ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Trading Redundant Work Against Atomic Operations
On Large Shared Memory Parallel Systems

Rudolf Berrendorf
Computer Science Department
Bonn-Rhein-Sieg University
Sankt Augustin, Germany
e-mail: rudolf.berrendorf@h-brs.de

Abstract—Updating a shared data structure in a parallel pro-  vertex frontier where the vertices of the current vertexfier
gram is usually done with some sort of high-level synchronization insert new unvisited vertices to the following vertex frient
operation to ensure correctness and consistency. However, der-  |n this scenario, adding a vertex twice in such a frontier
lying synchronization instructions in a processor architecture are  generates more work to be done in the next level iteration but
costly and rather limited in their scalability on larger multi- does not influence the correctness of the algorithm. Anpther

core/multi-processors systems. In this paper, we examine work c
queue operations where such costly atomic update operations g}gg?itﬁﬁqge[rg]l scenario is the development of asynchronous

are replaced with non-atomic modifiers (simple read+write). In
this approach, we trade the exact amount of work with atomic

operations against doing more and redundant work but without . .
atomic operations and without violating the correctness of the concrete parallel BFS algorithm on large shared memoryimuit

algorithm. We show results for the application of this idea to core multi-processor systems with up to 64 cores. We éxamine
the concrete scenario of parallel Breadth First Search (BFS) What the factors are that influence the amount of additional
algorithms for undirected graphs on two large NUMA shared work, what the amount of additional work is, and whether this
memory system with up to 64 cores. additional work without any synchronized access to the work
gueue trades off against the traditional sychronized actea

work queue doing exactly the amount of work that is necessary

In this paper, we examine such a general strategy for a

Keywords—atomic instructions, redundant work, parallel BFS

I. INTRODUCTION The paper is organized as follows. After this introduction,

_ _ we start with an overview of related work, followed by a brief
Updating a shared data structure in a parallel program agverview on parallel BFS algorithms. After that, we present
for example an insert operation on a work queue is usuallyyr new approach, describe our experimental setup, and then
done on an application level with some sort of high-leveleyaluate the new approach against the traditional way.

atomic update operation (e.g., in OpenMP [1] lock-protecte
atomic operation, etc.; see [2] [3] for a general discugsibhe
implementation of such a high-level synchronization opiera Il.  RELATED WORK

itself is done by the compiler or inside a runtime system There are several papers on certain aspects on the opti-

with one or even more atomic instructions (atom'c'add"teStmization of synchronization constructs in a wider sensés Th

anoL.tD, compare-and-swap, etc.) of th_e underlaymg.prpcess%cludes, amongst others, reducing the number of conseruti
architecture. The general problem with such atomic iNstruc . ‘tex lock/unlocks [7] in a program and compiler optimiza-

:IT(]):I’]S’](;? tgit:égiyai:je r:g:c[hr?aral(lzosstgal(;%rl?ep2Le|dart0e?ns Osr,g?]':;a% ns for read/write barriers [8]. Furtheron, there areaambed
y y ger sy Enchronization techniques trying to minimize synchraniz

[5] (s'ee also section IV fpr'our own investigation; on that)'tion costs including RCU (Read-Copy-Update) [9], special
The time forone such atomic instruction increases significantly monitors [10], read-writer optimizations [11], and spé’z'm

under contention as the number of cores in a multi-coreimult |, tee data structures (e.g., [12]). [2] gives an ovewiof

processor system gets larger. different aspects on related topics. [13] shows a similaidre
As the use of such synchronized updates on shared datace as ours in a parallel BFS algorithm, but without analyzi

guarantees correct operations on that data, this strict erthe influence of that.

