ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

A QoS Monitoring Framework for Composite Web Servies in the Cloud

Rima Grati

University of Sfax
Multimedia, InfoRmation system &
Advanced Computing Laboratory
(Mir@cl)
Tunisia
rima.grati@gmail.com

Abstract— Due to the dynamic nature of the Cloud, continuous
monitoring of QoS requirements is necessary to mage the
Cloud computing environment and enforce service |t
agreements. In this paper, we propose a QoS monitog
framework for composite Web services implemented ursg the
BPEL process and deployed in the Cloud environmentThe
proposed framework is composed of three basic modes to:
collect low and high level information, analyze thecollected
information, and take corrective actions when SLA iolations
are detected. This framework provides for a monitoing
approach that modifies neither the server nor the leent
implementation. In addition, its monitoring approach is based
on composition patterns to compute elementary QoS etrics
for the composed Web service. In this paper, we ulktrate our
framework for the response time QoS requirement.

Keywords- Monitoring of Web service composition; Cloud
environment; Service Level Agreement ; SLA violation

l. INTRODUCTION

Khouloud Boukadi

University of Sfax
Multimedia, InfoRmation system &
Advanced Computing Laboratory
(Mir@cl)
Tunisia
khouloud.boukadi@fsegs.rnu.tn

Hanene Ben-Abdallah

University of Sfax
Multimedia, InfoRmation system &
Advanced Computing Laboratory
(Mir@cl)
Tunisia
hanene.BenAbdallah@fsegs.rnu.tn

systems did not deal with problems induced by tgpid
changing and dynamic infrastructureBhis prompted the
propositions of some monitoring approaches dealiritt
applications deployed on the cloud environment agtaof
Cloud services [7][8]. Most of these approachesuireq
modification of either the server or the client Ierpentation
code. However, to provide for independence of @loud
provider/environment, monitoring should be perfodme
without modifying the implementation of the depldye
Cloud services. Furthermore, to the best of oumiedge,
there is a lack of approaches dealing with momitpief the
service composition in a Software as a Service$pakud
environment.

In this paper, we propose a framework for QoS
Monitoring and Detection of SLA Violations (QMoDejV
This framework provides for the monitoring of cormsjte
services deployed on the Cloud. It is designedatude the
complete Web service composition management lifeciyc
the Cloud environment,i.e, composite Web service

Cloud computing has recently emerged as a neweployment, resource allocation, monitoring of Qaisd

paradigm for hosting and delivering services ovee t

Internet. It offers huge opportunities to the ITdustry. In
addition, it offers two advantages for business ensmit
eliminates the requirement to plan ahead for prowisg,
and it allows enterprises to start from the smiadl amcrease

resources only when there is a rise in service dema

Besides these advantages, Cloud computing enadées (0

SLA violation detection. In addition, QMoDeSV puases a
non-intervening modular approach for monitoring QoS
attributes: QoS pertinent information is collectdxy
“watching” locally each service component. Thersdzhon
the composition pattern of the composite service,dverall
QoS information is computed. This information &&d by a
separate module in the QMoDeSV framework to look fo

utilize services without the need to understandir the Potential violations of SLA pre-agreed upon QoSitaites.
Comp|exity or acquire the know]edge and expertiee t The findings of this module can be very helpful arvice

consume them [1]. It provides users with serviceadcess
hardware, software, and/or data.

Despite these advantages, business owners redpaire t

Cloud providers guarantee a pre-agreed upon s@uafity

providers, who can then take corrective actiongrprove
their services.

The remainder of this paper is organized as follows
Section 2, provides a background of Cloud compugnd

of Service (QoS) attributes,g., response time, availability, monitoring, then it overviews related works on ntoring.

security, and reliability. Face to these user neguents, and Section 3 presents our monitoring framework.

Sactd

due to the dynamic nature of the Cloud, continuougresents our running example. Section 5 summatizes

monitoring of QoS attributes became mandatory torea
Service Level Agreements (SLA) [2].

