
Reusable Modeling of Diagnosis Functions for Embedded Systems

Shingo Nakano, Tatsuya Shibuta, Masatoshi Arai, Noriko Matsumoto, Norihiko Yoshida
Graduate School of Science and Engineering

Saitama University
Saitama, Japan

Emails:{nakano, shibuta, arai, noriko, yoshida}@ss.ics.saitama-u.ac.jp

Abstract—This paper presents a technique to embed diag-
nosis functions in model-based design of embedded systems,
allowing designers to do this at early design stages, before
separation of hardware and software (HW/SW) implementations
and derivation of several variations. First, we develop some
simple monitoring functions suitable for both HW/SW based
on JTAG (Joint Test Action Group). Then, in order to identify
faulty components in a complex embedded systems where a
fault in a component can affect others, we employ a method
proposed by Kutsuna et al., which is based on “model-based
diagnosis” studied in the field of Artificial Intelligence. This paper
uses MATLAB/Simulink as a modeling framework, and employs
aspect-oriented approach for diagnosis description to promote
reuse of diagnosis function models. This method enables to locate
a fault source even if the fault propagates multiple modules.

Keywords—Embedded System Diagnoses; Aspect-Oriented Sys-
tems

I. I NTRODUCTION

Recently, embedded systems are getting large, complex,
distributed, and are composed of many components both in
HW/SW. When a system fails, specifying the source is difficult
because it often involves a number of components. Therefore,
by implementing a function of detecting failure and specifying
the source in the system, one can reduce cost and increase
running rate of the system by shortening the average time to
repair.

There exist various techniques based on studies of di-
agnosis of embedded systems, such as abstract model-based
diagnosis [1], modelling and verification [2], and health assess-
ment [3]. Additionally, we can effectively develop embedded
systems by adding diagnosis functions at design modeling
stages in accordance with model-based design, since we can
verify the model of the system, which includes these functions,
and generate source code from these models [4].

However, these techniques [1][2][3][4] have been studied
individually, so it is still not clear how they will be applied in
actual development of embedded systems.

This paper proposes a technique to implement diagnosis
functions that detect failed components, and embed them at
modeling stage. We aim to include diagnosis functionality
into embedded systems in a way that allows implementing
HW easily and with less resources. In this research, we use
MATLAB/Simulink [5] for modeling.

First, we describe a function getting Input and Output
(I/O) of component in the modeling stage of implementing
the HW/SW (referring to a method proposed by Irizuki et al.
[6] for monitoring the I/O) in order to get I/O needed for the

diagnosis. Then, we model and implement a diagnosis method
proposed by Kutsuna et al. [1] to locate the fault source.

Embedding of the diagnosis functions occurs at the mod-
eling stage using aspect-oriented programming. By using as-
pects, we can easily add modularized functions, and it is
possible to handle variations as well as make design more
effective.

The structure of the paper is as follows. In Section II, we
propose how to obtain the I/O of components and create a
model using MATLAB/Simulink. In Section III, we summarize
the diagnosis methods proposed in [1] and explain our method.
In Section IV, we describe how to apply diagnosis functions
to the target using aspects, since it enables function parts to be
reused. In Section V, we simulate proposed diagnosis functions
using a simple model to verify feasibility of this research.
Finally, in Section VI, we describe the conclusion and outline
future work of this study.

II. OBTAINING INPUT AND OUTPUT OF A COMPONENT

A. Idea

Our idea is that diagnosis requires Input and Output of a
component in an embedded system. In this research, we use
JTAG (Joint Test Action Group) [7], which is the standard
test access port and boundary scan architecture of IC chips to
obtain Input and Output.

B. JTAG

Irizuki et al. propose a method which monitors Inputs and
Outputs of an embedded system using JTAG to prevent mal-
function [6]. In JTAG, it is possible to I/O cells corresponding
to the respective I/O pins of the IC chip from outside. The
controller for JTAG test is standardized as TAP (Test Access
Port) Controller and has at least four serial interfaces: TCK
(Test Clock), TMS (Test Mode Select), TDI (Test Data In)
and TDO (Test Data Out).

