
Improving the Performance of Particle Swarm Optimization Algorithm With a

Dynamic Search Space

Benoît Vallade, Tomoharu Nakashima
Department of Computer Science and Intelligent Systems Osaka Prefecture University

Osaka, Japan
valladeben@cs.osakafu-u.ac.jp & tomoharu.nakashima@kis.osakafu-u.ac.jp

Abstract-This paper addresses an improvement idea for
Particle Swarm Optimization Algorithm (PSO). As a
search algorithm, the PSO is used to tune a set of
parameters and find the best combination of parameter
values for this set. These parameters habitually take
their values in a static search space. This paper proposes
a solution to improve the efficiency of the algorithm with
optimization problems using parameters, which take
their values in dynamic space. The appreciable
experiments’ results prove that this one is an efficient
solution to such problems.

Keywords-algorithm of non-deterministic search; particle

swarm optimization algorithm; dynamic search space

I. INTRODUCTION

Nowadays, in the aim to solve optimization problems,
the algorithms of non-deterministic search are commonly
used. These problems, such as robots’ motion optimization
[1], require to find the best combination of parameter values
for the particular problem at hand. There are various kinds
of search algorithms [2], such as tabu algorithms, genetic
algorithms, PSO (Particle Swarm Optimization) algorithms,
and others. Among all these algorithms, this paper will
focus on the particle swarm optimization algorithm also
called the PSO algorithm. This choice has been motivated
by the high degree of adaptability of this algorithm which is
the best choice to implement our improvement.

The concept of the PSO algorithm is based on the
simulation of a simplified social model and more
particularly on the animals flocking [3]. Its conception
follows some standard which have evolved overtime [4].

Like the other algorithms of non-deterministic search,
these standard PSO algorithms allow to tune a set of
parameters, which take their values in static search space.

This means that any time during the optimization, the
search space of each variable will stay the same.

However, some optimization problems use a set of
variables, which take their values in dynamic search spaces
[1]. This means that the search spaces of the variables may
vary during the optimization.

This paper presents our solution to improve the
efficiency of the PSO algorithms in case of

problems using variables with dynamic search space. First,
in the next section, we will describe the global concept of
the search algorithms and detail the standard versions of the
PSO algorithm. Next, the third section will explain in
details the particularities of these dynamic problems and the
algorithm’s improvement used to solve them. The fourth
section will give the results of some experiments which
compare the efficiency of both algorithms, standard and
new, on these problems. Finally, we will conclude on the
quality of the PSO and the efficiency of the new algorithm.

II. STANDARD PARTICLE SWARM OPTIMIZATION

A. An algorithm of non deterministic search

As introduced before, the PSO algorithm is an algorithm
of non-deterministic search. This means that it searches for
the best combination of values for a set of variables. As the
Table I shows, the variables take their values in search
spaces defined by a minimal and a maximal values. These
limits are given by the user and will take constant values.

TABLE I. SET OF VARIABLES’ STATIC SEARCH SPACES

 Min Max

A -5 5

B 2 6

C -10 -5

D 0 10

E -2 5

In addition, it means that the algorithm follows the same

global processes. Firstly, the algorithm generates a set of

random solutions. A solution is a combination of values for

the set of parameters. After that, the solution’s quality will

be determined through a fitness function. This function is

completely dependent on the problem to be optimized and is

given by the user. This quality value is used to compare the

actual solution to the precedent best solution, and a new

solution will be generated. These three steps (calculate

solution’s quality, compare solutions and generate a new

solution) will be repeated so long as the optimization

continues. This one stops when the stop criterion satisfies

certain criteria chosen by the user (time, number of

iterations, etc.). To finish, the generation of the new

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

solution depends on the algorithm (tabu search, genetic

algorithm, PSO), but it generally uses the best and previous

solutions.

This process is described in the Figure 1.

Figure 1. Global algorithm of an algorithm of non-deterministic search.

B. Concept overview

The special feature of the PSO algorithm is that its

concept is based on the animals flocking [3].

As explained above, a solution is a combination of

values for a set of parameters, while a problem is defined by

these parameters, which take their values in static search

spaces. Consequently, another way to represent an

optimization problem is to consider a solution as a position

in a search space defined by crossing all the individual

parameters’ search space. The position takes place in a

hyper-space of dimension equals to the numbers of

parameters. And its coordinate’s values correspond to the

parameter’s value of the solution.