In fact, run-time monitoring has been in demand| wel

before the Cloud. Several monitoring systemg, Ganglia
[3], Nagios [4], MonaLisa [5], and GridICE [6] admsed
monitoring of large distributed systems. Howewhese

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

presented work and highlights some directions fdaure
work.

65

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

Il. RELATED WORK network measurements) and detecting SLA violatiorthe
L case of an SLA violation, this approach proposes to
A On SLA and Monitoring reconfigure the system at real time to minimize the

substitution cost. For this, it uses thvndump tool which
Many definitions are proposed for cloud computiige requires access to the hardware for monitorings WMrk
generally accepted definition is the one proposgd..bM. monitors only network measurements.
Vaquero [10]: "Clouds are a large pool of easilghie and 2) Cloud Service Monitoring
accessible virtualized resources (such as hardpwkatiorms Shao et al. [7] propose a Runtime Model for Cloud
and/or services). These resources can be dynaynicalMonitoring (RMCM). RMCM uses interceptors (as fidn
reconfigured to adjust to a variable load (scatdfpwing Apache Tomcat and handlers in Axis) for service
also for an optimum resource utilization. This pafl monitoring. It collects all Cloud layer performance
resources is typically exploited by a pay-per-usedeh in parameters. In the SaaS layer, RMCM monitors agiitios
which guarantees are offered by the InfrastrucRn@vider while taking into account their required constrairgnd
by means of customized SLAs." design models. To do so, it converts the conssaiata
This definition clearly emphasizes the role of 88V corresponding instrumented code and deploys theltires
Level Agreement in the context of the Cloud. Ituees a code at the appropriate location of the monitored

Cloud provider to be able to propose and guaraqieéty of applications. Thus, it modifies the source code tiné
services for the provided resources. That is, au€l applications.

provider must be able to both establish contraets Boniface et al. [8] propose a monitoring modulet tha
continuously monitor and verify the compliance of the collects QoS parameters of Cloud Computing. They ais
offered QoSwith the agreed-upon SLAs. monitoring application component (AC) that must fiyet

Once services and business processes becordescribed and registered in the application repositThe
operational, their progress needs to be managed amt collects QoS parameters at both the applicatiod
monitored both to gain a clear view of how servipesform technical levels. This approach is complicated hadi to
within their operational environment, and to takejnstall due to the description and registration AE.
management decisionsvlonitoring is the procedure of Furthermore, their approach remains unevaluated.
measuring, reporting, and improving the QoS ofesystand To the best of our knowledge, none of the discussed
applications delivered by the service. Monitoringnsists approaches deals with monitoring Web sendoeposition
also of verifying at run-time that the requiremersisecified in the Cloud. As we describe in the next section, our
by the clients and the service providers, are metnd approach has two additional distinctive featuresnputing
execution. The contract signed between the cliantsthe QoS metrics in a modular way based on the pattesad in
Cloud provider is called SLA. It includes the namftional the composite service deployed in a SaaS Cloud, and
requirements of the service specified as QoS, attigs, collecting information (low level and high levelhen
service pricing, and penalties in case of agreewietations. comparing these metrics to SLA.

Flexible and reliable management of SLA agreemiants
of paramount importance for both providers and ooress. lll. THE QMODESV MONITORING FRAMEWORK
On the one hand, prevention of SLA violations avoid Tpe QMoDeSV framework aims at monitoring
penalties that providers have to pay and, on therdiand, -omposite Web services deployed on the Clouduhisime
based on flexible and timely reactions to possiBleA onitor is based on the workflow patterns used he t
vplaﬂgns, user interactions with the system caa bcomposition (BPEL process). It is designed todtarthe
minimized. complete Web service composition management lifecyc
B. Works on monitoring the Cloud environment. The service compositionciitde
includes activities such as composite service dgepdmt,

We classify works pertinent to monitoring into two resource allocation to the composite service, caitgo

categories: Web Service Monitoring, and Cloud Servi service monitoring, and SLA violation detection.

