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Abstract: The present paper reports the precipitation process 
of Al3Sc structures in an aluminum scandium alloy, which has 
been simulated with a kinetic Monte Carlo (kMC) method. The 
kMC implementation is based on the vacancy diffusion 
mechanism. To filter the raw data generated by the kMC 
simulation, the density-based clustering with noise (DBSCAN) 
method was employed. kMC and DBSCAN algorithms were 
implemented in the C language. The undertaken simulations 
were conducted in the SeARCH cluster at the University of 
Minho. The study covers temperatures, concentrations, and 
dimensions, ranging from 578K to 873K, 0.25% to 5%, and 
50x50x50 to 100x100x100. The Al3Sc precipitation was 
successfully simulated at the atomistic scale. DBSCAN revealed 
to be a valorous aid to identify the precipitates. The achieved 
results are in good agreement with those reported in the 
literature, but we went deeper in the evaluation of the 
influence of all the simulation and analysis parameters. A 
parallel version of the kMC algorithm using OpenMP was 
evaluated, which has not proved advantageous compared to 
the optimized sequential implementation.   

Keywords - Al3Sc precipitation; kinetic Monte Carlo; cluster 
analysis; DBSCAN; OpenMP. 

I.  INTRODUCTION 

Precipitate structures play a fundamental role in the 
material science due to the capacity of representing strong 
obstacles for dislocations movements within the material 
structure. 

This paper focuses on the elaboration and application of 
mechanical statistics knowledge, namely the kinetic Monte 
Carlo method [1], on the study and prediction of the 
phenomenon of precipitation in an aluminum alloy. The 
alloy under analysis is the aluminum scandium alloy [2]. The 
work that will be documented inhere tackles subjects such as 
computational mechanics, mechanical statistics (the kinetic 
Monte Carlo method), material science, the precipitation 
phenomenon, the diffusion phenomenon, what influences 
this phenomenon and how to control it and also predict it, as 
well as data mining (namely clustering) the vital information. 

OpenMP [3] is an API that allows shared memory 
parallelization on multi-core machines. It is based on 
compiler directives, library routines and environmental 
variables. OpenMP uses multithreading and is based on the 

fork-join model of parallel execution. It is through directives, 
added by the programmer to the code, that the compiler adds 
parallelism to an application. Since the most promising 
parallelization strategy for the kMC algorithm uses shared 
memory, OpenMP is a natural choice. Only if the OpenMP 
implementation of the KMC algorithm accelerates the 
sequential version in a scalable manner, we will try a 
distributed memory parallelization strategy, such as Message 
Passing Interface (MPI) [4]. 

The outcome of the work undertaken is a set of software 
applications that allows us (i) to perform Monte Carlo (MC) 
simulations with and without OpenMP, (ii) to analyze the 
results using the Density Based Spatial Clustering of 
Applications with Noise (DBSCAN) technique [5], and (iii) 
to compare the simulation results with the classical 
nucleation theory. Practical results obtained with these 
applications are (i) reports about the simulation, the analysis 
of clusters and precipitates with DBSCAN algorithm, and the 
application of the classical nucleation theory; (ii) files for 3D 
visualization of the simulation (at various stages over time); 
and (iii) files for 3D visualization of the precipitates. 

The rest of the paper is organized as it follows. Section 
II presents the related work. Section III summarizes the 
theory behind the simulation of precipitation with kinetic 
Monte Carlo. Section IV describes the implementation of 
the simulation and cluster analysis. Section V presents the 
results of the simulation and analysis. Finally, Section VI 
points out some conclusions and areas for future research. 

