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Abstract— The precise inner workings of cellular mechanisms 
remain largely unknown and, therefore, their modeling is 
usually based on conjectures. The availability of large amounts 
of genetic data, and the lack of abstract mathematical models, 
makes computer algorithms the only tool available for 
searching for these hypothetical realities. We call the 
conjectured algorithmic-independent reality that underlies the 
method design and intention, the semantics of the algorithm.  
This article is a brief semantics analysis exercise performed 
with four binary quantization algorithms for time series of 
gene expression data. 
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I. INTRODUCTION 
The post genomic era has brought a myriad of computer 

methods for modeling cellular mechanisms [1]. As the 
precise inner workings of these mechanisms is still unknown, 
several of these methods are based on an implicit model of 
the phenomenon under scrutiny, and its hypothetical 
manifestations in the data. This is a departure from standard 
scientific computing practices where algorithms are designed 
on the basis of well-defined mathematical models, which 
capture the essence of the phenomenon in abstract terms. 
Explicit mathematical models also guide the design of 
numerical simulations, and are often used to test their 
accuracy. The lack of an algorithmic-independent explicit 
model obscures the essence of the phenomenon simulated by 
the computer algorithm, as well as the interpretation of its 
results. Furthermore, taking the implicit model for granted 
may determine how the phenomenon is perceived and 
interpreted in further analyses or modeling endeavors [2].  

In the absence of a standard term, we call semantics of a 
computer method the algorithmic-independent meaning of 
the problem that the method is designed to solve. In 
particular, we study the semantics of four binary quantization 
algorithms designed to separate expressed from non-
expressed gene states, in a time series of gene expression 
measurements. Underlying the selected methods is the 
implicit model of a numeric value, or threshold, which 
separates the state expressions of the gene, in the time 
interval of the series. Such separation is called binary 
quantization, and the algorithms for splitting the time series 

data points in expressed and non-expressed states, binary 
quantization algorithms.   

Two different ways of computing the threshold are 
manifested in the four methods. For two of the methods, the 
threshold is in fact, an explicit numerical value computed 
before the classification of the data. The other two methods 
do not compute a threshold, explicitly. Instead, they use 
statistics to separate the data into expressed and non-
expressed states. The threshold is thus, a consequence of the 
classification of the data points. The semantic question that 
arises here is what is the algorithmic-independent nature of 
the threshold. We assume as a working hypothesis that the 
threshold is a numerical value and attempt to unveil its 
independent nature through computational experiments 
performed with the four binary quantization algorithms. The 
experiments assess the degree of consistency between the 
computed results and the effects of threshold variations in 
the simulation of gene regulatory networks (GRN) [3]. The 
ultimate purpose of a binary quantization is the construction 
of a probabilistic Boolean network representation (PBN) of a 
GRN [4]. A PBN is normally derived from prior knowledge 
of gene interconnections and statistical analyses performed 
on an array representation of the quantized gene expressions, 
usually called binary expression matrix. Most binary 
quantization methods are validated on the basis of the quality 
of the PBN representations derived from them. In order to 
eliminate the influence of the prior knowledge embedded in 
the PBN representation, we measure the variations in the 
binary expression matrices themselves. 

The rest of this article is organized as follows: Section II 
discusses the concept of threshold. Section III is a brief 
summary of the binary quantization algorithms under 
consideration. Section IV describes the experiments 
conducted; and Section V analyses their results. Finally, 
Section VI summarizes some conclusions of the study. 

II. NATURAL THRESHOLD, CONVERGENCE THRESHOLD 
AND COMPUTATION 

Gene expressions are the result of a cascade of processes 
that are stochastic in nature. However, by the Law of Large 
Numbers, a smooth non-negative real valued function can 
approximate the average expression behavior of a 
significantly large number of cells, in an interval of time [5]. 
Provided that the variations in this function are large enough, 
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the lowest and highest values can be associated with 
expressed and non-expressed gene states, respectively. 
Hypothetically, someplace within the function range, there 
should be the point in which Nature separates the two states. 
We call this hypothetical point Natural Threshold (NT). We 
plan to answer the semantics question by investigating to 
what extent the result of the methods reveal a NT.  