Fig. 1 shows the structure of the IC chip according to
JTAG. Cells are placed between I/O pins of the IC and the
internal logic, and store the values of the I/O. Since cells are
implemented as cascading shift registers, it is possible to input
from TDI and output to TDO.

C. Abstract JTAG

JTAG is implemented in HW and does not involve com-
plex computations, therefore it is also suitable for embedded
systems with limited resources and functionality. However,
because of that, it is only possible to monitor Inputs and

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

Outputs in HW. In this research, we propose getting Inputs
and Outputs needed for diagnosis at the modeling stage before
separation of HW/SW, since diagnosis is HW/SW-independent.
For this purpose, we make JTAG more abstract in the following
way.

• Inputs and Outputs go directly into an IC without
using cells.

• There is no need for instructions and instruction
register.

• The value of TMS is used for control, instead of TAP
controller.

• We obtain the whole value of the Input and Output
rather than obtaining it bit by bit.

• The value of TDI is shifted only after the shift in
values of the Input and Output.

D. Getting Inputs and Outputs with abstract JTAG

Abstract JTAG obtains Inputs and Outputs switching the
following two states of the value of TMS.

TMS=0: Inputs and Outputs of diagnosis target are stored
in cells.

TMS=1: Stored values are shifted.

Then, we get Inputs and Outputs using above states as
follows.

Step 1 Input and Output values are stored in cells
(TMS=0).

Step 2 Saved values are shifted to TDO (TMS=1).
Step 3 Repeat Step 2 times the number of Inputs and

Outputs.

E. Modeling in MATLAB/Simulink

In this research, we make JTAG more abstract and model
it in MATLAB/Simulink, which is widely used in embedded
system design.

If HW implementation is done according to this model,
it becomes identical or similar to JTAG. On the other hand,
if SW implementation is done according to this model, there
is no need for dynamic memory assignment, and control is
performed with fixed amount of memory (determined by the
number of Inputs and Outputs) using assignment operations
and control statements.

Fig. 1. IC chip construction based on JTAG.

III. L OCATING FAULTS BY MODEL-BASED DIAGNOSIS

A. Idea

If one component fails and outputs abnormal value in
embedded systems, from the outside it may look like multiple
components fail, since components that receive the output
also output abnormal values. This problem is known as fault
propagation problem, which makes it difficult to identify faulty
component in large-scale systems.

In this research, we use abstract model-based diagnosis [1]
to identify the faulty component.

B. Abstract model-based diagnosis

Model-based diagnosis is a framework for system diagnosis
that defines the behavior of each component and determines
whether components are normal or not using logical relations
derived from the structure of the system, and observations of
data flows through the system [8][9]. For this purpose, it uses
statements SD (System Description), OBS (Observations) and
DIAG (Diagnosis).

SD Statement indicating the logical relations derived
from the structure of the system.

OBS Statement which represents observations of data
flows through the system.

DIAG Statement which represents whether each compo-
nent is normal or not.

Model-based diagnosis is usually necessary to describe
the behavior of components. However, writing down exact
behavior of the software is difficult. To solve this problem,
abstract model-based diagnosis has been proposed [1]. There,
the logical relations derived from the configuration of the sys-
tem are acquired by using the formula ”outputs are normal if
components and inputs are normal”, so it becomes unnecessary
to write down the behavior of the components.

As an example, let us show the steps of the abstract model-
based diagnosis using an abstract model shown in Fig. 2 which
is used as example in [1]. First, SD is defined as follows.

SD ≡ {ok(C1) ∧ ok(a) ∧ ok(b) → ok(c) ∧ ok(d)}
∧{ok(C2) ∧ ok(c) → ok(e)}
∧{ok(C3) ∧ ok(d) → ok(f)} (1)

The first line of the equation (1) shows that outputsc, d
are normal ifC1 is normal and inputsa, b are normal.