II. RELATED WORK 

As computation extends its capacities increasingly, so 
has the scientific field of nucleation and precipitation 
modeling. The process of modeling nucleation and 
precipitation has been achieved at different scales, each one 
having its own advantages and disadvantages. It has 
increased the number of publications and studies related with 
the subject of modeling the precipitation kinetics at the 
atomistic level [6]. At the atomistic level, the simulation 
model includes (i) the individual atoms, which are organized 
in a lattice, and (ii) the interactions among atoms, 
represented by the number of atomic bonds and several 
energies. The main materials subjected to such studies are 
alloy materials, such as Fe-Cu, Fe-P-C, Fe-Cu-Ni-Si, Al-Cu. 
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Aluminum alloys have also their share of studies by which 
we would like to outline and focus on the Al-Sc alloy. 

Binkele and Schmauder studied the precipitation in the 
Fe-Cu binary system via atomistic Monte Carlo simulations 
[7][8]. The Fe-Cu system has a BCC structure and the 
percentages of Fe and Cu used were 90% and 10%, 
respectively. In our work we have simulated the Al-Sc alloy, 
which has a FCC structure and a lower supersaturation: the 
percentage of scandium varied in the range of 0.25% to 5%. 
Under these conditions, the precipitation is more difficult to 
observe. We believe that the formula we used to calculate the 
real-time in simulation is more accurate than the one 
mentioned in [7]. In [7][8] is not presented a comparison 
between kMC simulation results and Classical Nucleation 
Theory (CNT) [9][10], as was done in the present work. 

Bombac and Kuglar also simulated a Fe-Cu alloy with 
MC. The simulation was based on a residence time 
algorithm, used a BCC rigid lattice structure and applied a 
temperature of 873K. The outputs of their study are only the 
number of precipitates and their dimension [11]. They did 
not compare the simulation results with theory, and several 
parameters that influence simulation results were not 
evaluated.  

The work by Lae et al. documents a study in which 
cluster dynamics simulation is applied to Al-Sc and Al-Zr 
alloys. The achieved results are compared with MC 
simulation results and they found a good agreement between 
both simulations results [12]. Comparing with our work, 
kMC is employed in [12] just as a comparison tool and no 
details are given about the kMC simulations.  

Clouet et al. have published studies of atomistic Monte 
Carlo simulations not just based on a binary Al-Sc alloy but 
also on ternary systems [13]. The results of the Al-Sc alloy 
simulations were compared with the classical nucleation 
theory. The simulation applied a residence time algorithm 
using an FCC rigid lattice. Our approach was inspired by 
Clouet et al. [13] but we evaluated the influence of all the 
parameters involved in simulation: lattice size, temperature, 
Sc concentration, and the number of MC steps. 

Clouet and Soisson have published a summary of recent 
applications of the atomistic diffusion model and of the 
kinetic Monte Carlo method [14]. The summary covers 
homogeneous and heterogeneous precipitation caused by 
thermal aging as well as phase transformation caused under 
irradiation. To conclude this publication the authors mention 
that atomistic kinetic Monte Carlo simulations provide a 
convenient way to simulate and model precipitation kinetics 
in alloys. 

Monte Carlo simulations have also been used on the 
study of other phenomena. Grain growth, abnormal grain 
growth, thin film deposition and growth, sintering for nuclear 
fuel aging, bubble formation in nuclear fuels are just some of 
those phenomena [15]. 

The three main contributions of the present work to the 
reviewed literature are (i) the exhaustive evaluation of all the 
parameters involved in kMC simulation, (ii) the application 
of a robust and automatic clustering technique, and (iii) the 
attempt of accelerating the simulation through the 
parallelization of kMC with OpenMP. 

III. THEORETICAL BACKGROUND FOR KMC SIMULATION 

This section summarizes the theory, as a set of equations, 
behind the simulation of Al3Sc precipitation with kinetic 
Monte Carlo. 

Transition rate for an aluminum atom is calculated by (1) 
[8]. 

 exp
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E
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As for (2), it describes the transition rate for a scandium 
atom [8]. 
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The aluminum activation energy is obtained by (3) [8]. 
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Equations (4), (5), and (6) describe relations among the 
number of bonds and the size of the first and second 
neighborhoods, for an FCC structure [8]. 
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bonds and 
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ScV
n  is the number of scandium-vacancy bonds, 

regarding the first neighborhood. Z1 and Z2 are the size of the 
first and second neighborhoods, respectively. 

