
A QoS Monitoring Framework for Composite Web Services in the Cloud

Rima Grati
University of Sfax

Multimedia, InfoRmation system &
Advanced Computing Laboratory

(Mir@cl)
Tunisia

rima.grati@gmail.com

Khouloud Boukadi
University of Sfax

Multimedia, InfoRmation system &
Advanced Computing Laboratory

(Mir@cl)
Tunisia

khouloud.boukadi@fsegs.rnu.tn

Hanene Ben-Abdallah
University of Sfax

Multimedia, InfoRmation system &
Advanced Computing Laboratory

(Mir@cl)
Tunisia

hanene.BenAbdallah@fsegs.rnu.tn

Abstract— Due to the dynamic nature of the Cloud, continuous
monitoring of QoS requirements is necessary to manage the
Cloud computing environment and enforce service level
agreements. In this paper, we propose a QoS monitoring
framework for composite Web services implemented using the
BPEL process and deployed in the Cloud environment. The
proposed framework is composed of three basic modules to:
collect low and high level information, analyze the collected
information, and take corrective actions when SLA violations
are detected. This framework provides for a monitoring
approach that modifies neither the server nor the client
implementation. In addition, its monitoring approach is based
on composition patterns to compute elementary QoS metrics
for the composed Web service. In this paper, we illustrate our
framework for the response time QoS requirement.

Keywords- Monitoring of Web service composition; Cloud
environment; Service Level Agreement ; SLA violation

I. INTRODUCTION

Cloud computing has recently emerged as a new
paradigm for hosting and delivering services over the
Internet. It offers huge opportunities to the IT industry. In
addition, it offers two advantages for business owners: it
eliminates the requirement to plan ahead for provisioning,
and it allows enterprises to start from the small and increase
resources only when there is a rise in service demand.
Besides these advantages, Cloud computing enables users to
utilize services without the need to understand their
complexity or acquire the knowledge and expertise to
consume them [1]. It provides users with services to access
hardware, software, and/or data.

Despite these advantages, business owners require that
Cloud providers guarantee a pre-agreed upon set of Quality
of Service (QoS) attributes, e.g., response time, availability,
security, and reliability. Face to these user requirements, and
due to the dynamic nature of the Cloud, continuous
monitoring of QoS attributes became mandatory to enforce
Service Level Agreements (SLA) [2].

In fact, run-time monitoring has been in demand well
before the Cloud. Several monitoring systems, e.g., Ganglia
[3], Nagios [4], MonaLisa [5], and GridICE [6] addressed
monitoring of large distributed systems. However, these

systems did not deal with problems induced by rapidly
changing and dynamic infrastructures. This prompted the
propositions of some monitoring approaches dealing with
applications deployed on the cloud environment as a set of
Cloud services [7][8]. Most of these approaches require
modification of either the server or the client implementation
code. However, to provide for independence of any Cloud
provider/environment, monitoring should be performed
without modifying the implementation of the deployed
Cloud services. Furthermore, to the best of our knowledge,
there is a lack of approaches dealing with monitoring of the
service composition in a Software as a Service (SaaS) cloud
environment.

In this paper, we propose a framework for QoS
Monitoring and Detection of SLA Violations (QMoDeSV).
This framework provides for the monitoring of composite
services deployed on the Cloud. It is designed to handle the
complete Web service composition management lifecycle in
the Cloud environment, i.e., composite Web service
deployment, resource allocation, monitoring of QoS and
SLA violation detection. In addition, QMoDeSV proposes a
non-intervening modular approach for monitoring QoS
attributes: QoS pertinent information is collected by
“watching” locally each service component. Then, based on
the composition pattern of the composite service, the overall
QoS information is computed. This information is used by a
separate module in the QMoDeSV framework to look for
potential violations of SLA pre-agreed upon QoS attributes.
The findings of this module can be very helpful for service
providers, who can then take corrective actions to improve
their services.