Monitoring. o In our approach, we suppose that the composite Web
1) Web Service Monitoring o service (e, the BPEL process) is offered through a SaaS
Rosenberg et al. [11] propose a monitoring appréach oy ider. the latter should propose the BPEL prsessthe
Web services. Their approach relies on aspecttedeand ppg) engine responsible for executing the processes
object oriented programming techniques and doesegpire jstances, the database management system (DBM@llas
any access to the Java source code of the servicg ihe monitoring framework.
implementation. ~ The ~ proposed approach requires e consider that monitoring begins when the custome
information related to the implementation of thenitared places a service composition request through anekbfi
Web service &g., endpoint and reference to WSDL). It gnjjication interface to the Cloud provider. As idegt in
makes use of monitoring tools such as Jpcap totoroomly Figure 1, the QMoDeSV framework is a two-level
latency measurement. __framework consisting of a design time module (tk&dEtor
Repp et al. [9] present an approach to monitolyoqyle) and five run time modules (the RTP Extractoe
performance across network layers such as HTTP, &0 oscalculator, the Local Host Monitor, the Lo2Hi S0

IP. Their approach aims at monitoring QoS (in terfis Conyertor, and the QoS Detector Violation). Once th

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0 66

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

composite Web service is invoked, the run time nteslof
QMoDeSV are executed. These modules run in paksithl

The remainder of this section describes the roleawh
module and how it interacts with the other modules.

the BPEL instance in order to detect possible SLA

violations.

Extractor Module

Q Saa$ Customer

Requirements

Design Time

BPEL Equation

|

RTP-Extractor

>

Interceptor

l ~ Monitoring

BPELRT
Equations

Run Time

| QoS Calculator

|

| QoS Violation Detector

1—{ Lo2Hi QoS Convertor | <—»

SI03|UOA ISOH [B207]

»Applications =l AR ‘
BPEL engine QMoDeSV ‘

“" Deployed & Configured on

Middelware

Resource Pool Resource Pool

Cloud Provider

Figure 1. Overview of QMoDeSV architecture and module’s iatgion

A. The Extractor Module

Web services can be composed using different jpatter
that are based on the usual workflow patterns. allisua
complex Web service composition combines two orenair
these patterns.

Our Extractor module can handle the following commo
workflow patterns:

e Sequence pattern indicates that the components

Web services are executed one after the other.

e Parallel pattern: indicates that two or more Web
services can be executed in parallel.

« Synchronization pattern: indicates that the process
will continue after the parallel pattern of the Web
service is executed.

« Exclusive choice pattern:is a point in the process
where a path is chosen from several available pat
based on a decision or process data

e Simple merge pattern: defines a point in the flow
of execution, where two or more alternative
branches are merged.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

e Conditional pattern: indicates that there are
multiple services (S, ..., $) among which only
one service can be executed.

* Synchronizing merge pattern: marks a point in the
process execution, where several branches merge
into a single one.

e Multi-merge pattern: joins two or more different
services without synchronization together.

» Loop pattern: indicates that a certain point in the
composition block is executed repeatedly.

» Deferred choice pattern: describes a point in the
composition where some information is used to
choose one among several alternative branches.
When one branch of the process is enabled, the
others should be disabled

The Extractor Module is responsible for analyzihg t

Heomposite Web service implemented as a BPEL protess

uses the pattern detection algorithm shown in ihgstl to
extract the used patterns from the BPEL process.oliput

of the Extractor Module is a design time equationtaining
the name of the components Web services as wethes
patterns used for connecting the flows between ethes
components.