In all the methods considered, the threshold varies with 
the number of input data points. In order to bound these 
variations, we compute the Convergence Threshold (CT). 
This threshold is obtained by iterative refinements of the 
method’s thresholds, up until the values fall within a 
predetermined error tolerance. The data for the iterative 
refinements is taken from a cubic spline interpolation of the 
input time series. 

The CT is also used to assess the accuracy of the 
methods. We do this by comparing the method’s CT with the 
threshold of the original time series. We also compare the 
binary expression matrices derived from these thresholds. 

III. THRESHOLD COMPUTATION METHODS 
We classify the four methods considered in this study [6], 

[7], [8], and [9], according to their approach to the search for 
a threshold. This renders what we call jump-based and 
cluster-based methods. 

A. Jump-based Methods 
It is a frequent practice to use data variations —or 

jumps—, between data points, as a reference for the 
determination of a threshold value. This approach is taken in 
[6] and [7]. We refer to these methods as Algorithm 1 and 
Algorithm 2, respectively. Algorithm 1 computes first the 
average jump of a sorted version of the input data set, and 
sets the smallest point in the sorted data that exceeds this 
value, as the threshold. Fig. 1 shows the pseudo code of 
Algorithm 1. 

Figure 1.  Algorithm 1. Binarize. 

In this description, each Gi = (Gi,1,…, Gi,k) is the k-point 
time series expression of the i-th gene, in a gene set. Thus, 
variable i is fixed in the routine, but runs in the main 
program. The main program, in turn, calls Algorithm 1 and 
receives its output Bij; which is the i-th row in the binary 
expression matrix. For our purposes, however, the output is 

S i,m+1 , as this is the value that separates expressed and non-
expressed states. 

Algorithm 2, in turn, uses a multi-scale approach for 
detecting different jumps at different resolution levels. The 
method scores the jumps before deciding which one is the 
threshold. An a-posteriori analysis assesses the reliability of 
this choice.  The algorithm consists of several processes. In 
general, the method finds step functions with different 
number of steps, which are also the best approximations to 
the sorted version of the input data. At each approach, the 
point where the highest jump occurs is identified for further 
analysis. A relation between the highest jump and the 
approximation error incurred by the step function is then 
computed. A high value for this ratio indicates a strong 
discontinuity in the sorted data, and therefore, a potential 
threshold candidate. Step functions are computed with a 
dynamic programming algorithm that returns a sequence of 
step functions of minimal Euclidian distance to the original 
data. With each step function approximation, a cost and 
break point index is calculated and stored. The cost of a step 
of the function is the distance to the mean of the approached 
data segment. The cost of the step function, in turn, is the 
sum of the costs of its steps. Both, the costs and break point 
indices are computed using the algorithm whose pseudo code 
is presented below. As in Algorithm 1, the first step is sorting 
the points in the time series. Fig. 2 shows the pseudo code of 
Algorithm 2. 

Figure 2.  Algorithm 2. Optimal step functions. 

Algorithm 3, shown in Fig. 3, reconstructs the break 
points from the array Ind, computed with the Algorithm 2. 

Figure 3.  Algorithm 3. Break points of optimal step functions. 

Break points are used to compute the jump size h. The 
error of approximation e is the Euclidean distance of the step 

Algorithm 1. Binarize: INPUT Gi, OUTPUT Bi 
Si ← sort(Gi,1,…, Gi,k)                     
for j=1 to k-1 do 

Di,j ← (Si,j+1 - Si,j) 
endfor               

t ← (Si,k - Si,1)/(k – 1)  
m = min{j: Di,j> t} 

for j=1 to k do 
if Gi,j ≥ S i,m+1 then 

Bi,j ← 1 
else 

Bi,j ← 0 
endif 

endfor 

Algorithm 2. Calculation of optimal step functions  
Initialization: 
Ci(0) = ciN, i = 1,…, N 
Iteration: 
for j = 1 to N -2 do 

for i =1 to N - j do 
Ci(j) ← mind=i...N – j(cid + Cd+1(j - 1)) 
Indi(j) ← argmind=i...N – j(cid + Cd+1(j - 1)) 

endfor 
endfor 

Algorithm 3. Compute the break points of all optimal 
step functions 
for j = 1 to N - 2 do 

z = j 
P1(j) = Ind1(z) 
if j > 1 then 

z ← z - 1 
for i = 2 to j do 

Pi(j) ← IndPi - 1(j) + 1(z) 
z ← z – 1 

endfor 
endif 

endfor 
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function to the sorted input data set. The maximum of the 
radios q = h/e, determines the strongest discontinuity. 