Fig. 2. Example of an abstract model.

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

In abstract model-based diagnosis, OBS is defined as a
result of checking whether each data is normal or not according
to some criteria. For example, ifc, e are abnormal and other
data are normal in Fig. 2, OBS is defined as follows.

OBS ≡ ok(a) ∧ ok(b) ∧ ¬ok(c)
∧ok(d) ∧ ¬ok(e) ∧ ok(f) (2)

As for the method for determining whether data is normal
or not, the following two are considered.

• Methods based on designers knowledge, such as spec-
ifying range or period within which the data must be
generated.

• Methods that are not based on knowledge, such as us-
ing statistical learning or data mining on accumulated
data, or building separate model for the interior of
the component and using formal methods like model
checking.

DIAG shows whether each component is normal or not,
and in case componentC1, C3 are abnormal and component
C2 is normal, DIAG is written as follows.

DIAG ≡ ¬ok(C1) ∧ ok(C2) ∧ ¬ok(C3) (3)

¬ok(C) means that the componentC is abnormal. There-
fore we will write DIAG as a list of abnormal components
in parentheses. For example, DIAG of the equation (3) is
represented as{C1, C3}.

Model-based diagnosis seeks appropriate DIAG from SD
and OBS. That is, it seeks DIAG based on the condition ”given
what DIAG, conflict does not occur between SD and OBS”,
which is represented by the following equation.

SD ∧OBS ∧DIAG = True (4)

When SD is given by the equation (1) and OBS is
given by the equation (2), possible values of DIAG are
{C1},{C1, C2},{C1, C3}, {C1, C2, C3}. Among all the pos-
sible DIAGs, minimal diagnosis is defined as the one which
contains minimal number of components that does not make
(4) contradicting. In the example above,{C1} is the minimal
diagnosis. Minimal diagnosis may also contain two or more
faulty components, which means that it is possible to identify
multiple faults.

As shown in the example above, in abstract model-based
diagnosis, sometimes multiple DIAGs are obtained for given
OBS and SD. In this case, we consider the probability of
multiple abnormal components at the same time to be small,
and abstract model-based diagnosis will output the DIAG
which is minimal number of abnormal components as the
diagnosis result. Thus, in example above, abstract model-based
diagnosis outputs a result showing thatC1 is abnormal.

C. Modeling in MATLAB/Simulink

We propose the way to model diagnosis systems using
abstract model-based diagnosis (in particular, dealing with
OBS) similar to modeling the acquisition of Inputs and Outputs
in Section II, so that diagnosis is implemented independent
from HW or SW.

1) Placement of the diagnosis system:For example, we
place the diagnosis system for target model in Fig. 2 as shown
in Fig. 3. Here, Diagnosis Component (DC) stands for the
component that receives Inputs and Outputs of each component
from abstract JTAG (introduced in Section II) to determine
normality, and DCC (Diagnosis Component Center) stands for
the component that outputs OBS based on results from DCs.

2) Criteria of data normality: As mentioned in Section
III-B, in the abstract model-based diagnosis, there are two
types of methods for determining data normality. In this study,
we use the method based on designers knowledge with the
following two criteria.

1. Combination of Inputs and Outputs is determined
uniquely.

2. Inputs and Outputs must fall within a certain
range.

There is no established format describing information for
deciding whether Inputs and Outputs of each component are
normal or not in [1], so in this research, we use a matrix called
normal data matrix.

The normal data matrix is defined, as shown in Fig. 4. We
write the numbers of corresponding components to column
C, each input condition to columns of inputs (1,· · ·, m), each
output condition to columns of outputs (1,· · ·, n), and last two
columns contain position of the boundary between the Input
and Output data and the number of criteria.

DC determines whether Inputs and Outputs are normal or
not by corresponding criteria as following.