forcement is often not really necessary. An example is a

work queue, where working threads insert new items and An interesting general approach to handl_e possible con-
current accesses to shared data structures is the concept of

gigeortirt]rqer}r?igss{:eewgr\ilgsIt(eerfqgs. tevi%?nvfg(gr?a%nbzgtr;g: ;;22 'r}ransact_ior_lal memory (original paper [14]). This approfel
a work item may be inse’rted even multiple times withoutSOme similarities with our approach as both are optimistic:
e : . "do a read-modify-write operation without a critical seatio
wolz_mng the correctness of the algorithm, but only cagsin and react only f%ls sometrr)ling went wrong. The idea with
additional redundant work to be done. In such cases, thé/cost finsactional memory as well as in our approéch is that tHe ba

synchronized access can be completely removed for the cog1 X
of eventually additional work to be done. ing happens rather seldlom. Transactlon.al memory detects
the problem and (depending on the API in use) rolls back
An example for such a scenario is a Breadth First Searcthe whole transaction and restarts the operation. We idstea
(BFS) for undirected graphs (see section lll for details).ignore the problem (and do not even detect the problem) and
Most of the published parallel BFS algorithms iterate over ahave more work to do in the future.

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-290-5 61



ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

1. PARALLEL ALGORITHMS FORBFS In BFS algorithms housekeeping has to be done on visited
L ) o / unvisited vertices with several possibilities how to datth

_In our application scenario for the examination, we arégome of them are based on special container structuresrior ve
interested in undirected grapks=(V,E) whereV is a set of  tay frontiers where information has to be inserted and délet
verticesvy, ..., n andE is a set of edgesy, ..., &m. An edgee  gcalability and administrative overhead of these containee
is given by an unordered paér= (vi,vj) with vi,v; €V. The  f interest. Generally speaking, these approaches depioy t
number of vertices of a graph will be denoted W =nand  jgentical containers (current frontier, next frontier) wgle roles
the number of edges i&| =m. are swapped at the end of each level iteration. Fig. 1 shawss th

i ther straightforward version with an atomic Compare-
Assume a connected graph and a source vegexV. For N @@ a v ! :
each vertexs € V definedepth(u) as the number of edges on ANd-Swap (CAS) operation in an inner loop (line 11) to detect
the shortest path from to U, i.e., the edge distance frow. and update unvisited vertex neighbors. In this atomic djmra

; : a vertex is checked wether it is visited alreadj{ # «), and
With depth(G) we denote the depth of a grahdefined as if not, marks the vertex as visited. Based on this knowledge,

tsr:)irr(r:]: ﬂ;nr?g(.depth of any vertex in the graph relative to théonly_an unvisited vertex gets inserted into _the next vertex
frontier. After all vertices in the current container araited,
The problem of Breadth First Search (BFS) for a givenall threads wait at a barrier before work on the next containe
graphG = (V,E) and a source vertexy €V is to visit each / frontier gets started (level iteration). This version dagé
vertex in a way such that a vertax must be visited before further optimized using chunked lists for every thread. The
any vertexv, with depth(vi) < depth(v;). As a result of a insert operation of a new vertex into a thread-local chunk ca
BFS traversal, either the level of each vertex is determinedbe done in a non-atomic way. But the construction of a global
or a (non-unigue) BFS spanning tree with a father-linkagdist from thread-local chunks (i.e., the insertion of eablurk
of each vertex is created. Both variants can be handled bipto a global list) must still be done in a synchronized wayt B
BFS algorithms with small modifications and without extraas this is done only if a chunk gets full, this is not the catic
computational effort. The problem can be easily extendetl anoperation of this algorithm but the detection of visitednés
handled with directed or unconnected graphs. A sequentidine 11. Container centric approaches are eligible for dyioa
solution to the problem can be found in textbooks, based on wad balancing but are sensible to data locality on ccNUMA
gueue where all non-visited adjacent vertices of a visimgtex  Systems. Container centric approaches for BFS can be found
are enqueued. The computational complexitD{gV + |E|). in some parallel graph libraries [15] [16]. [17] contains an

i ) ) _ overview and evaluation of several parallel BFS algorithms
If one tries to design a parallel BFS algorithm, different

