations in data (Sec-
tion IV-B), interaction with 3D environment and entry of
objective parameters (Section V), respectively.

II. INFERENCE ENGINE DECISION SPACE

The main and fundamental result of our work is the concep-
tualization and theoretical foundation for the inference engine
decision space (this Section) and knowledge base framework
(Section III), that enables a global overview of the complete
NN domain. The decision space, presented hereby, serves also
as a coherent terminology and context for our knowledge base
framework. Mathematical structure of interrelations must be
well defined, to facilitate an effective inference engine, used
in solving multiple-objective optimization problems [24]. The
decision space is defined via the following descriptors of the
NN knowledge domain:
• Set of NN instances I: contains the subset of elements of

the NN knowledge domain, which are neural networks.
From the whole neural network knowledge domain (NNs,
research initiatives, research groups, research goals, ap-
plication areas, etc.), we gather concrete NN implemen-
tations and form the set of NN instances.

• NN classifier ζ : I → P: provides a classification of
each member of I into a particular set of groups P .

• Property P: the co-domain of a classifier ζ, with the latter
considered as a function.

• Property value pi ∈ P: a specific group of some classifier.
It is given a name, which is then identified as this property
value.

• NN framework F : ordered list of classifiers relevant for
a given user’s interest.

• NN universe U : defined by a framework F , it is an
|F|-dimensional space, which is Cartesian product of the
properties defined by the classifiers in F .

• NN instance Ii ∈ I: Ii = (p1, . . . , pf ); an f -tuple of
property values, each coming from its corresponding NN
property.

• NN category Cp ⊆ P: subset of a specific property,
containing a set of values (classifier groups) of this
property. Possibly a singleton.

• NN landscape L = C1×C2×C3× . . .×Cf with at least
one Ci being equal to the whole property Pi. Subspace
of a NN universe.

• NN type T = C1×C2×C3× . . .×Cf : Cartesian product
of categories. If all categories in the cartesian product are
singletons, the NN type is also a NN instance.

• NN comparator δ: innate comparative quality, defining a
partial order >δ on the set of NN instances I, by which
some pairs of NN instances can be compared. In our

proposed DSS, NN comparators are chosen by defining
the NN selection criteria (see section III). NN compara-
tors are represented as colored arrows between NN types,
with the color specifying different NN instance selection
criteria and the thickness of the arrow proportional to
number of evidence papers supporting the comparison.

• NN selection criteria ∇: a set of possibly competing NN
comparators used for comparison of NN instances.

• Pareto front R of given NN selection criteria ∇: a set of
(discrete) NN instances j ∈ R such that whenever some
NN instance i ∈ I is better than j with respect to some
NN comparator δ ∈ ∇, i.e., j >δ i, then there is some
other comparator δ′ ∈ ∇, such that i >δ′ j, i.e., i is better
than j w.r.t. δ′. In other words, a NN instance belongs
to the Pareto front of ∇, if it cannot be improved over
without harming at least one of the NN selection criteria
in ∇.

What signifies our approach is the decision to abandon
the aim for back-to-back comparison of specific NN imple-
mentations via rigid criteria (which would limit us to NN
research subdomains) and employ a flexible DSS, enabling
self-organization of data and allowing the evolution of the
framework, together with the evolution of knowledge base
contents.

III. TAXONOMY FOR KNOWLEDGE BASE

With the inference engine decision space theoretically de-
fined in Section II, we proceed to determine the principal
dimensions for classification of NN instances. As no single
source provides a definitive field overview, we as first step
systematically create a taxonomic blueprint for our knowledge
base. We define the NN classifiers ζ as operators for sorting
of NN instances into main taxonomic branches:
ζ1 Implementation Platform
ζ2 NN Architecture
ζ3 Learning Paradigm
ζ4 Learning Algorithm
ζ5 Learning Task