We refer the reader to [7] for further details on this 
method. 

B. Cluster-based Methods 
Cluster-based methods partition the input data set into a 

predetermined number k of disjoint data subsets, referred as 
clusters.  The partition is made on the basis of the nearest  
center of each cluster. Here, we compare the well-known k-
means method, for k =2, and Algorithm 4, which is a variant, 
proposed by the authors, that replaces the mean with the 
median. We provide no pseudo code for 2-means, but recall 
that, in this method, data centers are initialized randomly. In 
contrast, in Algorithm 4, no random initialization is 
necessary, as shown in its pseudo code in Fig. 4.  

Figure 4.  Algorithm 4. Median Separation. 

Algorithm 4 sorts first the m input data points, and for 
each value j, 1 ≤ j ≤ m; computes the median of the first j 
points and that of the last m – j – 1 data points. Then, it finds 
the pair of medians that are farther apart and returns their 
average as the threshold. In both, Algorithm 4 and 2-means, 
two points, an upper and a lower value, determine the binary 
quantization. Therefore, if there is a threshold, this is most 

probably given by their average. 

IV. METHODS AND EXPERIMENTS 
We designed two experiments. The first uses the 

threshold computed by each method. The second uses the CT 
of each method, instead. Both experiments were performed 
with two different data sets. The first data set [10], which 
corresponds to the mitotic cell cycle of yeast, is taken from 
[11]. We took the 17-point time series of four genes, namely 
cdc24, cdc19, cdc15, and cdc27. The second data set is a 6 x 
8 randomly generated matrix of real values between 0 and 1, 
mimicking an eight point time series of six genes.  

All experiments were run in Matlab 7.0.12.635 (R2011a) 
for Mac. 

V. ANALYSIS OF RESULTS 
Next is a brief analysis of the experimental results. 

A. Numerical Variations of the Thresholds 
Fig. 5 shows the thresholds obtained in the first 

experiment. Algorithms 2 and 2-means exhibit the closest 
numerical values, while the thresholds returned by Algorithm 
1 and Algorithm 4 are significantly farther apart. All 
threshold values are shown in Tables 2 and 3. In order to 
quantify these observations, we compute the ratio dmax/range, 
where dmax is the largest distance between thresholds for a 
given time series, and range is the difference between the 
largest and smallest values in the time series. 

The results of these computations are depicted in Fig. 6. 
For a more algorithmic-centered classification, we define 

the distance between methods as the Euclidian distance 
between the vectors formed by the thresholds of each time 
series of genes. Table 1 shows the distances between each 
pair of methods. 

The shortest and largest distances are highlighted, as 
well. In both experiments and with the cdc data, the distance 
from Algorithm 1 to 2-means is the largest. In turn, 2-means

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Thresholds plots of the four methods on Experiment 1. Here, Jb1 is Algorithm 1, Jb2 is Algorithm 2, Cb1 is 2-means and Cb2, Algorithm 4. 

Algorithm 4. Median separation. INPUT Gi, OUTPUT T 
S ← sort(Gi,1,…, Gi,m) 
for j = 1 to m - 1 do 
     lmj ← median (S1,…, Sj)  
     umj ← median(Sj + 1,…, Sm) 
      Aj |← umj - lmj | 
endfor 
Ind ← argmaxd=1... m (A) 
lmMax ← lmInd 
umMax ← umInd 
T ←(umMax + lmMax) / 2 
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TABLE I.  DISTANCES BETWEEN ALL METHODS EXPRESSED AS HAMMING DISTANCE. LOWEST AND HIGHEST SCORES ARE HIGHLIGHTED. 

and Algorithm 4 are separated by the shortest distance, 
followed closely by algorithms 1 and 4. We also compared 
the variations of each algorithm with respect to the input data 
sets. The results are reported in Table 4. Table 5 shows the 
Euclidean distance between the two experiments, for each of 
the four methods. Among the methods, Algorithm 1 turned 
out to be the less stable as it has both the shortest and largest 
distances between data sets. 

B. Variations in the Binary Quantization 
The Hamming distances divided by the number of data 

points measure the differences between the binary 
quantizations derived with each threshold on the same time 
series. Fig. 7 shows the results for the cdc data set. The 
highlighted rows are pairs of different methods whose binary 
quantizations coincide. The methods with the largest number 
of coincidences are Algorithm 2 and 2-means. 