The scandium activation energy is obtained by (7) [8]. 
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Analogously, (8), (9), and (10) describe the number of 
scandium-scandium bonds, number of aluminum-scandium 
bonds, number of aluminum-vacancy bonds, number of 
scandium-vacancy bonds, regarding the first and second 
neighborhood [8]. 
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8Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences



   2 2
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As a vacancy site is surrounded by twelve nearest 
neighbors, twelve jump rates are calculated. They are the 
jump frequency Γ1, Γ2, until, Γ12. In the next step of a kMC 
algorithm, one of these 12 frequencies is selected, based on 
their values and on a random number: the vacancy will jump 
to the position of atom n that verifies (11) (Figure 1). 

Equation (12) describes the computation of the real time 
of simulation. It is composed by the averaged residence time, 
multiplied by a factor that takes into account the difference 
between the simulated vacancy concentration and the real 
vacancy concentration. Equation (13), which traduces 
analytically the graphical data vacancy concentration versus 
temperature obtained in [16], calculates the real vacancy 
concentration in this kMC algorithm. 

 
Figure 1. Random selection of the jump frequency. 
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IV. IMPLEMENTATION OF SIMULATION AND ANALYSIS 

A. Simulation with Kinetic Monte Carlo 

The pseudo-code presented in Figure 2 summarizes the 
implemented kinetic Monte Carlo algorithm in C language. 
This code enhances the steps that are of upper importance in 
a kMC simulation: the activation energy calculation, the 
vacancy exchange frequency calculation, the step time 
calculation, the swap of positions between the vacancy and 
the selected first nearest neighbor. Additionally, the code 
enhances the step of the data input as well as the step of 
saving the simulated data. 

The correspondent C code is portable, in the sense that it 
can be compiled and run in any system having gcc installed: 
Linux, Windows or other operating system. As so, the 
submitted simulations were undertaken in the SeARCH 
cluster. The SeARCH cluster has the advantage that it can be 

used to accelerate simulations in three ways: (i) running 
multiple sequential simulations at same time, with different 
parameters, (ii) running a parallel simulation on the same 
machine using OpenMP, or (iii) running a parallel simulation 
on several machines using MPI. The last option was not 
implemented since the second alternative was implemented 
and did not succeed on accelerating the sequential version. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. kMC algorithm. 

B. Clustering Analysis with DBSCAN 

The main goal of clustering analysis is dividing data into 
groups, or clusters, which share certain characteristics. 
Clustering is used in the present work to identify Al3Sc 
precipitates in a 3D matrix, containing the position of all Sc 
atoms, generated by the kMC simulation. The implemented 
clustering algorithm is designated by DBSCAN [5]. 
CLARANS [17], DBCLASD [18], and OPTICS [19] are 
other clustering algorithms, adequate for dealing with large 
spatial datasets. 

As a member of the density-based clustering approaches, 
DBSCAN identifies regions of high density agglomerations 
in an immense low density surrounding. Its major advantages 
are (i) it identifies objects with arbitrary shape and (ii) it does 
not require that the number of clusters to be identified is 
provided as input, like k-means method does. DBSCAN 
introduces the notion of noise, used to label atoms that are in 
low dense regions, which revealed to be an adequate feature 
in our case. In DBSCAN, for each cluster identified, a point 
of that cluster is a core point if it has in its neighborhood 
(with a predefined radius eps) a predefined minimum 

main: 
    Read the configuration file 
    Compute the coordinates of all FCC lattice sites 
    Compute average step time and rejection step time →  