Using our defined NN classifiers, we proceed to build the
taxonomy. For its core, we extract the classification used in
the book Neural Networks: A Comprehensive Foundation [4],
which offers a wide overview of main concepts in NN domain.
To build upon this core, we add the overviews of evolutionary
methods [25], Spiking Neural Networks [26] and a recent 20-
years overview of hardware-friendly neural networks [27]. A
principal quality of our system lies in our choice of high
abstraction when defining the taxonomy; e.g., while there exist
numerous flavors of the BP algorithm, our taxonomy does not
differentiate between them. Only by obscuring a such detail,
we can achieve a domain-wide overview. Still, as the field of
NNs is very diverse, an ultimate taxonomy requires broader
community collaboration and finally, consensus; both of which
exceed the scope of this work.

We find that our chosen NN classifiers map NN instances
into NN properties (i.e., sets of NN categories C, possibly
singletons) P1,P2,P3,P4 and P5, respectively:
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P1 (ζ1: Implementation Platform) takes values from:
• General Purpose (C11 ): Software Simulation on general

purpose computer of Von Neumann Architecture (CPU),
Digital Signal Processor (DSP) Graphical Processing Unit
(GPU), Supercomputer (SCP)

• Dedicated Hardware (C12 ): Field Programmable Gate Ar-
ray (FPGA),Neural Hardware / Neural Processing Unit
(NPU), Analog Implementation (ANLG), Application
Specific Integrated Circuit (ASIC)

P2 (ζ2: NN Architecture) takes values from:
• Feedforward Neural Network (FFNN)
• Second Generation NNs (C22 ): Recurrent Neural Network

(RNN),Long Short-Term Memory (LSTM)
• Spiking Neural Network (SNN)
• Cellular Neural Network (CNN)
• Self-organizing Map (SOM)
• Reservoir Networks (RSVN) (C26 ): Echo-state Network

(ESN), Liquid-state Machine (LSM)
• Convolutional NN (CONN)
• Deep Belief Network (DBN)
• Hybrid (HYB)
P3 (ζ3: Learning Paradigm) takes values from:
• Supervised Learning (SUP)
• Reinforcement Learning (REINF)
• Unsupervised Learning (UNSUP)
• Genetic Learning (GENL)
P4 (ζ4: Learning Algorithm) takes values from:
• Error Correction (C41 , ECR): Backpropagation (BP), Ex-

tended Kalman Filter (EKF), Stochastic Gradient Descent
(SGD),

• Hebbian Learning (HBL)
• Competitive Learning (CPL)
• Evolutionary (C44 , EVOL): Evolution of Architecture

(EVLARCH), Evolution of Weights (EVLWT), Evolution
of Learning Algorithm (EVLALG)

• Reservoir Computing (RSV)
• Hybrid (HYB)
P5 (ζ5: Learning Task) takes values from:
• Pattern Association (C51 ): Autoassociation (PASCAUT),

Heteroassociation (PASCHET)
• Pattern Recognition (C52 , PREC): Natural Language Pro-

cessing (NLP), Principal Component Analysis (PCA),
Speech (SPC), Dimensionality Reduction (DRED),
Spatio-temporal (SPT)

• Control (C53 , CTL): Indirect (CTLIND), Direct (CTLDIR)
• Function Approximation (C55 , FAPPROX): System Iden-

tification (SYSID), Inverse System (INVSYS)
• Classification (CSF)
• Regression (RGR)
Property P2 thus comprises 11 NN property values, gathered

in 9 categories, of which C22 and C26 each contain two property
values; C22 contains p2 and p3 and C26 contains p7 and p8.
Property value indices run free from category indices.

The presented property values and categories can be further
manipulated and refined. However, to enable efficient domain

overview, a significant level of abstraction is required. For
further detailed inspection, more specialized taxonomies can
be used (see Section I). For example, the Backpropagation
learning algorithm has a multitude of variants [17], but for a
comprehensive overview, abstraction is crucial.