challenges might be encountered. As the computationaltgens For level synchronized approaches, a simple list is a suf-
of BFS is rather low, BFS is bandwidth limited for large graph ficient container. There are approaches, in which eachdhrea
and therefore memory bandwidth has to be handled with caréNanages two private lists to store the vertex frontiers asebu
For a similar reason in ccNUMA systems, data layout ancdditional lists as buffers for communication [18] [19].i8h
memory access should respect processor locality. In rouitic approach deploys a static one dimensional partitionincghef t
multiprocessor systems, things get even more complicatedfaph’s vertices and therefore supports data locality.

as several cores share higher level caches and NUMA-node

memory, but have private lower-level caches. IV.  ALTERNATIVE TO ATOMIC ACCESSES

Atomic operations in a higher level parallel APl for
shared memory systems as mutual exclusion, atomic update,
locks, compare-and-swap etc. are usually mapped on shared
memory systems to atomic instructions that the underly-
ing processor architecture provides. These atomic instruc
tions are by itself rather costly if no contention exists.t Bu
if multiple threads concurrently access a shared state with
such instructions, the cogter operation increases signifi-

for all v in current do cantly. Fig. 2 shows the cost f_or one lock/unlock-operation
10: for all neighboursw of v do (onp_set _I ock/ onp_unset _| ock) in OpenMP on a shared
11: old = CompareAndSwap(d[w], o, d[V] + 1) memory system dependend on the number of processor cores
utilised. In this testp processors do in a loop lock/unlock-

1: function BFS(graph g, vertex source)

2:  var

3 d, distance vector of sizf/|. Initial values:co
4 current, next, vertex container. Initially empty
5. end var

6: d[source] — 0

7:  current.insert(source)

8:  while current is not emptydo

9

12: if old = o then : . .

13: next.insert(w) operation with an empty function call between that. The test

14: end if was executed on a large 64 core AMD based system. Other

15: end for systems show a similar behaviour.

16: end for Looking at the formulation of the parallel BFS algorithm

17 Barrier . in Fig.1, an atomic CAS-Operation is used in line 11 to check

18: swapcurrent with next whether the child vertex is unvisited @[w] = »), and if so,

19:  end while replace the depth-value efwith the depth value of the current

20:  returnd vertex v incremented by one. And if the neighbour vertex

21: end function w was unvisited, additionally insemv into the next vertex
Fig. 1: Parallel BFS with an atomic CAS-operation frontier. The CAS operation guarantees, that every vergex i

inserted exactly once into a vertex frontier (detection araok

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-290-5 62



ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

12000 Another aspect in this discussion is the memory consis-
10000 H%@J tency model in use. In a strict memory consistency model, it
8000 _@ﬁw is guaranteed, that the write operation is visible to othegdds
_@ﬂ'ﬁ@%" immediately after this operation. But todays, all memory
6000 lﬁ@w& consistency models in practical use (e.g., [20] [1]) ar&ent
4000 relaxed and the compiler may buffer the value djfv] in
: a register, a processor core may buffer that value in write
, [ buffers, or the new value is not propagated between differen
124 8 16 2 32 40 48 56 64 processors soon etc. This can enlarge the time window for
number of threads problems substantially even under the assumption madeeabov
that a thread is not suspended. A programmer may insert an
Fig. 2: Cost per lock/unlock on a large AMD-based system. appropriate flush operation of the used parallel AP| befoe |
2 and after line 3 such that all threads / processors areddeoce
read / writed[w] to / from main memory in the corresponding
. _ ) ) .. operation. But dependend on the implementation of such
of visitedness). Without the atomic operation, a race dmmli 5 fjysh-operation, this could lead to substantial additiona

exists ond[w]. Replacing the critical operation with & non- gyerhead as this is done inside an inner loop iteration.
atomic code results in Fig. 3 (only relevant parts are shown)

nsec

2000

The question we are interested in is now, whether the

1: for all neighboursw of v do relaxation using non-atomic modifications tjw| as given