→ avgStepTime, rejectStepTime 
    Initialize the simulated time → timeSim=0 
    while (mcs < TOTAL_MCS) do 
        Calculate the activation energy → Eact 
        Calculate the vacancy exchange frequency and the real time of 
        this MCS → vEF, ts  
        ts = ts*tsCorrection                   // corrected simulated time for 
                                                          // current MCS 
        if (ts > rejectStepTime) then    // step time exceeds a threshold 
                                                          // that is considered a  
                                                          // computation error  
                Increment errorSteps 
                ts = avgStepTime            // replace computed step time by 
                                                        // average step time 
        endIf 
        timeSim = timeSim + ts          // accumulated simulated time 
        Select a 1st nearest neighbor for the new position of vacancy 
        Swap the vacancy with the selected neighbor 
 
        if (mcs = snapshots[numSnap]) then  // if it is a snapshot  point 
                Save simulation data to VTK | PDB | XYZ file(s)  
                snapshotTime[numSnap-1] =timeSim // save snapshot time 
                Increment numSnap 
        endIf 
        Increment mcs 
    endWhile 
    Write a simulation report to file 
end main
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number of points (minPts). DBSCAN classifies points as 
being: (i) core point - a point in the interior of the density 
based cluster, (ii) border point - a point that belongs to the 
border of the density based cluster, and (iii) noise point - a 
point that is neither a core point nor a border point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Main function of the DBSCAN algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. ExpandCluster function used by the DBSCAN algorithm. 

The pseudo-code included in Figures 3 and 4 presents the 
main functionalities of DBSCAN, which was implemented 
in C language. The code follows the main sequence of steps 
defined by the authors of the algorithm [5]. 

To save the atoms belonging to each group was used a 
data structure that varies dynamically, because the clusters 
are of variable and unknown size. The used data structure 
was inspired by the Java ArrayList class. After applying 
DBSCAN, the clusters that are split in several parts are 
merged in a single spatial region per cluster. This is required 
because we use periodic boundary conditions (PBC) and 
aims to improve the 3D visualization of clusters [2]. 

To permit the visualization of the lattice configurations 
generated by the kinetic Monte Carlo simulations and by the 
clustering analysis, these configurations are saved to files in 
a format that can be read and rendered by available 
visualization tools. The developed code allows us to save 
data in one of the following formats: pdb, xyz, and vtk. All 
these data formats can be visualized with the ParaView tool, 
which is an open-source application adequate to the 
visualization and analysis of multidimensional data. 

Beyond the visualization files with precipitates, the 
analysis carried out by DBSCAN produces other results, 
such as, the size and radius of the precipitates, the average 
size and radius among all precipitates, the percentage of Sc 
atoms in precipitates and in Al solid solution, and the 
number of small clusters with the same size. 

The main inputs necessary to undergo a simulation and 
posterior cluster analysis, which are supplied in a 
configuration file, are: the aluminum lattice constant 
(Angstrom), the number of unit cells in the x/y/z direction, 
scandium percentage, simulation Monte Carlo steps, 
simulation temperature (Kelvin), material parameters, the 
radius used to define the neighborhood of each atom (eps in 
DBSCAN algorithm), and minimum number of neighbors 
that makes an atom to be a core atom of a cluster (minPts in 
DBSCAN). 

The material parameters that supported the previous 
equations and therefore, the simulations are, first and second 
nearest-neighbor pair effective energies, saddle point 

energies and attempt frequencies [13]:
 1

AlAl
 = -0.56 eV; 

 1

ScSc
 = -0.65 eV; 

 1

AlSc
 =-0.759+21.0x10-6T eV; 

 1

VV
 = -0.084 

eV; 
 2

AlSc
 = 0.113 -33.4x 10-6T eV; 

 1

AlV
 =-0.222 eV; 

 1

ScV
 = -

0.757 eV; 
sp

Al
e =-8.219 eV; 

sp

Sc
e = -9.434 eV; 

Al
 = 1.36x1014 

Hz; 
Sc

 = 4x1015 Hz. 