A. Qualitative comparison through NN selection criteria ∇
With the taxonomic backbone defined, we can proceed

with classification of NN instances from processed literature
through property values P , using our set of NN classifiers ζ.
This comparative dimension, well-defined but very permitting,
is a core facility of our knowledge base and the heart of our
DSS’ inference engine. Therefore, we also extract from liter-
ature sources the qualitative comparison information between
NN instances w.r.t. the following set of chosen NN selection
criteria ∇:
δ1 Low cost of ownership (feasibility, practicality, low hard-

ware cost, low development complexity, presence of user
community)

δ2 Capability (effectiveness, convergence speed, generaliza-
tion performance, benchmark success, high learning rate,
low error)

δ3 Real-time requirement (speed of execution, on-line vs.
off-line learning, pre-learned vs. adaptive learning)

δ4 Design maturity(proven solution vs. emerging technology)
While estimates for all NN criteria can be extracted from lit-

erature or provided by a domain expert, design maturity could
also be automatically calculated as a measure of occurrence
frequency in literature.

B. 5-letter notation and knowledge base formation
In the 5-dimensional NN universe, defined by our NN

framework F , that we define in Section III through selecting
our set of NN classifiers ζ1,...5, each NN instance is described
via five NN properties P1,...5. Therefore, each element in the
database compares two NN instances or NN landscapes in
terms of five parameters. To construct our formal notation, we
build upon the idea of 3-letter notation used in the theory of
scheduling problems [28] and adapt it to a 5-letter notation for
describing NN instances. Our resulting formal representation
of relation(s) between two NN instances is as follows:

(P1,P2,P3,P4,P5) >δi...n (P ′1,P ′2,P ′3,P ′4,P ′5), (1)

where each NN property P1...5 can be a comma-separated
list of elements (NN property values), n is the total number of
selection criteria and where i, i ∈ {1 . . . n} denotes the group
of indices of NN qualifiers, by which the ’greater’ NN instance
is superior to the ’lesser’ NN instance.

In our knowledge database, the following example statement
extracted from a scientific source [27]: ”FPGA is a superior
implementation platform to ASIC in terms of flexibility and
cost for implementations of FFNN or RNN with supervised or
reinforcement learning, using stochastic learning algorithms.”
is formally denoted as follows:

(P1[4],P2[3, 4],P3[1, 2],P4[3],P5[x]) >δ2
(P1[6],P2[3, 4],P3[1, 2],P4[3],P5[x]),

(2)
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Or:

(FPGA, {FFNN,RNN}, {SUP,REINF},
SGD, x)
>δcost,flexibility

(ASIC, {FFNN,RNN}, {SUP,REINF},
SGD, x)

(3)

This example also illustrates the case where the paper does
not specify all property values (in this example, the learning
task P5[x]), the statement is incomplete and it may mean
either that the relation is indifferent to that property, or that
there is no information present about that property’s role
in the relationship. After reviewing selected literature (e.g.,
[27][29][25][30]–[36]), we get a number of such specific state-
ments that comprise our knowledge base seed information,
which serves as basis for development of our inference engine
and visualization scheme.

IV. RESULT: KNOWLEDGE-DRIVEN DSS WITH INFERENCE
ENGINE AND VISUALIZATION TOOL

The proposed inference engine, together with knowledge
base visualization, are the final results of our efforts presented
in this paper. Both modules operate on the data in the
knowledge database in a read-only fashion. In the following
subsections, we present our scheme for exploratory visualiza-
tion of our multidimensional knowledge database and describe
our interactive inference engine.

A. Visualization scheme

Every point in the NN universe’s graphical representation
corresponds to one NN instance. The most valuable informa-
tion in our knowledge database is the qualitative comparison
between NN instances. This is shown in Figure 3, illustrating
the graphical representation of Statement (3) from Section
III-B. We have found, that using three dimensions for the
visualization is optimal, because it allows users to navigate
the environment interactively and to recognize interdependen-
cies, even after switching between the chosen set of three
dimensions. The 3D visualization can only represent three
dimensions at a time and the user can explore the NN
knowledge domain using any dimension set.