The remainder of this paper is organized as follows:
Section 2, provides a background of Cloud computing and
monitoring, then it overviews related works on monitoring.
Section 3 presents our monitoring framework. Section 4
presents our running example. Section 5 summarizes the
presented work and highlights some directions for future
work.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

II. RELATED WORK

A. On SLA and Monitoring

Many definitions are proposed for cloud computing. The

generally accepted definition is the one proposed by L. M.
Vaquero [10]: "Clouds are a large pool of easily usable and
accessible virtualized resources (such as hardware, platforms
and/or services). These resources can be dynamically
reconfigured to adjust to a variable load (scale), allowing
also for an optimum resource utilization. This pool of
resources is typically exploited by a pay-per-use model in
which guarantees are offered by the Infrastructure Provider
by means of customized SLAs."

This definition clearly emphasizes the role of Service
Level Agreement in the context of the Cloud. It requires a
Cloud provider to be able to propose and guarantee quality of
services for the provided resources. That is, a Cloud
provider must be able to both establish contracts, and
continuously monitor and verify the compliance of the
offered QoS with the agreed-upon SLAs.

Once services and business processes become
operational, their progress needs to be managed and
monitored both to gain a clear view of how services perform
within their operational environment, and to take
management decisions. Monitoring is the procedure of
measuring, reporting, and improving the QoS of systems and
applications delivered by the service. Monitoring consists
also of verifying at run-time that the requirements, specified
by the clients and the service providers, are met during
execution. The contract signed between the clients and the
Cloud provider is called SLA. It includes the non-functional
requirements of the service specified as QoS, obligations,
service pricing, and penalties in case of agreement violations.

Flexible and reliable management of SLA agreements is
of paramount importance for both providers and consumers.
On the one hand, prevention of SLA violations avoid
penalties that providers have to pay and, on the other hand,
based on flexible and timely reactions to possible SLA
violations, user interactions with the system can be
minimized.

B. Works on monitoring

We classify works pertinent to monitoring into two
categories: Web Service Monitoring, and Cloud Service
Monitoring.

1) Web Service Monitoring
Rosenberg et al. [11] propose a monitoring approach for

Web services. Their approach relies on aspect oriented and
object oriented programming techniques and does not require
any access to the Java source code of the service
implementation. The proposed approach requires
information related to the implementation of the monitored
Web service (e.g., endpoint and reference to WSDL). It
makes use of monitoring tools such as Jpcap to monitor only
latency measurement.

Repp et al. [9] present an approach to monitor
performance across network layers such as HTTP, TCP, and
IP. Their approach aims at monitoring QoS (in terms of

network measurements) and detecting SLA violation. In the
case of an SLA violation, this approach proposes to
reconfigure the system at real time to minimize the
substitution cost. For this, it uses the windump tool which
requires access to the hardware for monitoring. This work
monitors only network measurements.

2) Cloud Service Monitoring
Shao et al. [7] propose a Runtime Model for Cloud

Monitoring (RMCM). RMCM uses interceptors (as filters in
Apache Tomcat and handlers in Axis) for service
monitoring. It collects all Cloud layer performance
parameters. In the SaaS layer, RMCM monitors applications
while taking into account their required constraints and
design models. To do so, it converts the constraints to a
corresponding instrumented code and deploys the resulting
code at the appropriate location of the monitored
applications. Thus, it modifies the source code of the
applications.

Boniface et al. [8] propose a monitoring module that
collects QoS parameters of Cloud Computing. They use a
monitoring application component (AC) that must be first
described and registered in the application repository. The
AC collects QoS parameters at both the application and
technical levels. This approach is complicated and hard to
install due to the description and registration of AC.
Furthermore, their approach remains unevaluated.

To the best of our knowledge, none of the discussed
approaches deals with monitoring Web service composition
in the Cloud. As we describe in the next section, our
approach has two additional distinctive features: computing
QoS metrics in a modular way based on the patterns used in
the composite service deployed in a SaaS Cloud, and
collecting information (low level and high level) then
comparing these metrics to SLA.