C. Implementation of kMC with OpenMP 

Figure 5 presents the algorithm of the main function used 
to implement the kinetic Monte Carlo simulation with 
multiple threads of execution, through the OpenMP library. 
The lines starting with #pragma omp specify OpenMP 
directives, for example to create the parallel threads or to 
synchronize threads. After the initial steps, which are the 
same as in the sequential code, it is specified the number of 
threads to create. The core of the algorithm is a loop that 
iterates over the number of MC steps. Within this cycle we 
create parallel threads, each with a private copy of the 

DBSCAN (atoms[], nAtoms, eps, minPts) 
    cid = 0             // current cluster ID 
    pid = 0             // atom position on the array of atoms 
 
    while (pid < nAtoms) do   // cycle over all atoms 
          if (atom ‘pid’ was not  yet visited) then 
               Mark atom ‘pid’ as visited 
               Get the size of neighborhood of atom ‘pid’  sizeN 
               if (sizeN<minPts) then 
                     Classify atom ‘pid’ as NOISE 
               else 
                     resBool = ExpandCluster (atoms, nAtoms, visited, N, 
                                                 pid, cid, eps, minPts) 
                     if (resBool = TRUE) then 
                          Increment cid 
                     endIf 
               endIf 
          endIf 
          Increment pid 
    endWhile 
end DBSCAN 

ExpandCluster (atoms[], nAtoms, visited[], N[], pid, cid, eps,  
                             minPts) 
    Get the size of neighborhood of atom ‘pid’  sizeN 
    Count unclustered  neighbors of atom ‘pid’  sizeUnclustered 
    if (sizeUnclustered < minPts) then 
        Mark atom 'pid' as NOISE 
        return FALSE 
    else 
        Add atom 'pid' to cluster 'cid' 
        for (i in [0:sizeN[) do 
            nid = neighbor i-th of atom 'pid' 
            if (atom 'nid' was not yet visited) then 
                Mark atom 'nid' as visited 
                Get size of neighborhood of atom ‘nid’  sizeNN 
                if (sizeNN  >= minPts) then 
                    for (j in [0:sizeNN[) do 
                        nnid = neighbor j-th of atom 'nid' 
                        Add atom 'nnid' to neighborhood of atom 'pid' 
                        Increment sizeN 
                    endFor 
                endIf 
            endIf 
            if (atom ‘nid’ is not yet member of any cluster) then 
                Add atom 'nid' to cluster 'cid' 
            endIf 
        endFor 
    endIf 
    return TRUE 
end ExpandCluster 

10Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences



specified variables. With the aid of the thread ID (idT) and 
the number of threads (nT), each thread can execute only a 
subset of the calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. kMC algorithm with OpenMP. 

For example, each thread calculates a subset of the 
activation energies (Eact[]) associated with the 12 neighbors 

of a vacancy. If it is necessary that all threads reach a certain 
position in the code, at the same time, it is inserted a 
synchronization barrier. The condition "idT=0" is used to 
force the calculations to be carried out only by thread 0. 

V. RESULTS 

Figure 6 illustrates the time evolution of the precipitation 
phenomenon. The initial random configuration applied to the 
simulation is shown in Figure 6 (a). The sequence of figures 
report a simulation that undertook the conditions of 873K, 
1%Sc, and over 5x1011

 MCS in a 50x50x50 lattice box (5x105 
atoms). The Sc atoms in raw configurations produced by the 
simulation are presented in the left part of each figure. The 
right configuration of each figure demonstrates the 
application of the DBSCAN algorithm, where the scandium 
atoms that do not belong to precipitate structures are labeled 
NOISE and do not appear. 

The sequence of graphics from Figure 7 summarizes the 
analysis undertaken over the simulation outputs. Figure 7 (a) 
represents the evolution of precipitates dimension in terms of 
radius measure. Figure 7 (b) acknowledges the evolution of 
the presence of scandium atoms distributed in the aluminum 
solid solution. As with Figure 7 (c), it is possible to 
acknowledge the evolution of the presentage of scandium 
atoms in precipitate structures. Figure 7 (d) is one of the 
most important interpretations that is conducted regarding 
simulation of the nucleation of precipitates as it allows one to 
undertake comparison analyses with the CNT [9][10]. Two 
measures are used to efectively compare kMC with CNT: the 
steady-state nucleation rate (Jst), which represents the 
number of supercritical nuclei formed per unit time in a unit 
volume and the cluster size distribution (CnSc), which defines 
the probability to encounter a cluster with a dimension of n 
atoms in a solid solution [2]. 