Figure 4 shows the 3D representation our NN universe U ,
containing points from our prototype knowledge base. This
view allows users to examine the NN knowledge domain in
a full 3D environment, visually exploring (through zoom and
rotation of view around any axis) the comparative relations
between NN instances. Axes correspond to NN properties
P; each dot corresponds to a single NN instance Ii; arrows
represent qualitative comparators δ1...4 between two NN in-
stances; arrow thickness and dot size indicate the quantity of
source papers (database entries) for the shown information;
call-out-type labels are references to source literature. Each
of the selection criteria is assigned its own arrow color (red,
magenta, blue and black for δ1, δ2, δ3 and δ4, respectively).
Coloring of NN instances aids in visual comparison (blue is

Implementation Platform
CPU DSP GPU SCP FPGA NPU ANLG ASIC

xLearning Paradigm SUP
REINF

GENL
UNSUP

x

Learning
Task

PASCAUT
PASCHET

NLP
PCA
SPC

DRED
CTL

CTLIND
CTDIR
SYSID

INVSYS
CSF
RGR

x

11
11

Figure 3. Example graphical representation of qualitative relation between two
NN instances. The figure represents Statement (3) from Section III-B.

better, green is worse). Using the inference engine (Section
IV-B), the visualization can be actively augmented according
to the user’s decision input.

B. Inference Engine

Our inference engine approaches our NN instance selection
process as a multiple-objective optimization problem [24] and
applies a Pareto front method [37], using our Pareto front R,
as defined in Section II, to find the suitable, multiple, non-
dominant solutions. After the user specifies their boundary
conditions and sets weights of the NN selection criteria ∇
through the graphical user interface, the DSS automatically
identifies the discrete-equivalent of Pareto frontR and the user
can directly locate and examine the source literature, relating
the NN instances in R. Rating of alternatives is based on a
weighted pairwise comparison matrix [38], resulting in levels
within a discrete-space equivalent of Pareto front, which guide
the user towards NN instances, specified as superior with re-
spect to their criteria. The user can iteratively and interactively
further fine-tune the selection of best candidates via weights
of their criteria ∇, to determine the optimal NN instance for
their problem, until the final choice is made. Information,
inferred by the inference engine, is also used as input into the
visualization tool, to augment the database visualization by
superimposing relationships, marking Pareto points and their
scores, hiding a subset of NN instances, etc. (see Figure 5).
Both the visualization tool and the inference engine can be
extended with additional inference and visualization functions.
Section V gives further insight into the typical application of
the inference engine, through step-by-step explanation.

V. PRACTICAL EXAMPLE OF DSS USE

The two major user groups that can gain remarkable benefits
from using our proposed DSS, are Industry Practitioner
and Academic Researcher. Both user groups share the main
interest of finding the optimal NN instance for their scenario,
but have a different angle: a) the industry practitioner’s goal
is to find the best fitting, well proven NN implementation
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Figure 4. The 3D representation our NN universe U , containing points from our prototype knowledge base. See Section III for axis label definitions.

for their application (with set boundary conditions on task
type, implementation platform, etc.), and b) the academic
researcher’s aim is to find an active research area or synergies
between domains, to systematically selects the most meaning-
ful research direction. In this section, we illustrate step-by-
step a typical use case for the industry practitioner. Let our
example demand a highly accurate and real-time capable NN
instance for image-based object recognition using supervised
learning. The following steps illustrate how this ground truth
is used with our DSS as decision input and how the inference
engine results are interpreted and used:

1) Enter task requirements into DSS: the practitioner enters
their set of boundary conditions by selecting the NN instance
properties, that are defined by the application. In our example,
these are the learning task and learning paradigm. The DSS
considers these two properties as pivots, therefore, only the
remaining three properties (dimensions) are shown in the
3D visualization tool (Figure 5a). After the axes are deter-
mined, the user specifies pivot axis values (learning task =
classification, CSF and learning paradigm = supervised, SUP).
The effect of this is shown in Figure 5b, where only those
NN instances are shown, whose pivot property values are as
specified by the user. Thus, this step narrows down the search
down to three dimensions and defines the NN landscape, which
optimal solutions can be chosen from. If more than two pivot
axes are specified by the use case, the NN landscape is 2- or
1-dimensional, further focusing the search.