Table 1 shows the Hamming distances between the 
binary quantization computed with the convergence 
threshold of each method. The closest methods are again, 
Algorithm 2 and 2-means. In turn, the distances between 
algorithms 1 and 4, and algorithms 1 and 2 are the largest.  

 
 
 

Figure 6.  Relations between maximal distance between threshold and data 
range. 

VI. CONCLUSIONS 
The results show that the thresholds computed by the 

four methods are significantly different. This is a clear 
rejection of the hypothesis that the methods compute the 
algorithmic-independent value, referred in this article as 
Natural Threshold. As expected, convergence threshold 
differs from thresholds. This sensitivity to the sample size is 
also a negative answer to the question of the accuracy of the 
methods. Also, the convergence thresholds produced binary 
expression matrices that are also significantly different to the 
ones obtained by the thresholds of each method. An 
important implication that can be drawn from these 
observations is that the models of gene regulatory networks, 
whose construction uses a binary quantization as a first step, 
are biased by the choice of the binary quantization method. 
The success of some PBN representations of GRNs suggests 
that this bias is being corrected, in part, with the 
incorporation of prior gene interconnection knowledge, and 
expected results. 

Figure 7.  Comparison between binary quantization matrices between 
same methods using thresholds obtained from both experiments. Matching 

binarizations are highlighted. Cdc data set. 

Hamming Distance 
Original Convergence 

	  	   Jb2 Cb1 Cb2   Jb2 Cb1 Cb2 
      cdc data       

Jb1 0.23529 0.25 0.32353 Jb1 0.45588 0.47059 0.13235 
Jb2 — 0.014706 0.088235 Jb2 — 0.014706 0.38235 
Cb1 — — 0.073529 Cb1 — — 0.39706 

      Random data       
Jb1 0.3125 0.22917 0.3125 Jb1 0.4375 0.41667 0.10417 
Jb2 — 0.083333 0 Jb2 — 0.020833 0.33333 
Cb1 — — 0.083333 Cb1 — — 0.3125 

!
 

Original	  vs.	  Convergence	  Binary	  Quantization	  Matrices	  -‐cdc	  

Original	   	   Convergence	  
Jb1	  

1	  1	  0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   	   1	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   1	  
0	  0	  0	  0	  0	  0	  0	  0	  0	  1	  0	  0	  0	  0	  0	  0	  0	   	   1	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   1	  
1	  1	  1	  1	  1	  0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   	   1	   1	  1	  1	  1	  0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   1	  
0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  1	  1	  1	  1	  0	   	   0	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  1	  1	  1	  1	   0	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  

Jb2	  
0	  0	  0	  0	  1	  0	  1	  1	  0	  1	  0	  0	  1	  0	  1	  0	  0	   	   1	   0	  0	  0	  1	  0	  1	  1	  1	  1	  0	  0	  1	  0	  1	  0	   0	  
0	  0	  0	  0	  0	  0	  0	  0	  0	  1	  0	  0	  0	  0	  0	  0	  0	   	   0	   0	  0	  0	  0	  0	  0	  0	  0	  1	  0	  0	  0	  0	  0	  0	   0	  
1	  0	  0	  1	  1	  0	  0	  1	  1	  1	  1	  1	  1	  0	  1	  0	  1	   	   1	   0	  0	  1	  1	  0	  0	  1	  1	  1	  1	  1	  1	  0	  1	  0	   1	  
0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  1	  0	  1	  1	  0	   	   0	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  1	  0	  1	  1	   0	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  

Cb1	  
0	  0	  0	  0	  1	  0	  1	  1	  0	  1	  0	  0	  1	  0	  1	  0	  0	   	   1	   0	  0	  0	  1	  0	  1	  1	  1	  1	  0	  0	  1	  0	  1	  0	   0	  
0	  0	  0	  0	  0	  0	  0	  0	  0	  1	  0	  0	  0	  0	  0	  0	  0	   	   0	   0	  0	  0	  0	  0	  0	  0	  0	  1	  0	  0	  0	  0	  0	  0	   0	  
1	  0	  0	  1	  1	  0	  0	  1	  1	  1	  1	  1	  1	  0	  1	  0	  1	   	   1	   0	  0	  1	  1	  0	  0	  1	  1	  1	  1	  1	  1	  0	  1	  0	   1	  
0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  0	  1	  0	  1	  1	  0	   	   0	   1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  0	  1	  0	  1	  1	   0	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  