Fig. 3. Placement of diagnosis system.

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

C input 1 · · · input m output 1 · · · output n boundary between input and output criteria

x a1 · · · am b1 · · · bn m+ 1 y
...

...
.. .

...
...

. ..
...

...
...

x c1 · · · cm d1 · · · dn m+ 1 y

Fig. 4. Normal data matrix notation.

Criteria 1:

Step 1 Compose normal data matrix that contains com-
bination of the normal I/O of the diagnosis target
in each line.

Step 2 Given the observation values of I/O and values of
I/O values in normal data matrix, we choose the
ones that contain more identical values.

Step 3 Given the observation values and selected combi-
nation of I/O, we consider the same I/O as normal
and different ones as abnormal.

Criteria 2:

Step 1 Compose normal data matrix that contains the
smallest values of I/O of diagnosis target in a first
line, and the largest values in a second line.

Step 2 Define I/O that are within the range as normal and
others as abnormal.

3) Example of normal data matrix:As an example, here
we describe normal data matrix using the model from Fig. 3.

First, we assume that normality for Inputs and Outputs of
each component is determined as follows using two criteria
mentioned above.

C1: a is normal if−1 ≤ a ≤ 1. (Criteria 2)
C1: b is normal if−2 ≤ b ≤ 2. (Criteria 2)
C1: c is normal if0 ≤ c ≤ 1. (Criteria 2)
C1: d is normal if0 ≤ d ≤ 1. (Criteria 2)
C2: c,e are normal if value (c,e) is any of the following:

(0,0), (0,1), (1,0), (1,1). (Criteria 1)
C3: d,f are normal if value (d,f) is any of the following:

(0,−1), (0,1), (1,1), (1,−1). (Criteria 1)

Normal data matrices ofC1, C2, C3 are described as
follows.

Normal data matrix ofC1:(
1 −1 −2 0 0 3 2
1 1 2 1 1 3 2

)

Normal data matrix ofC2: 2 0 0 2 1
2 0 1 2 1
2 1 0 2 1
2 1 1 2 1

Normal data matrix ofC3: 3 0 −1 2 1
3 0 1 2 1
3 1 −1 2 1
3 1 1 2 1

4) Rapid increase in the size of normal data matrix:There

is a problem that normal data matrix size increases rapidly
with the number of I/O of a component and the number of
possible value combinations according to criteria 1. To address
this problem, we propose either creating a program describing
the combination of the normal I/O or using criteria 2. In order
to deal with situations where such approach is not possible, it
would be necessary to think of other criteria of data normality.

5) Procedures of DC and DCC:Procedures of DC and
DCC are described using normal data matrix as follows.

Procedure of DC:

Step 1 Obtain observed value of the I/O of the diagnosis
target from abstract JTAG.

Step 2 Get normal data matrix and choose normality
criteria.

Step 3 According to normality criteria, determine nor-
mality.

Step 4 Report each Input and Output as normal or not to
DCC.

Procedure of DCC:

Step 1 Get the information reported from the all DCs.
Step 2 Output OBS from reported information.

D. Modeling in MATLAB/Simulink

User-defined function block enables modeling diagnosis
functions in MATLAB/Simulink. Since users can write the
process of the block as a program, diagnosis system is modeled
by describing the process of DC and DCC like that.

IV. M ODULARIZE AND REUSE FUNCTIONS USING
ASPECTS

A. Idea

In this study, we propose embedding the diagnosis func-
tions by using aspects and model transformation, so that we
are able to reuse them. Because aspect can be applied after
the completion of the target model, changing the model and
adding functions can be done easily. Also, it allows variations,
such as implementation with just diagnosis functions removed.

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

In this study, we use model transformation with aspects not
as specific means for embedding the diagnosis functions, but
in a way that enables to use it in the general model.