The simulations were run on the SeARCH cluster, 
located at the University of Minho. Table I contains the 
technical specifications of the SeARCH cluster nodes where 
we run the kinetic Monte Carlo simulations. 

The computation time mainly depends on the number of 
MC steps. Simulations duration is also influenced by the 
technical specifications of the machines where the 
simulations were run. On a compute-311-X node of the 
SeARCH cluster, a simulation with 5x1011 took around 8 
days, and 12 days on a less performing compute-201-X 
node. Computation time does not depend significantly on the 
scandium percentage, the lattice size or any other parameter 
of the simulations. 

main_OMP 

[…] // Initial steps are the same as in non OMP code 
// Specify the number of threads to be created 
 omp_set_num_threads(numThreads) 
Initialize the MC step (mcs) to zero 

while (mcs<numberMCStoSimulate) do  
    if (idT = 0) then // This section is run by thread with id=0 only  
        Count the number of vacancy's first neighbors of Al and Sc type 
    endIf  
     
// Create multiple threads 
#pragma omp parallel private 
    (idT, i, j, nPos, nType, nnPos, nnType, n_AlAl_1, n_AlSc_1,  
    n_ScSc_1, n_AlV_1a, n_ScV_1a, n_AlAl_2, n_AlSc_2, 
    n_ScSc_2, expoent) 
{ 
    idT = omp_get_thread_num() // ID of each thread  
    nT = omp_get_num_threads() // Number of threads  
    i = idT 
    while (i < NUMBER_1ST_NEIGHBORS) do 
        Compute Eact[i] associated with i-th vacancy neighbor  
        i = i + nT 
    endWhile 
    Compute absolute vacancy exchange freq. with its 12  1-st neighbors 
    #pragma omp barrier  
    if (idT = 0) then  
        Compute the sum of all 1-st neighbors absolute exchange freq. 
    endIf  
    #pragma omp barrier  
    Compute relative vacancy exchange freq. with its 1-st neighbors  
} // (end of) multiple threads 
 
    if (idT = 0) then  
        Sum of all relative vacancy exchange freq. with 1-st neighbors 
        totalT = totalT + 1/sumAbsoluteVef 
        Select randomly a 1-st nearest neighbor for new vacancy 
        Swap the vacancy with the selected neighbor 
        if (mcs = snapshots[numSnap]) then 
            Save simulation data to file at snapshot 
            Increment the number of the current snapshot  
        endIf 
        Increment the MC step (mcs) 
    endIf  
endWhile // (end of) cycle relative to the number of MCS  

[…] // Final steps are the same as in non OMP code 
end main_OMP 
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Table II summarizes the computation time needed by a 
kMC simulation with different number of threads. The 
number of MC steps simulated was 107, the lattice included 
10*10*10*4 atoms and we used C code with OpenMP. As 
we can see from Table II, the utilization of an increasing 
number of threads is counterproductive. The poor 
performance achieved by the presented parallel 
implementation results from 3 facts: (i) the problem we are 
dealing with is not inherently parallel, since the MC 
simulation has only one vacancy, (ii) the work assigned to 
each thread is small and does not compensate the 
computation overhead introduced by the threads, and (iii) 
there are several parts of the code that have to be executed 
by one thread only. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Simulation metrics: (a) precipitates mean radius; (b) percentage 
of Sc in Al solid solution; (c) percentage of Sc in precipitates; (d) number 

of precipitates normalized by the number of lattice sites. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Evolution of simulation: (a) initial configuration; (b) t=1.55ms; 
(c) t=3.03ms; (d) t=4.945ms (left/right  before/after applying DBSCAN). 
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TABLE I.  TECHNICAL SPECIFICATIONS OF THE SEARCH NODES USED BY 
THE KMC SIMULATIONS. 