67

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

Listing 1. The pattern detection algorithm usedhsyExtractor Module

Input = (BPEL process BP) // the composite Web service implemented using a BPEL process

Func
document and put each tag in a list box
the list box the set of used patterns

the names of invoked Web services

BEGIN

ion

flow",

for each BPEL process BP do

Print (BPequation);
}

END

Output = BPequation //design time BPEL equation

GetBPTags (BPEL process BP) return ListOfTags // this function parse the BPEL
FilterUsedPatterns (ListOfTags) return ListOfUsedPatterns // this function removes from
Get WebServicesNames (ListOfTags) return ListOfWebServices // this function retrives

GetBPEquation (ListOfUsedPatterns, ListOfWebServices) return BPequation // this
function build the BPEL equation based on the identified pattern and the invoqued Web services|

String patterns[] = {"<sequence", "</sequence", "<receive", "<invoke", "<flow", "</
<switch", "</switch", "<while", "</while", "<pick", "</pick", "<link", "</link"};

{ List<String> ListOfTags = GetBPTags (BP);
List<String> ListOfUsedPatterns = FilterUsedPatterns (ListOfTags);
List<String> ListOfWebServices = Get WebServicesNames (ListOfTags);
String BPequation=GetBPEquation (ListOfUsedPatterns, ListOfWebServices);

B. The Run Time Extractor Module

The Run Time Extractor Module (see Fig. 2) “wat¢hes C- The QoS Calculator Module

the executed services and refines the equatiomebtin the
design time into a run time equation. The run tegeation
represents the execution path of the BPEL procestarice.
It is derived according to the patterns extractetthe design
time. This module intercepts information about éxecuted
service through the Monitoring thread: this latter the
extension of the APl apache ODE (Orchestration dbire
Engine) [12]. The monitoring thread interacts witie
BPEL engine to check the process states and infoh@s
Run Time Extractor module to do a comparison betwadé
and new process (see Fig. 2). After that, the RimeT
Extractor Module extracts BPEL nodes to establish t
execution graph of BPEL. Once the run time exteecpath
is done, the run time equation is established.

M. BPPEL Ermgiree

Figure 2. The Run Time Extractor Module

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

This module computes QoS metrics for the composite
Web services. In its computations, it uses theeglbf the
constituent services and the composition pattern.

We illustrate how the QoS calculator functions tise
following QoS metrics:

* Response Time (RT):the time interval between
when a service is invoked and when the service is
finished.

» Service Cost (C):the price that a service requester
has to pay for invoking the service.

e Throughput (T): represents the number of Web
service requests at a given time period.

» Reliability (R): the probability that a request is
correctly responded within the expected time.

The overall Web service QoS is derived based on the
values collected locally for each constituent sernand the
composition pattern. For this, we adapt metricgppsed in
[13] and [14]. The adapted metrics are instantidigdhe
QoS calculator based on the composition patteractd by
run time extractor.

Table 1 summarizes the QoS metrics we adapted to
account for the composition patterns. To establistse
metrics, we noted constituent Web services;as s. s, and
the Web service composition that includes theseicer as
S(s, & ..., $)- For the conditional pattern, we denotehe
probability that a service be selected. Finally we denote as
SO(s, p) the selection operation for the conditional patie
which selects the servicewgith an execution probability;.p

68

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE . METRICS FOR COMPOSEWVEB SERVICES
Patterns Response Time Throughput Reliability Cost
Sequence n 1 n ?
D Rts) S [[#G Yt
=1 =1 T(St) =1 =1
Parallel max{RT(s.)} min{T (s,)}

Synchronization
Simple merge

[Trco | Yew
=1 t=1

Exclusive choict
Deferred choice

RT (50 (s.. 2.)

T(50(s.. 1))

(5005, 1)) c(50(s:, 1))

Multi-choice/ - z "
- max | BT(50(s.,, min | T|50(s.,
conditional ((soGs. pt))) ((s0Cs. pt))) I_IR(SO(S*’p’)) ZC(SG(SHPJ
Synchronizing =1 =1
merge
Loop n X BT 1 R™ nkXc
1
Ear

For example, when considering the exclusive choiceirtual hosts at the same time to collect locallgnitored

pattern, the response time is calculated by thecBeh
operation, which selects one of theossible Web services.
In particular, it is defined & (500 2. 1):. This pattern
selects the service with a probability p at design time.
However, since at run time, the execution pathléarcand
tt\lis metric will be adapted by the QoS calculatotoi

Y RTGs)

t=1 .