III. THE QMODESV MONITORING FRAMEWORK

The QMoDeSV framework aims at monitoring
composite Web services deployed on the Cloud. Its run-time
monitor is based on the workflow patterns used in the
composition (BPEL process). It is designed to handle the
complete Web service composition management lifecycle in
the Cloud environment. The service composition lifecycle
includes activities such as composite service deployment,
resource allocation to the composite service, composite
service monitoring, and SLA violation detection.

In our approach, we suppose that the composite Web
service (i.e., the BPEL process) is offered through a SaaS
provider. the latter should propose the BPEL processes, the
BPEL engine responsible for executing the processes
instances, the database management system (DBMS) as well
as the monitoring framework.

We consider that monitoring begins when the customer
places a service composition request through a defined
application interface to the Cloud provider. As depicted in
Figure 1, the QMoDeSV framework is a two-level
framework consisting of a design time module (the Extractor
Module) and five run time modules (the RTP Extractor, the
QoSCalculator, the Local Host Monitor, the Lo2Hi QoS
Convertor, and the QoS Detector Violation). Once the

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

composite Web service is invoked, the run time modules of
QMoDeSV are executed. These modules run in parallel with
the BPEL instance in order to detect possible SLA
violations.

The remainder of this section describes the role of each
module and how it interacts with the other modules.

Figure 1. Overview of QMoDeSV architecture and module’s interaction

A. The Extractor Module

Web services can be composed using different patterns
that are based on the usual workflow patterns. Usually, a
complex Web service composition combines two or more of
these patterns.

Our Extractor module can handle the following common
workflow patterns:

• Sequence pattern: indicates that the components
Web services are executed one after the other.

• Parallel pattern: indicates that two or more Web
services can be executed in parallel.

• Synchronization pattern: indicates that the process
will continue after the parallel pattern of the Web
service is executed.

• Exclusive choice pattern: is a point in the process
where a path is chosen from several available paths
based on a decision or process data

• Simple merge pattern: defines a point in the flow
of execution, where two or more alternative
branches are merged.

• Conditional pattern: indicates that there are
multiple services (s1, s2, …, sn) among which only
one service can be executed.

• Synchronizing merge pattern: marks a point in the
process execution, where several branches merge
into a single one.

• Multi-merge pattern: joins two or more different
services without synchronization together.

• Loop pattern: indicates that a certain point in the
composition block is executed repeatedly.

• Deferred choice pattern: describes a point in the
composition where some information is used to
choose one among several alternative branches.
When one branch of the process is enabled, the
others should be disabled

The Extractor Module is responsible for analyzing the
composite Web service implemented as a BPEL process. It
uses the pattern detection algorithm shown in Listing 1 to
extract the used patterns from the BPEL process. The output
of the Extractor Module is a design time equation containing
the name of the components Web services as well as the
patterns used for connecting the flows between these
components.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

Listing 1. The pattern detection algorithm used by the Extractor Module

B. The Run Time Extractor Module

The Run Time Extractor Module (see Fig. 2) “watches”
the executed services and refines the equation obtained in the
design time into a run time equation. The run time equation
represents the execution path of the BPEL process instance.
It is derived according to the patterns extracted at the design
time. This module intercepts information about the executed
service through the Monitoring thread: this latter is the
extension of the API apache ODE (Orchestration Director
Engine) [12]. The monitoring thread interacts with the
BPEL engine to check the process states and informs the
Run Time Extractor module to do a comparison between old
and new process (see Fig. 2). After that, the Run Time
Extractor Module extracts BPEL nodes to establish the
execution graph of BPEL. Once the run time extraction path
is done, the run time equation is established.

Figure 2. The Run Time Extractor Module

C. The QoS Calculator Module

This module computes QoS metrics for the composite
Web services. In its computations, it uses the values of the
constituent services and the composition pattern.

We illustrate how the QoS calculator functions use the
following QoS metrics:

• Response Time (RT): the time interval between
when a service is invoked and when the service is
finished.

• Service Cost (C): the price that a service requester
has to pay for invoking the service.

• Throughput (T): represents the number of Web
service requests at a given time period.

• Reliability (R): the probability that a request is
correctly responded within the expected time.