2: if dw] =0 then in Fig. 3 (which surely is faster than a CAS-operation) pays
3 dw] =dv]+1 off as we might increase the work to be done substantially.
4: next.insert(w) The amount of additional work to be done will be influenced
5. end if generally speaking mainly by:

6: end for

1) problem time window (influenced by the generated
code sequence and implemented consistency model)
in relation to the time threads spend in non-critical

Fig. 3: Parallel non-atomic BFS (relevant part)

The code of interest is in line 2 and 3 that was previously code _
guarded by the CAS-operation. There are two possibilities 2) the number of threads in use (number of concurrent
when executing this code in parallel: parties) ) ) o o
3) the problem data influencing access collisions, i.e., in
1) Between the read accesiw| in line 2 and the our case the topology of the graph (vertex degrees,
completion of the write acces in line 3 no other shared neighbours)

thread accesselw]. In this case (and an appropriate i . i
with this version, the vertew is inserted exactly once Se€ the vertex in question as unvisited, and the more threads

in a vertex frontier as before. are participating, and the more vertices have connections t
thatw, is unvisited (i.e.d[wy] = «) before any of the Work is generated.

otrller threﬁQS can crr:ange thipw] to some visited Although we state this here in the context of a parallel
value. In this case, the vertex, gets inserted twice grg aigorithm, the discussion is a general discussion on
or even more into the next vertex frontier. the technique itself and not specific to BFS. We propose

It is important to state that even the second case producdg r€Place costly atomic operations with probably redundan
no wrong results as any thread that detects thati[wy] is work but with cheaper simple load/store operations without

unvisited, writes intad[wy] in the next step the valud|v] + 1 tmhg?'gy;nggigi c%rlzeg?esssﬁ;:gg %gec:rr:(t)?m.sTgtzr%p\?vti?ﬁrﬁan
that is equal for all threads in one level iteration. Therefo P Y 9 y Sy Y

correctness is guaranteed in our scenario. But, as stateg ab concurrent threads this technique pays off.
in such a case the vertex, is inserted twice or even more
into the next vertex frontier and due to that, generates more V. EXPERIMENTAL SETUP

and redundant work in the next level iteration. . . . .
In this section, we describe the test setup to systematicall

Looking at the generated assembler code (and this is morompare the two alternatives (atomic accesses vs. redundan
or less invariant of the compiler used), the read accestvip ~ work) in the concrete scenario of a parallel BFS. The general
in line 2 (i.e., a load instruction) and the write accessl ] algorithmic approach for parallel BFS chosen for this déscu
in line 3 (i.e., a store instruction) are nearby instruction  sion was already given in Fig.1. We optimized this algorithm
the code sequence. With an assumption, that a thread is ntt work on chunked array based lists where each thread snsert
suspended during execution, the time window between the twa new vertex into a thread-private chunk. If such a chunk gets
instructions is therefore rather small (few cycles in gt~ filled, the chunk is inserted into a global list. The insertiaf
This assumption will be mostly true for many real scenariosa chunk into the global list is done in all algorithm versions
e.g., running OpenMP programs on a dedicated system witlvith one atomic operation. But the influence of that atomic
not more threads than processor cores available. operation is neglectible.