D. The QoS Violation Detector

values.

As shown in Figure 1, the Lo2Hi QoS Convertor
interacts with two components: the LHM which morst
the resources, and the QoS Calculathich calculates the
global obtained metric. Resources are monitoredthsy
Local Host Monitor using arbitrary monitoring toadach as
Gmond from Ganglia project [3]. Low level resournetrics
include outbytes, inbytes, and packetsize. Basedthen
predefined mapping rules stored in a database, toredi
metrics are periodically mapped to the SLA paramete
These mapping are obtained in a similar way to éhios

Th.e QoS Violation Detector accesses the mappedasietr Grids where workflow processes are mapped to a Grid
repository to get the mapped SLA parameters. Theseervice in order to ensure their quality of seryics].

parameters are compared with the calculated valbisned
from the QoS Calculator. In the case of a violat{oone
respect of SLA), it dispatches notification messatge the
customer/provider to alert about the violation. é&@mple of
SLA violation threat can be an indication that fivecess

IV. EXAMPLE

In this section, we illustrate the functioning diet
Extractor Module and the Run Time Extrackdodule. Our
running example deals with the recruitment of ampleyee,

consumed Bs for a response time while the agreed responsghich we modeled in BPMN (Fig 3). We consider a

time is 3s.
E. TheLHM and Lo2Hi QoS Convertor

The Local Host Monitor (LHM) process monitored
values and is capable of measuring both hardwark a

network resources. It can be configured to accdfsreht

company named AdminCompany and a new employee

called Joan. When Joan arrives to AdminCompany, his

information should be collected and it is necesstry
erform many activities in parallel such as, graotess to
ompany information, sign some legal documentssatdip

her workstation. After that, the mode of remuneraghould

be selected either in cash or by check or by baahksters.

OnBoarding

Figure 3. BPMN representation of the example

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

69

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

For space limitation, we consider only the metric o
response time (RT). First, the BPEL process coomding
to this example is implemented. Then the Extrabodule
parses the BPEL process to extract the designeipation
that represents the used patterns (Listing 2).

Listing 2. Equation obtained in Design Time

Sequence (gat smploves mformation, Flow (grant
signsoms legal documents, setup workstation),
Sequence (szlect the mods of renmmerztion), Switch (cash, check, bank wansfer)

200855 to company mformation,

This equation will be refined through the Extraciun
Time Module to obtain a run time equation, correstiog to
the set of invoked services as well as the pattesesl for
connecting the flows between them (Listing 3).

Listing 3. Equation obtained at Run Time

Sequence(get emploves mformation, Flow (grant access to company mformation,
sign some lzgel decuments, setup workstation),
Sequence(select the mede of remunerztion). Sequence (check))

For example, for the sequential pattern, the resptime
is defined as the sum of the response times afdhstituent
Web services. For the flow pattern (which inclugesallel,
synchronization and simple merge pattern), the oesg
time is defined as the maximum response time of th
constituent Web services (grant access to compar
information, sigh some legal documents, set up statlon).

The values calculated and obtained for the comgosit
Web services will be compared to the agreed SLA

V.

Monitoring Web services composition published in
Cloud based on the patterns used in BPEL procesaime
an open research issue in Cloud computing. Inpdjr, we
presented QMoDeSV, a novel architecture for moimigpr
and detecting SLA violations in Cloud computing
environment.

Our framework is designed to handle the completd We
service composition management lifecycle in the u@lo
environment and SLA violation detection. In additio
QMoDeSV proposes a hon-intervening modular approac
for monitoring QoS attributes: QoS pertinent infatian is
collected by “watching” locally each service compnh
Then, based on the composition pattern of the csitego
service, the overall QoS information is computedisT
information is used by our framework to detect ptsd
SLA violations. Our framework can be very helpfur f
service providers, who can then take correctivéoastto
improve their services and to avoid penalties.