The overall Web service QoS is derived based on the
values collected locally for each constituent service and the
composition pattern. For this, we adapt metrics proposed in
[13] and [14]. The adapted metrics are instantiated by the
QoS calculator based on the composition pattern detected by
run time extractor.

Table 1 summarizes the QoS metrics we adapted to
account for the composition patterns. To establish these
metrics, we noted constituent Web services as s1, s2… sn and
the Web service composition that includes these services as
S(s1, s2, …, sn). For the conditional pattern, we denote pi the
probability that a service si be selected. Finally we denote as
SO(si, pi) the selection operation for the conditional patterns,
which selects the service si with an execution probability pi.

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE I. METRICS FOR COMPOSED WEB SERVICES
Patterns Response Time Throughput Reliability Cost
Sequence

Parallel

Synchronization

Simple merge
Exclusive choice

Deferred choice
Multi-choice/
conditional

 Synchronizing

merge
Loop

For example, when considering the exclusive choice
pattern, the response time is calculated by the selection
operation, which selects one of the n possible Web services.
In particular, it is defined as :. This pattern
selects the service st with a probability pt at design time.
However, since at run time, the execution path is clear and
this metric will be adapted by the QoS calculator into:

 .

D. The QoS Violation Detector

The QoS Violation Detector accesses the mapped metrics
repository to get the mapped SLA parameters. These
parameters are compared with the calculated values obtained
from the QoS Calculator. In the case of a violation (none
respect of SLA), it dispatches notification messages to the
customer/provider to alert about the violation. An example of
SLA violation threat can be an indication that the process
consumed 5ns for a response time while the agreed response
time is 3ns.

E. The LHM and Lo2Hi QoS Convertor

The Local Host Monitor (LHM) process monitored
values and is capable of measuring both hardware and
network resources. It can be configured to access different

virtual hosts at the same time to collect locally monitored
values.

As shown in Figure 1, the Lo2Hi QoS Convertor
interacts with two components: the LHM which monitors
the resources, and the QoS Calculator which calculates the
global obtained metric. Resources are monitored by the
Local Host Monitor using arbitrary monitoring tools such as
Gmond from Ganglia project [3]. Low level resource metrics
include outbytes, inbytes, and packetsize. Based on the
predefined mapping rules stored in a database, monitored
metrics are periodically mapped to the SLA parameters.
These mapping are obtained in a similar way to those in
Grids where workflow processes are mapped to a Grid
service in order to ensure their quality of service [15].

IV. EXAMPLE

In this section, we illustrate the functioning of the
Extractor Module and the Run Time Extractor Module. Our
running example deals with the recruitment of an employee,
which we modeled in BPMN (Fig 3). We consider a
company named AdminCompany and a new employee
called Joan. When Joan arrives to AdminCompany, his
information should be collected and it is necessary to
perform many activities in parallel such as, grant access to
company information, sign some legal documents and set up
her workstation. After that, the mode of remuneration should
be selected either in cash or by check or by bank transfers.

Figure 3. BPMN representation of the example

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

For space limitation, we consider only the metric of

response time (RT). First, the BPEL process corresponding
to this example is implemented. Then the Extractor Module
parses the BPEL process to extract the design time equation
that represents the used patterns (Listing 2).

Listing 2. Equation obtained in Design Time

This equation will be refined through the Extractor Run
Time Module to obtain a run time equation, corresponding to
the set of invoked services as well as the patterns used for
connecting the flows between them (Listing 3).

Listing 3. Equation obtained at Run Time

SLA violations. Our framework can be very helpful for
service providers, who can then take corrective actions to
improve their services and to avoid penalties.

In our future endeavor, we will focus on the LHM and
Lo2Hi modules responsible for managing the mapping of
resource metrics gathered from Cloud environment to obtain
SLA parameters.

.

For example, for the sequential pattern, the response time

is defined as the sum of the response times of the constituent
Web services. For the flow pattern (which includes parallel,
synchronization and simple merge pattern), the response
time is defined as the maximum response time of the
constituent Web services (grant access to company
information, sign some legal documents, set up workstation).