2) Set weights for selection criteria ∇: once the 3D NN
landscape is defined in the previous step, the user specifies
weights for each of ∇ within the range from -5 to 5. In our
example, the selected weights for δ1...4 are 2, 5, 5 and 3,
respectively (see Section III-A for list of criteria).

3) Examine Pareto front R: based on weighted criteria,
the inference engine extracts NN instances, that belong to the

discrete Pareto front R. These are NN instances, for which
there is no NN instance superior w.r.t. any of the selection
criteria (no arrows leaving the NN instance). These points are
highlighted by the DSS via black squares. For better viewing
of the points in R, the user can interact with the 3D view by
rotation around any axis. This is seen in 5c (left), showing
the R points in an updated view, obtained by rotating 5b
around the ’view rotation axis’ in the indicated direction. In the
lower left corner of eachR-marking is the NN instance’s score
(closeup view in Figure 5c, right), calculated by the inference
engine using the weighted pairwise comparison matrix.

4) Analyze top alternative in Pareto front: the user chooses
the highest-ranking NN instances in the Pareto frontier and
analyzes their corresponding source literature, indicated by
call-outs (see Figure 3). Our example gives the highest score
of 12 to NN instance, described in database entries 314 and
502 (Figure 5c). From corresponding source papers [32] and
[33], the practitioner learns, that a) FFNNs can be used as
convolution NNs, b) GPU implementation in [33] has better
flexibility than previously known implementations, c) GPU
implementation of CONN has better real-time capabilities than
CPU implementation, d) Hybrid between pure CONN and
FFNN has better recognition performance than any of these
two used alone, e) hybrid implementation in [33] has won an
impressive series of image classification competitions, etc.

In conclusion, based on the industry practitioner’s input
criteria, the DSS recommends, that a GPU-based hybrid
CONV-FFNN NN should be investigated as best choice for
the given use case. This simple case illustrates how a user
can, using our DSS in a few simple steps, rapidly traverse
an immensely diverse knowledge base, in order to choose an
optimal direction for further investigation, and finally, concrete
implementation.
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(a) (b)

(c)

Figure 5. Rapid assessment of complete knowledge domain. Typical step-by-step application of the inference engine, together with the visualization scheme,
used for finding an optimal NN instance, based on user input parameters.

VI. CONCLUSION AND FUTURE WORK

In this work, we have identified the need for an abstract-
level overview of the NN knowledge domain and alleviate the
barriers, which an industry practitioner or researcher meet,
when selecting the right NN instance or research direction for
their specific scenario. We devised a theoretical foundation for
a decision support system, comprising a knowledge database
and inference engine, that can automate the decision process
of choosing the best NN architecture for the task at hand.
We also presented a prototype implementation and a proof-of-
concept through step-by-step use of our DSS. This illustrated
its potential in aiding users to exploit the whole knowledge
of NN research domain and improve NN results in research
and industry, through choosing optimal approaches to machine
learning problems.

In our future work, we will study how the inference engine
could be expanded to automatically find promising combina-
tions of NN properties, based on current highest-scoring NN
instances within the database. This will enable our system to
automatically highlight synergies between existing approaches.

Future work also includes making the knowledge base and
its visualized interaction accessible online. Moderated, col-
laborative editing of the knowledge base among researchers
is also considered. Once the knowledge base reaches critical
mass, researchers will be motivated to contribute their own
work, or populate it with entries where they notice a lack of
coverage. An editorial group could, on a per need basis, revise
the taxonomy when novel NN properties or categories emerge.
The proposed 5-letter notation enables automatic parsing of
the literature, keeping the knowledge database up-to-date at
all times and solving this problem once and for all. An
automatically-generated dynamic survey paper could always
be kept up-to-date and available in printed form for a quick
overview of recent developments.
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