Coming back to the animal’s social behaviour subject

and more particularly on the birds flocking; during their

feeding time, multiple birds evolved in the same space and

search for the position where there is the biggest quantity of

foods. In the course of their search, each bird always

remembers the position where they have found the biggest

quantity of food. In addition, as the birds follow a social

behaviour inside the flock, they also share the best position

found by the whole flock. Finally, as shown in Figure 2,

each bird adapts its movements in the search space

according to these knowledge.

Figure 2. Birds’ movements according to Best Positions knowledge.

 This social behaviour is used by the PSO algorithm as a

conceptual idea to generate new solutions and optimize the

set of parameters. In this transposition, the birds will be

called particles, the flock will be the swarm and the quantity

of foods will correspond to the quality of the solution. As

the flock of birds seeks for the best food’s position, the

swarm of particles seeks for the best quality’s position.

C. Standard algorithm

Our research is based on 2011’s version of the standard

PSO algorithm described in the paper of Maurice Clerc [4],

with the particularity of not using the neighbourhood system

(in case of neighbourhood system, the particles are grouped

in teams and they share the information about the best

position found by all the team’s member only inside the

team, in our case there is only one big team, which

correspond to the whole swarm). This part of the paper

gives some details about this version of standard PSO

algorithm.

1) Particle’s components and algorithm: As explained

in the previous part on the birds flocking transposition, a

swarm of particles is included in the search space. Each

particle is aware of:

 Its Position (initialized randomly in the search space)

 Its Velocity (initialized randomly in the search space)

 Its Best Position ever found (initialized as the first

particle’s position)

 The Swarm’s Best Position (initialized by comparing

all the quality Particle’s first position)

It should be noted that in the 2011 version, the

initialization of the positions’ and velocities’ values are

randomly generated, parameter by parameter.

Each iteration of the optimization, these particles’

attributes are updated following the process described in

Figure 3:

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 3. Process of an iteration of the PSO algorithm.

2) Evolution rules: Below are given the equations used

for the velocity and position update and all the other details

useful to the implementation of the 2011 version of the PSO

algorithm.

a) Swarm size and initialization: In the 2011 version

the swarm size (number of particles) will be user defined,

with 40 as suggested value. The initialization of the

particles’ attributes will be conducted as described before.

b) Calculate Velocity and Position: First the velocity

will be updated by using the following equations:

In these equations:

 c = 1.193 and w=0.721 (constants)

 (or) is the actual position value of the

 particle

 is the particle’s best position of the particle

 is the swarm’s best position of the particle

 is the centre of gravity of the three points ,
and .

 is the hyper sphere of centre and radius

 is a position randomly choose in the hyper

sphere

 is the actual velocity of the particle

 is the new velocity of the particle

Next, the position is updated by using the equation:

In cases where , the following gravity centre

equation is used for the velocity updating:

c) Confinement: But, sometimes, the new position of

the particle is out of the search space. In those cases, the

algorithm uses a confinement procedure, which moves the

particle on the closest edge of the search space. This

movement is conducted by replacing the value of each

parameter of the position by the closest corresponding

parameter’s search space limits, min or max. Finally, the

velocity forced to the following value:

d) Particle’s and Swarm’s Best: To finish the quality

of the new position is calculated by using the fitness

function. As said before, this function depends on the

problem and is defined by the user. Its results will be used

to compare the different positions found by the algorithm.

During a first comparison the value of the particle’s best

position is updated in function of the previous one and of

the actual position. In order to do the second comparison,

the algorithm waits that all the particles’ best of the swarm

are updated. All the particles’ best position of the swarm

will be compared to determine which the swarm’s best

position is, and this knowledge will be shared with all the

swarm’s particles.

III. PSO IN DYNAMIC SEARCH SPACES

This section discusses the topic of the problems based
on set of parameters with dynamic search spaces. And then
the proposed solutions to deal with such problems and
through the changes made on the standard PSO algorithm
are explained.

A. Dynamic Search Space problems

Contrarily to the previous standard types of problems,

which used parameters taking their values in static search

spaces, some problems are based on dynamic search spaces.