Nodes Processors 
CPUs 

Number 
L2 

Cache 
Operating 

System 
311–X 
nodes 

Intel Xeon 
E5420 

8 
12 

MB 
Linux 

x86_64 
201–X 
nodes 

Intel Xeon 5130 4 4 MB 
Linux 

x86_64 
101–X 
nodes 

Intel Xeon 4 2 MB 
Linux 

x86_64 

TABLE II.  COMPUTATION TIME, NEEDED BY A MC SIMULATION, AS A 

FUNCTION OF THE NUMBER OF THREADS. 

Number of threads Average computation time (s)
1 25 
2 46 
4 52 
8 62 
12 70 

VI. CONCLUSIONS AND FUTURE WORK 

kMC simulation of Al3Sc precipitation on a 
supersaturated Al solid solution was successfully achieved. 
This proves that the equations used to model Al3Sc 
precipitation are correct. The results from kMC simulations 
were further improved by the application of DBSCAN, 
which proved to be a valorous aid to identify the Al3Sc 
precipitates, by eliminating the unclustered Sc atoms. The 
DBSCAN algorithm reveals adequate in the role of 
identifying, visualizing and measuring (size, radius, and 
shape) of the precipitates embedded in the Monte Carlo 
output data. By simulating with various Sc percentages, as 
well as temperatures, the capacity of clustering Al3Sc 
precipitates maintains accurate. 

The number of stable precipitates strongly increases in 
the initial phase. After that, the number of precipitates 
reduces, as predicted by the theory of nucleation. 
Consequently the surviving precipitates increase in size, 
either in number of atoms or in radius. The mean precipitates 
radius increases almost linearly over time. The number of 
precipitates normalized by the number of lattice sites 
increases rapidly in the initial phase of the simulation and 
then decreases slightly during the rest of the simulation. 
Temperature has a profound influence on the evolution of the 
precipitation simulation. As the CNT states, and the 
simulation graphics do prove, the steady state nucleation rate 
rises with the temperature increase. 

The achieved results are very much in good agreement 
with those reported by Clouet et al. [13]: the increase of the 
precipitates average size and the reduction of the Sc 
concentration in the Al solid solution during the simulation 
follow the same tendency. The comparison between kMC 
and CNT are very much similar [13]. Although we have used 
the same model for Al3Sc precipitation as [13], it was 
possible to go deeper in the evaluation of the influence of all 
the parameters involved in simulation: lattice size, 
temperature, Sc concentration, number of MC steps, and the 
technique used in cluster identification and measuring. We 
also tried strategies to accelerate the simulation, using 
OpenMP. 

Some features of ParaView made it an interesting choice 
for visualization and even analysis such as its support to the 
three formats (vtk, pdb, xyz) we used as output of kMC, it is 
open source and based on a popular framework (VTK) [20], 
and it supports parallelism as to handle huge files. 

A field for future research is the exploration of 
parallelization techniques for the kMC simulation. Due to the 
sequential nature of the precipitation problem, a hypothesis 
is to use multiple vacancies and run multiple simulations in 
parallel, each one with a vacancy and a sub-lattice. 
Simulating with multiple vacancies alters the vacancy 
concentration to a unrealistic value. Thus, the validity of this 
alternative, used to speed up the simulations, has to be 
demonstrated. Examples of algorithms that follow this 
strategy are the optimistic synchronous relaxation (OSR) and 
the semi-rigorous synchronous sub-lattice (SL) [21]. These 
approaches have to deal with two critical issues: correct the 
excessive vacancy concentration and synchronize the parallel 
instances of the asynchronous kMC simulation. Another 
future research topic would be extending MC method to 
simulate ternary alloys, such as Al-Mg-Sc, Al-Sc-Si or Al-
Sc-Zr. 
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