B. Model transformation with aspects

Aspect is a technique that is designed to extract and mod-
ularize process that is common in many models or programs.
Such process is called Crosscutting Concern [10], and while it
is difficult to modularize it only with modularization, aspects
perform well in this case.

Join point model, which is a representative model of the
aspect, consists of join point, pointcut and advice. Join point
is a ”point in code” to which aspect can be applied, and a set
of more than one join points is called pointcut. Advice is a set
of instructions that indicate what should be handled by aspect
code. Aspect can be applied to the target program at compile
time or at a run time. Action that adds the functionality defined
by advice to a join point specified by a pointcut is called weave,
and the utility which performs weave is called weaver.

Models created with MATLAB/Simulink are stored as a
code on a layer-structured document. Therefore, in this study,
we perform model transformation by changing the contents of
the code with aspects. That is, we indicate certain location
in code as a pointcut, and change internal structure of model
by changing the contents of the code with advice (Fig. 5).
For embedding the diagnosis functions modeled by MAT-
LAB/Simulink, we apply aspect that adds blocks, lines and
branches of line needed for diagnosis. However, since weaver
that can be used in aspect applying is currently incomplete,
we apply aspects by hand.

Since the amount of components and the amount and names
of each component’s I/O are different depending on diagnosis
targets, it is difficult to design common embedding diagnosis
functionality. Therefore, we divide diagnosis functionality ac-
cording to target and common parts, and modularize common
parts together. This way we can design efficiently only by
changing the point of embedding common part of diagnosis
functionality.

In this study we use MATLAB/Simulink for describing
model in XML, since we describe aspect using XML format
also. The outline of description is shown in Fig. 6. Here,
the entire aspect is contained in⟨aspect⟩ tag, description of
pointcut is contained in⟨pointcut⟩ tag, and advice is contained
in ⟨advice⟩ tag. When adding block and line, join point is
represented by target system, and for the branches of line,

Fig. 5. Model transformation with aspects.

join point is represented by a target line. The action in advice
is selected according to type. In this study, the type can be
block-add, line-add and branch-add.

V. EXPERIMENTS

A. Details of the experiment

We verify feasibility of proposed method using simple test
model. As test model, we use Wave.mdl [11] shown in Fig. 7.

Here, TwiceComponent has input of sine wavea with am-
plitude of 1. We regard this component asC1. C1 outputs sine
wave b with amplitude twice as large asa. Add Component
has inputs of sine wavec with amplitude of 1 and sine wave
b which is the output ofC1. We regard this component asC2.
C2 outputsd which is the sum of sine wavesb andc. We set
time step for performing Input and Output to 0.1, and perform
simulation from 0.0 till 6.0.

We embed diagnosis functions to Wave.mdl, and we iden-
tify the component that is causing error by obtaining I/O of
C1 andC2 and detecting error for each component.

We made WaveDCC JTAG.mdl shown in Fig. 8, which
models the embedding diagnosis functionality. Diagnosis mod-
ules may look complicated in the figure, but actually they have
a simple structure and does not require much resources to
implement.

Criteria for deciding whether Inputs and Outputs of each
component are normal or not are as follows.

C1: a is normal if−1 ≤ a ≤ 1. (Criteria 2)
C1: b is normal if−2 ≤ b ≤ 2. (Criteria 2)
C2: b is normal if−2 ≤ b ≤ 2. (Criteria 2)
C2: c is normal if−1 ≤ c ≤ 1. (Criteria 2)
C2: d is normal if−3 ≤ d ≤ 3. (Criteria 2)

Fig. 6. Outline of aspect description.

Fig. 7. Test model: Wave.mdl.

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

Fig. 8. Model: WaveDCC JTAG.mdl.

TABLE I. T HE DETAILS OF CAUSING ERRORS

Time Position Error details
1.0 C1 Multiplies input a by 5.
3.0 C2 Multiplies input b by −1 before addition.

4.0 ∼ 5.0 C2 Multiplies input c by 3.
5.0 C1 Multiplies input a by −4.