In these kinds of problems, the search spaces limit of some

parameters depends on the value of other parameters. Table

II gives an example of such a set of parameters:

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE II. SET OF VARIABLES’ DYNAMIC SEARCH SPACES

 Min Max

A 0 5

B -A A

C -5*A+B +5*A+B

D -15 2*A

E -20 10

In those kinds of problems, commonly used in robots’

motion optimization [1], the search spaces limits depends

on the value of the parameters and consequently on the

position of the particle. Finally, as shown in Figure 4, all the

particles evolved in a different search space, which changes

in function of the particle’s position. However, a maximal

space search can be created by using the maximum value

possible for each parameter’s maximum limit and the

minimum value possible for the parameter’s minimum limit.

Figure 4. Dynamic search space representation in a two-parameter

optimization problem.

Table III uses the Table II ‘s example to create the

corresponding maximal search space.

TABLE III. SET OF VARIABLES’ MAXIMAL SEARCH SPACES

 Min Max

A 0 5

B -5 5

C -30 30

D -15 10

E -20 10

This space consequently contains all the individual

search spaces possible. By individual search space, we

mean the search spaces which are created by using the

position value. But it also contains positions which are not

included in these individual search spaces. To keep the

precedent example (Table II and Table III), the position of

coordinate (0;-5;0;0;2) is available in the maximal search

space but not in individual spaces. As the search spaces

limits are user-defined, we will call these positions,

“uninteresting positions”.

B. Dynamic search space PSO concept

To solve such problems, there are two options. The first

one is to apply the optimization on the maximal search

space. As described above, this space includes all the search

spaces possible and has the particularity to be static. The

advantage of such a solution is that, as the search space is

static, the standard PSO algorithm described before can be

used. The disadvantage is that the optimization will also be

conducted on uninteresting positions. This may result in

loss of time and a final optimization position not intended

by the user.

The second solution is to use individual search spaces.

This means that each particle will have its own search space

and this one will change as the same time as the particle

move. This solution avoids the search on the uninteresting

positions but implies some modifications to the standard

algorithm.
As we chose to improve the efficiency of the PSO

algorithm in case of dynamic search space problems, we
will explain in the following part the necessary changes to
the standard algorithm.

C. Dynamic search space PSO modifications

This part discusses about the problem faced by the

standard algorithm resulting from the choice of the second

solution and about the possible modifications to avoid it.

1) Problem: During the initialization step as well than

during the confinement methods, the new value of the

position will be generated parameter by parameter. A

random value will be generated between the parameter’s

search space limits for the initialization and the closest limit

will be searched for the confinement. But, by using dynamic

search spaces, these limits values will depend on others

parameters’ values. Also, the algorithm would not be able to

generate a parameter’s value if its limits have not ever been

defined. That is why the parameters’ values need to be

defined in the good order.

2) Modification: This order will of course be based

on the links between the parameters. The parameter A is

linked with the parameter B if value of B is required to

calculate the limits of A’s search space.

 In the aim to represent these links, we chose to use an

acyclic graph representation.

 These graphs are tree graphs with the particularity to

allow multiple roots and multiple parents for a same child.

Of course we can’t allow cycle due to the impossibility to

generate a position value if the parameters are linked

through a cycle. In this case, the first proposed methods

using the maximum search space should be used.

Our implementation uses a unique root, which does

not correspond to any parameter, but it allows us to insert

all the parameters in the same graph, even the one which are

not linked with others parameters (search space limits have

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

constant value). These special parameters will be direct leaf

of the root.

Each parameter is represented by a node which is

linked to other nodes following the parameters links. The

node A is parent of the node B if the parameter A needs the

value of B. The nodes will be sorted in depth layers, a node

will also be in the layer under the layer of its deepest

parents. The direct leafs are inserted in the deepest layer of

the graph.

Finally, to generate the position value, the order to

follow is decided by using the graph. This path corresponds

to a back breadth-first search of the graph. This means that

we start from leafs and we head to the root of the graph by

visiting each node of a layer before to go to the upper one.

node includes calculate its search space limits and generate

its value (or search the closest limits for the confinement

method). Figure 5 is the acyclic graph representation of the

example given in Table II. It also shows the calculation path

(dotted arrows):

Figure 5. Acyclic graph representation of parameters link and calculation

path.