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-290-5 63



ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE I: CHARACTERISTICS FOR USED GRAPHS by the graph topology / degree d_istri.bution. We useo several
large graphs from different application areas. Beside$ rea
graph name v £ avg degre;ax g:g;:: graphs we used also synthetically generated pseudo-random
RMATIN-1G 1P P 1000 | 599399 | 8 grap_hs. that guarantee certain topolo_glcal properties. Due
RMAT-1M-10M 10° 10 10 4,726 16 the limited space in this paper, we will show only results for
Streets-Europe | 50912018 | 108109320 | 2.123 | 13 17,345 a street graph (Streets-Europe) and two R-MAT graphs with

parameters, b, ¢ influencing the topology, degree distribution,
and clustering properties of the generated graph. See 1] f
In the first version nameetomicBF S1, every thread uses details on RMAT-graphs and [22] for a general discussion on
a CAS operation as described in Fig.1 to detect unvisite@egree distributions for R-MAT graphs. We used as RMAT
vertices and updates them accordingly. This guaranteas, thparameters in the results showan= 0.45,b = 0.25,c = 0.15.
every vertex is inserted exactly once in a vertex frontiet & After graph generation, we introduced artificial edges tbage

the other sidegvery check is done atomically even on vertices connected graph. Table | shows some important properties of
that were visited already, even in a previous level iteratio  the graphs used.

This last aspect can be optimized easily with a standard op-
timization technique in prefixing the expensive CAS-operat VI. RESULTS
with a normal read operation followed by the CAS-operation ) )
only, if the test was sucessful (i.e., a test-and-testseidsp- Fig. 4 and Fig. 5 show performance results for the three
eration). This technique is also done in the OpenMP referencVersions of investigation on the two different parallel teyss

implementation of the Graph500 benchmark [15] for BFS. WeUSing different data sets. The performance is given as a
name this versioratomicBF 2. In this version, all vertices raté Million Traversed Edges per Second (MTEPS), a usual

already visited are no longer handled with a CAS operationM&asure for BFS performance (the higher, the better). The

We discuss the performance effect of this optimizationrlate relative performance degradation Fig.4b and 4c in all versi
with higher thread numbers is caused by memory bandwidth

The third approach (nameabnatomicBFS) does not use restrictions. Details on that can be found in [17].
atomic operations for the unvisited-detection, but rattier . . . . _
code shown in Fig. 3. Therefore, a vertex may be inserted more 1€ unoptimized atomic versiaiomicBFSL is in all tests
than once in the next vertex frontier. The main difference tos/OWer than the other two versions as watfery access tal[w|
the other versions is therefore that the detection of ansitedi N the relevant code section an atomic operation is executed
vertex and the subsequent update to a visited state is nerong! "€ Performance difference to the other versions is verf,hig
done atomically but rather with simple read/write accessed many of the atomic operation were done unneccesarily,d.e
including the possibility of multiple insertions of a vextas  Vertex of investigation was visited already before (e.@, Fa

multiple threads may see a vertex as unvisited concurrenthy@d Fig.5a). For the two atomic versions, most times the
Further algorithmic optimizations different to that dissed CPtimized second atomic versi@omicBFS2 is much better

here and a general overview of parallel BFS algorithms caflue to the prefixed test done with a normal read operation.
be found in another paper [17]. There is also shown, that gyt the best version out of the three is the version
there are better but more complex allgorithms for tho pdrallenonatomicBF S using our proposed technique without any
BFS problem. But as we are only interested in this papehiomic operation in the code section of investigation. The
in the discussion of atomic operations vs. redundant workgifference to the better atomic versi@omicBF 2 is rather
the relative comparism of the introduced three versions issmg|| if there is a lot of vertex sharing (e.g., vertices have
sufficient for that. high degrees). In that case, vertices may get visited vagnof

As we discussed already in section IV, the first factor@nd only the first visit leads to a CAS operation in version
influencing the probability of multiple insertions is theng  OMICBFS2 (see again Fig. 4a and Fig.5a). On the other side,
window related to the time spent in non-critical code. Aligh  the difference between the non-atomic versionatomicBF S

the BFS algorithm has only few instructions between the rea@nd atomcBFS2 is quite high, if update operations are done
and write operation on the critical data, there is not muchkwo moreh freqt;lently Ilon vertex visits, as for example in sparse
to do in the non-critical part. Therefore, BFS is an exampledraPhs with small vertex degrees (Fig.4b, 4c, 5b, 5¢).