TABLE II. D IAGNOSIS RESULT

Time Input and Output Component
0.0 All normal All normal

1.0
Outputb in C1, input b and
outputd in C2 are abnormal C1 is abnormal

2.0 All normal All normal
3.0 All normal All normal
4.0 Outputd in C2 is abnormal C2 is abnormal

5.0
Outputb in C1, input b and
outputd in C2 are abnormal C1 is abnormal

The diagnosis is performed at time steps 0.0, 1.0, 2.0, 3.0,
4.0 and 5.0. In addition, we raise errors shown in Table I and
verify whether diagnosis function can detect them.

B. Experiment results

Experiment results are shown in Table II. The results at 0.0,
1.0, 2.0 and 4.0 are all successful. However, the results at 3.0
and 5.0 show abnormalities. First, at 3.0, outputd is supposed
to become abnormal because we introduced an error toC2, but
the error was not detected, since it did not exceed the range
of normal values that were used in the criteria. When using
criteria that check if Input and Output fall within a certain
range, we can see that detection is not possible if the error
does not make Input and Output exceed the range. In addition,
at 5.0, we caused an error in both theC1 andC2, but onlyC1

was identified as abnormal component. The reason for this is
that model-based diagnosis outputs minimal diagnosis. That is,
if several components become abnormal at the same time, only
the component that is the starting point would be identified as
abnormal.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described abstract JTAG which monitors
I/O of component, and abstract model-based diagnosis which
identifies faulty component at modeling stage. We also pro-
posed model transformation using aspects for modularizing
and reuse of those functions. This method enables to locate
a fault source even if the fault propagates multiple modules.

In the future, we will confirm the utility of proposed
method by actually generating HW and SW from MAT-
LAB/Simulink model and evaluating overhead and increase
in code size that is caused by embedding diagnosis functions.
In addition, since we currently calculate DIAG manually, we
need to automate it as well.

REFERENCES

[1] T. Kutsuna, S. Sato, and N. Chyujo, “Fault Location in Collaborative
Systems Using Abstract Model Based Diagnosis”, Workshop on embed-
ded technology and network (ETNET2009), 2009, pp. 43–48.

[2] Z. Simeu-Abazi, M. Di Mascolo, and M. Knotek, “Fault diagnosis for
discrete event systems: Modelling and verification”, Reliability Engineer-
ing & System Safety, vol. 95, no. 4, 2010, pp. 369-378.

[3] M. Dievart, P. Charbonnaud, and X. Desforges, “An embedded distributed
tool for transportation systems health assessment”, Embedded Real Time
Software and Systems (ERTS2 2010), 2010, pp. 1–10.

[4] P. F. Smith, S. M. Prabhu, and J. Friedman, “Best Practices for Establish-
ing a Model-Based Design Culture”, SAE 2007 World Congress, 2007,
pp. 1–7.

[5] MATLAB/Simulink, http://www.mathworks.com/products/simulink/ [ac-
cessed: 2014-07-08].

[6] Y. Irizuki, M. Ohara, and K. Sakamaki, “An Online Self-Monitoring
Approach for Embedded Systems Using JTAG Interface”, The journal
of Reliability Engineering Association of Japan, vol. 32, no. 3, 2010,
pp. 185–190.

[7] IEEE Standard Test Access Port and Boundary-Scan Architecture-
Description, 1990.

[8] J. De Kleer and J. Kurien, “Fundamentals of model-based diagnosis”,
Proceedings of IFAC Safeprocess 3, 2004, pp. 25–36.

[9] J. De Kleer and B. C. Williams, “Diagnosing multiple faults”, Artificial
Intelligence, 32 (1), 1987, pp. 97–130.

[10] R. Laddad, “AspectJ in Action”, Manning, 2003.

[11] mdl, http://www.mathworks.com/help/simulink/ug/saving-a-model.html
[accessed: 2014-07-08].

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