Cb2	  
0	  0	  0	  0	  1	  0	  1	  0	  0	  1	  0	  0	  0	  0	  0	  0	  0	   	   1	   1	  0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   1	  
0	  0	  0	  0	  0	  0	  0	  0	  0	  1	  0	  0	  0	  0	  0	  0	  0	   	   1	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	   1	  
1	  0	  0	  0	  1	  0	  0	  1	  1	  1	  1	  1	  1	  0	  1	  0	  0	   	   1	   0	  0	  0	  1	  0	  0	  1	  1	  1	  1	  1	  1	  0	  1	  0	   0	  
0	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  0	  1	  0	  1	  1	  0	   	   0	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  0	  1	  0	  1	  1	   0	  
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TABLE II.  THRESHOLD VALUES FOR RANDOM GENERATED DATA. HIGHLIGHTED VALUES ARE MATCHING VALUES ON BOTH EXPERIMENTS. 

TABLE III.  THRESHOLD VALUES FOR CDC DATA. HIGHLIGHTED VALUES ARE MATCHING VALUES ON BOTH EXPERIMENTS. 
 

TABLE IV.  EUCLIDEAN DISTANCE BETWEEN DIFFERENT METHODS ON SAME EXPERIMENT. 

TABLE V.  EUCLIDEAN DISTANCE BETWEEN SAME METHODS ON DIFFERENT EXPERIMENT 

 

The difficulties in determining a numerical threshold may 
arise from the intrinsic nature of gene expressions. Both 
assumptions, jumps in the data or statistical separation in two 
groups may be too strict, in some sense, as data may have 
some natural perturbation or noise. It may be the case that on 
average, expressed and not expressed gene states are 
separated in nature by an interval, not a point. In the interval 
model, expressed states will correspond to values above the 
interval’s upper limit while non-expressed states, to values 
below its lower limit. And these expression values that fall 
within the interval shall be declared noisy data-points. 
Threshold intervals in gene expression time series may be 
investigated by adding filters that eliminate expression 
values that are too close to the threshold points returned by 
the previous methods. 

Threshold computation is not a large-scale problem, at 
least not with the amount of data compilation currently 
available. However, this may change as models evolve and 
parameters, such as time, are incorporated. In such cases, 
parallel and distributed computing versions of the algorithms 
will be a necessary algorithmic development. Most probably, 
because of the strong interdependence of data expression, 

these methods will be mostly implemented in shared 
memory systems. 

This paper suggests a line of research that may be worth 
pursuing. Its ultimate aim should be a mathematical 
framework for validating implicit models from their different 
algorithmic approaches. This validation might eventually 
lead to, or replace an explicit abstract mathematical 
representation of the reality behind by the implicit model. 
The development of such a framework will support current 
tendencies of using multi-algorithmic approaches to data 
based computational modeling.  
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Experiment 1 Experiment 2 
Jb1 Jb2 Cb1 Cb2 Jb1 Jb2 Cb1 Cb2 
0.28072 0.54384 0.50574 0.45214 0.28072 0.48069 0.4671 0.18751 
0.2805 0.4284 0.45131 0.41986 0.2805 0.37147 0.40742 0.23781 
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0.51041 0.71765 0.66833 0.64514 0.34708 0.67214 0.64782 0.32805 
0.13834 0.60205 0.30395 0.61079 0.13834 0.50511 0.52622 0.15539 

Experiment 1 Experiment 2 
Jb1 Jb2 Cb1 Cb2 Jb1 Jb2 Cb1 Cb2 
0.1981 0.27476 0.27286 0.30952 0.18095 0.25524 0.25531 0.19169 
5.6067 4.1914 3.7892 3.8212 0.85382 3.2098 3.3162 0.89969 
0.057143 0.080952 0.082453 0.087976 0.057143 0.080952 0.082453 0.087976 
0.11143 0.1181 0.12625 0.125 0.11143 0.11976 0.12571 0.1196 

    Jb1—Jb2 Jb2—Cb1 Cb1—Cb2 Jb1—Cb1 Jb2—Cb2 Jb1—Cb2 
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