for a rather problematic algorithm in this sense. To further examine these results, we determined frontier
The second factor influencing the probability of double SIZ€S during each level iteration. Tledge frontier size gives

insertion is the degree of parallelism. We used in our testd?€ number 0; outgoigg edfges from ve(;%ces in hthe hcurrent
different parallel systems. The largest one is a 64 core AMDAirontier, i.e., the number of vertex candidates that have to
6272 Interlagos based system with 128 GB shared memo@e checked for |nclu_3|on into Fhe next frontier. On the_ other
organised in 4 NUMA nodes, each with 16 cores (1.9 GHz)°!de. thevertex frontier size gives the number of unique

Another system is a 2-way Intel E5-2670 system with 1ogvertices that get inserted into the next vertex frontiez. (ithe

GB main memory and 16-way parallelism (including 2_Wayvertex was checked, found unvisited, and then sucessfully
Hyperthreading). inserted). The edge frontier size is therefore the amount of

checks to be done (in algorithm versi@omicBFSL with
The third factor is the probability of a data collision, a CAS operation, in the other versions by a simple read
i.e., two vertices having a common neighbor in the graphyOnl operation), and the vertex frontier size is the amount afiact
unvisited neighbours leed to an atomic operation in versionnsertions into the next frontier (in versiaiomicBF 2 with
atomicBF S1. This factor is mainly influenced in our scenario a CAS, in versiomonatomicBF S with a simple write). Fig. 6

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-290-5 64



ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

1600
& —5 1400
1200
I3 » 1000
o o
w w800
= = 60
400
| DWE 200
= 0
40 50 60 70 0 2 4 6 8 10 12 14 16
number of threads number of threads
atomicBFS1 —5— atomicBFS2 —7—  nonatomicBFS —&— atomicBFS1 —5— atomicBFS2 ——  nonatomicBFS —&—
(a) Performance for RMAT-1M-1000M (a) Performance for RMAT-1M-1000M
160 500
140 4 450
120 400 Y
350
w 100 o 300
a a
] 80 w250
= 0 ] = 200 L
150 +
40
100
20 q 50
0 0
0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14 16
number of threads number of threads
atomicBFS1 —— atomicBFS2 —§7—  nonatomicBFS —&— atomicBFS1 —— atomicBFS2 —§7—  nonatomicBFS —&—
(b) Performance for RMAT-1M-10M (b) Performance for RMAT-1M-10M
35 110
100
30 90 ;
25 - - H 80
4 9 7
E 20 E 60
> = 50
15 40
10 + - + + i - 30
20
5 10
0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14 16
number of threads number of threads
atomicBFS1 —F— atomicBFS2 —7—  nonatomicBFS —&— atomicBFS1 —F— atomicBFS2 —7—  nonatomicBFS —&—
(c) Performance for Streets-Europe (c) Performance for Streets-Europe
Fig. 4: Performance data on AMD-based system with 64x pdisatie Fig. 5: Performance data on Intel-based system with 16x |ptisah.

TABLE II: PERCENTAGE OF VERTICES THAT GET INSERTED MULTI-  that were discussed already. We show results only for the

PLE TIMES. largest system and for the street-graph, this is the modt-pro
number of threads| min. percentage| median | max. percentage lematic test instance where the probability for double iitige
2 0.000012 0.000030 0.000049 is highest. In Tab. Il we show the overhead in percentage of
2 0.000002 ) 0.000014 ) 0.000026 vertices inserted more than once, i.e., leading to redurafah
8 0.000004 0.000013 0.000027 » 1.€., leading .
16 0.000002 0.000018 0.000039 more work. As can be seen, the probability increases sjightl
24 0.000006 0.000020 0.000037 with more threads, but still this overhead is for our scemari
32 0.000010 0.000022 0.000035 ligibl | . I h ith diff d
0 0.000010 0.000022 0.000037 negligible (also in all other tests with different data sett
48 0.000010 0.000026 0.000035 shown here). Even with 64-fold concurrency, there are very
56 0.000012 0.000027 0.000055 H : H H H 3
9 0.000016 0.000029 0.000051 rare situations that lead to multiple insertions. The maxim

overhead value is 0.000055 percent or absolutely seeegitst
of 50,912,018 vertices to be inserted, witionatomicBFS

shows frontier sizes during each level iteration. Settinig t 50,912,046 vertices were inserted, the difference is 28.