IV. EXPERIMENTS

In order to compare the efficiency between the standard
and the new algorithm on dynamic search spaces problems,
we set up two experiments. The problem is that there are no
such problems in literature [5]. Consequently, we cannot
compare it with the other algorithms’ results but have to
create our own artificial problems. This is the why the two
next experiments do not correspond to any known problems
and have no real correspondence with the real life. These
problems have only been designed to proof the functionality
and efficiency of the new algorithm compared with the
standard algorithm.

A. Experiment 1

For this one, we will use a swarm of 40 particles and

launch optimization of 500 iterations. We created three

optimization problems very simple (so they will be solved

in 500 iterations) and compared how many iterations are

required to find the optimal position (position with the best

fitness quality).

These problems have the following characteristics:

- two dimensional problems (parameters: X , Y)

- The Y’s search space limits depends on X’s value

- The optimal position is the point of coordinate (5.5 ;

0.01) and the fitness function calculate the distance

between the particle position and the optimal position.

- X’s value vary in [0 ; 1000]

- Y’s vary in the limits defined by Table IV, the standard

algorithm will use the maximum search space:

TABLE IV. SEARCH SPACE LIMITS FOR THE Y PARAMETER

 New Algorithm
Standard

Algorithm

 Min Max Min Max

A

-

49.75
49.75

B

-

240.5
240.5

C

-

497.5
497.5

We repeated the optimization 10 times and took the

average number of iterations needed to find the optimal

point (as we calculate the distance, the fitness value = 0).

Table V regroups the results of this experiment:

TABLE V. AVERAGE NUMBER OF ITERATIONS NEEDED TO FIND THE

OPTIMAL POSITION
 A B C

Standard

algorithm
279 297 298

New algorithm 282 255 250

We remark that the standard algorithm has better results

for the problem A, but becomes less efficient on B and C.

This means that the new algorithm would be more efficient

on big search spaces, and more particularly, when the

number of uninteresting positions grows up, which make

sense.

B. Experiment 2

As the previous results seems indicate that the new

algorithm is more efficient on big search space we set up a

second experiment to confirm. To do so we still used the

same configuration for the PSO algorithm (40 particles, 500

iterations and we created a more complicated problem

evolving on a bigger maximal search space. The search

spaces limits of this problem are described in Table VI and

the parameters links can be visualized in Figure 6.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE VI. SEARCH SPACE LIMITS FOR THE SET OF PARAMETERS
Parameters Min Max

A -(D+E+F) D+E+F

B -(E+F+G) E+F+G

C -(H+I) H+I

D -500 500

E -2.5*J 2.5*J

F -0.5*J 0.5*J

G / H -500 500

I -(K*0.5) K*0.5

J / K / L -500 500

It should be noted that the maximal search space is not

given, but it can be easily calculated, as shown in the

previous examples.

Also to be noted that the optimal position is a static

position (0,0...,0), centre of the search space. The fitness

function calculates the distance to this point, so the best

quality value possible is 0.

Figure 6. Acyclic graph representation of parameters link.

In this experiment, the problem is too big to be solved in

500 iterations; so, we compare the quality of the solutions.

The standard algorithm gave an average of 0.0027, while

the new algorithm gave an average of . The

results of this experiment show clearly the efficiency of the

new algorithm.

V. CONCLUSION AND FUTURE WORK

To conclude, the PSO is a very simple and easily

adaptable algorithm. The actual standard version of the PSO

algorithm is able to deal with dynamics search space by

venturing a loss of time and falling on an uninteresting

result. This paper described an efficient solution to improve

its performance in this case. However, there is actually no

efficient solution for dynamic search space problems, where

parameters are cycled linked. Our future objectives will be

to be able to deal with cycled graph, and to test our solution

on real world problems.

REFERENCES

[1] T. Uchitane and T. Hatanaka, “Applying evolution strategies

for biped locomotion learning in roboCup 3D soccer

simulation”, Proc. of 2011 IEEE Congress on Evolutionary

Computation New Orleans. LA, 2011, pp. 179-185.

[2] H. Youssef S. M. Sait, and H. Adiche, “Evolutionary

algorithms, simulated annealing and tabu search: a

comparative study”, Engineering Applications or Artificial

Intelligence, 2001, pp. 167-181.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization”,

Proc. of IEEE International Conference on Neural Networks

Perth, 1995, pp. 1942-1948.

[4] M. Clerc, “Standard particle swarm optimisation”, technical

report, 2012.

[5] M. Molga and C. Smutnicki, “Test functions for optimization

needs”, 2005.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