In our future endeavor, we will focus on the LHMdan
Lo2Hi modules responsible for managing the mappifhg
resource metrics gathered from Cloud environmemaftain
SLA parameters.

CONCLUSION AND FUTURE WORK

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopa, “Markietted cloud
computing: Vision, hype, and reality for deliveriiigservices as
computing utilities” In Proceedings of the 10th [EE
International Conference on High Performance Compuand
Communications (HPCC-08), pp102-110

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

(2

(3]

(4

(5]

(6]

(71

(8]

(9]

[10]

[11]

(12]
[13]

[14]

[15]

A. Al-Flasi and M.A. Serhani, “A Framework for SLA-
Based Cloud Services Verification and Composition”,
International Conference on Innovations in Inforimat
Technology, Abu Dhabi, UAE, April 2011. pp. 363-370

M. L. Massie, B.N. Chun, and D. E. Culler, “The gha
distributed monitoring system: Design, implemeiatand
experience,” Parallel computing, vol. 30, pp. 2806

“Nagios.” http://www.nagios.or¢. [retreived:7,2017]

H. Newman, |. Legrand, P. Galvez, R. Voicu, and C.
Cirstoiu, “MonALISA : A distributed monitoring seice
architecture,” in Proceedings of CHEPO03, La Jolla,
California, 2003. pp. 214-220

S. Andreozzi, N. De Bortoli, S. Fantinel, A. GhigeG. L.
Rubini, G. Tortone, and M. C. Vistoli, “GridICE: A
monitoring service for grid systems,” Future Ger@smput.
Syst., vol. 21, no. 4, pp. 559-571, 2005

J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime déb
Based Monitoring Approach for Cloud,” in Proceedingf
2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD 2010), I. C. Society, Ed. Miami,
Florida: IEEE Computer Society, 2010, pp. 313-320.

M. Boniface, B. Nasser, J. Papay, S. C. PhillipsSArvin,
X. Yang, Z. Zlatev, S. V.Gogouvitis, G. Katsaros, K
Konstanteli, G. Kousiouris, A. Menychtas, and D.ridyis,
“Platformas- a-Service Architecture for Real-TimeaQty
of Service Management in Clouds,” in Proceedingshef
2010 Fifth International Conference on Internet aieb
Applications and Services (ICIW '10). WashingtonCD
USA: IEEE Computer Society, 2010, pp. 155-160

N. Repp, R. Berbner, O. Heckmann, and R. Steinniétz,
Cross-Layer Approach to Performance Monitoring oétWV
Services,” in Proceedings of the Workshop on Emneygi
Web Services Technology. CEUR-WS, Dec 2006. pp- 140
148

Vaquero L M, Rodero-Merino L, Caceres J , and Lardv,
“A Break in the Clouds, Towards a Cloud Definitipn”
Computer Communications Review, 2009, Vol. 39, Hip.
pp. 50-55.

F. Rosenberg, C. Platzer, and S. Dustdar, “Bogqigsing
Performance and Dependability Attributes of Webvges,”

in Proceedings of the IEEE International Conferemc&Veb
Services (ICWS'06). IEEE Computer Society, 2006, pp
205-212.

Apache ODEhttp://ode.apache.orfyetreived: 7, 2012]

H. San-Yih, Wang H, S.Jaideep , and P. Raymond. “A
probabilistic QoS Model and computation Framewook f
Web Services based workflow” In Proc of ER2004, gsag
596-609, Sanghai, November 2004. pp. 254-260

Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero
Muhl. “QoS Aggregation for Web Service Composition
using Workflow Patterns” EDOC '04 Proceedings oé th
Enterprise Distributed Object Computing Conference,
Eighth IEEE International. pp. 52-59

D. Kyriazis, K. Tserpes, A. Menychtas, A. Litke,daf.
Varvarigou, An innovative workflow mapping mechanis
for grids in the frame of quality of service, Fueur
Generation Computer Systems 24 (6) (2008) pp. 4BB-5

70