information in relation to the performance numbers, a large VIl C
difference between edge frontier size and vertex froniize s - ONCLUSIONS

in a level iteration means that many atomic checks were made e propose in parallel programs, and within certain scenar-
in versionatomicBF Sl that didn’t lead to an unvisited neighbor ios, to rep|ace Cosﬂy atomic update operations on shared da
vertex / insert operation. On the other side, if the diffeeen structures with simple read-write updates. If the corressnof
between vertex and edge frontier size is small, the diffegen the algorithm is not affected by this change, this leads to an
between the three versions is less, as the amount of CritiC@ﬂgorithm variant that does not need any atomic operations_
operations is rather small compared to all operations égdcu This algorithm variant still works correctly, but on the eth

. . i it m ner more and redundant work ne.
Furtheron, we measured how many vertices get msertea de, it may generate more and redundant work to be done

multiple times in versiomonatomicBFS, i.e., the additional As an example for such a scenario, we used a parallel
and redundant work that is generated. The factors influgncinBFS algorithm where the atomic detection and update of

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-290-5 65



ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

1le+09
1le+08 + +

1e+07 + + +
o100 | , (1]
100000 + ¥ - + +

10000 + + T + 1 L
1000 T T T [2]
100 T
10 [3]
1 T
1 2 3 4 5 6
level iteration [4]

vertex frontier —— edge frontier —x7—
(a) Frontiers for RMAT-1M-1000M

size

1le+09 [5]
1e+08 +

1e+07
1le+06

g 100000 [6]
@ 10000
1000

100 [7]
10

1 T
0 2 4 6 8 10 12 14 6
level iteration [8]
vertex frontier —5— edge frontier —7—
(b) Frontiers for RMAT-1M-10M

1e+09 9

1e+08 [l
1e+07
1e+06
o 100000
@ 10000

1000 [10]
100
10

Yo 2000 4000 6000 8000 10000 12000 14000 16000 18000 [11]

level iteration
vertex frontier edge frontier
(c) Frontiers for Streets-Europe [12]
Fig. 6: Vertex and edge frontier sizes. [13]
1

univisited neighbour vertices was replaced with simple-non
atomic read/write updates. The results show, that for thid!¥!
scenario the non-atomic version has a huge performance
improvement in many situations compared to a straightfadwa (15
implementation with atomic accessesgmicBF S1). And our
version has most times a performance improvement of up tae)
50% compared to an optimized atomic versiato(icBF S2)

that uses atomic accesses only if necessary. The higher the
frequency of atomic operations, the greater the advantage i
Our proposed technique delivers &l tests equal or better [17]
performance results within the error of measurement thgn an
of the versions with atomic operations. 18]

The upcoming mainstream transactional memory hardware
implementations (e.g., Intel Haswell) use a different apph.
But similar to our approach, this is an optimistic approachygq,
too, as only the conflict case has to be handled, and not every
access. It would be rather interesting to compare these two
alternatives with relevant scenarios. [20]
ACKNOWLEDGEMENTS [21]
The system infrastructure was partially funded by an in-
frastructure grant of the Ministry for Innovation, Scienée-
search, and Technology of the state North-Rhine-Westphali
Matthias Makulla did most of the implementation work on
several parallel graph algorithms including an initial sien
of the ones used in this paper.

[22]

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-290-5

REFERENCES

“OpenMP application program interface,” OpenMP Areiture Re-
view Board, http://www.openmp.org/, 2011, retrieved: 6,20

M. Herlihy and N. Shavit, The Art of Multiprocessor Pr@gnming.
Burlington, MA: Morgan Kaufmann, 2008.

M. Ben-Ari, Principles of Concurrent and Distributed odgramming.
Harlow: Addison-Wesley, 2006.

V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Sddé graph
exploration on multicore processors,” in ACM/IEEE Intl.Gofor High
Performance Computing, Networking, Storage and Analysi$020p.
1-11.

P. E. McKenney, “Synchronization and scalability in theacho multi-
core era,” http://www2.rdrop.compaulmck/scalability/paper/
MachoMulticore.2010.08.09a.pdf, 2010, retrieved: 63201

M. M. Wu, “Asynchronous algorithms for shared memory machjhe
Ph.D. dissertation, University of lllinois at Urbana-Chaaign, 1992.

P. Diniz and M. Rinard, “Synchronization transformatsofor parallel
computing,” in Proc. ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 1997, pp. 187-200.

D. Novillo, R. C. Unrau, and J. Schaeffer, “Optimizing matexclusion
synchronization in explicitly parallel programs,” in Prdsth Interna-
tional Workshop on Languages, Compilers, and Run-Time Systems
Scalable Computers, 2000, pp. 128-142.

M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenai
J. Walpole, “User-level implementations of read-copy upddteEE
Transactions on Parallel and Distributed Systems, vol. 832n2012,
pp. 375— 382.

D. Dice, “Implementing fast Java monitors with relaxed Keg in
Proc. JavaTM Virtual Machine and Technology Symposium, Mayte
2001, pp. 79-90.

S. Haldar and K. Vidyasankar, “Constructing 1-writer Itireader
multivalued atomic variables from regular variables,” Jalrof the
ACM, vol. 42, no. 1, 1995, pp. 186-203.

K. Fraser and T. Harris, “Concurrent programming withimaks,” IEEE
Transactions on Computers, vol. 25, no. 2, 2007, pp. 1 — 44.

C. Leiserson and T. Schardl, “A work-efficient paralleleadth-first
search algorithm (or how to cope with the nondeterminism dficers),”
in 22nd ACM Symp. on Parallelism in Algorithms and Architeetsyr
2010, pp. 303-314.

M. Herlihy and J. B. Moss, “Transactional memory: Arcloiigral
support for lock-free data structures,” in Proc. 20th II®mposium
on Computer Architecture, 1993, pp. 289-300.

Graph 500 Comitee, “Graph 500
http://www.graph500.org/, retrieved: 6, 2013.

D. Bader and K. Madduri, “Snap, small-world network aisid and
partitioning: an open-source parallel graph framework fug &xplo-
ration of large-scale networks,” in 22nd IEEE Intl. Symp. cardflel
and Distributed Processing, 2008, pp. 1-12.

R. Berrendorf and M. Makulla, “Parallel breadth firsaseh algorithms
for multicore- and multiprocessor systems,” in submitted fobljma-
tion, 2013.

A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendricks
and U. Catalyurek, “A scalable distributed parallel bréatfilst search
algorithm on BlueGene/L,” in ACM/IEEE Conf. on Supercompagti
2005, pp. 25-44.

Y. Xia and V. Prasanna, “Topologically adaptive peehlbreadth-first
search on multicore processors,” in 21st Intl. Conf. on Ferand
Distributed Computing and Systems, 2009, pp. 1-10.

ISO/IEC 14882:2011 Programming Languages — C++, ISO,e@®&n
Switzerland, 2011.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A uesive model
for graph mining,” in SIAM Intl. Conf. on Data Mining, 2004, pg42

— 446.

C. Grcér, B. D. Sullivan, and S. Poole, “A mathematical analysis ef th

R-MAT random graph generator,” Networks, vol. 58, no. 3, 20fp.
159-170.

benchmark  suite,”

66