The values calculated and obtained for the composite
Web services will be compared to the agreed SLA

V. CONCLUSION AND FUTURE WORK

Monitoring Web services composition published in
Cloud based on the patterns used in BPEL process remains
an open research issue in Cloud computing. In this paper, we
presented QMoDeSV, a novel architecture for monitoring
and detecting SLA violations in Cloud computing
environment.

Our framework is designed to handle the complete Web
service composition management lifecycle in the Cloud
environment and SLA violation detection. In addition,
QMoDeSV proposes a non-intervening modular approach
for monitoring QoS attributes: QoS pertinent information is
collected by “watching” locally each service component.
Then, based on the composition pattern of the composite
service, the overall QoS information is computed. This
information is used by our framework to detect potential
SLA violations. Our framework can be very helpful for
service providers, who can then take corrective actions to
improve their services and to avoid penalties.

In our future endeavor, we will focus on the LHM and
Lo2Hi modules responsible for managing the mapping of
resource metrics gathered from Cloud environment to obtain
SLA parameters.

[2] A. Al-Flasi and M.A. Serhani, “A Framework for SLA-
Based Cloud Services Verification and Composition”,
International Conference on Innovations in Information
Technology, Abu Dhabi, UAE, April 2011. pp. 363-370

[3] M. L. Massie, B.N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: Design, implementation and
experience,” Parallel computing, vol. 30, pp. 200, 206

[4] “Nagios.” http://www.nagios.org/. [retreived: 7,2012]

[5] H. Newman, I. Legrand, P. Galvez, R. Voicu, and C.
Cirstoiu, “MonALISA : A distributed monitoring service
architecture,” in Proceedings of CHEP03, La Jolla,
California, 2003. pp. 214-220

[6] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. L.
Rubini, G. Tortone, and M. C. Vistoli, “GridICE: A
monitoring service for grid systems,” Future Gener. Comput.
Syst., vol. 21, no. 4, pp. 559–571, 2005

[7] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model
Based Monitoring Approach for Cloud,” in Proceedings of
2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD 2010), I. C. Society, Ed. Miami,
Florida: IEEE Computer Society, 2010, pp. 313–320.

[8] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin,
X. Yang, Z. Zlatev, S. V.Gogouvitis, G. Katsaros, K.
Konstanteli, G. Kousiouris, A. Menychtas, and D. Kyriazis,
“Platformas- a-Service Architecture for Real-Time Quality
of Service Management in Clouds,” in Proceedings of the
2010 Fifth International Conference on Internet and Web
Applications and Services (ICIW ’10). Washington, DC,
USA: IEEE Computer Society, 2010, pp. 155–160

[9] N. Repp, R. Berbner, O. Heckmann, and R. Steinmetz, “A
Cross-Layer Approach to Performance Monitoring of Web
Services,” in Proceedings of the Workshop on Emerging
Web Services Technology. CEUR-WS, Dec 2006. pp. 140-
148

[10] Vaquero L M, Rodero-Merino L, Caceres J , and Lindner M,
“A Break in the Clouds, Towards a Cloud Definition”,
Computer Communications Review, 2009, Vol. 39, No. 1,
pp. 50-55.

[11] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping
Performance and Dependability Attributes of Web Services,”
in Proceedings of the IEEE International Conference on Web
Services (ICWS’06). IEEE Computer Society, 2006, pp.
205– 212.

[12] Apache ODE http://ode.apache.org/ [retreived: 7, 2012]

[13] H. San-Yih, Wang H, S.Jaideep , and P. Raymond. “A
probabilistic QoS Model and computation Framework for
Web Services based workflow” In Proc of ER2004, pages
596-609, Sanghai, November 2004. pp. 254-260

[14] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero
Muhl. “QoS Aggregation for Web Service Composition
using Workflow Patterns” EDOC ’04 Proceedings of the
Enterprise Distributed Object Computing Conference,
Eighth IEEE International. pp. 52-59

[15] D. Kyriazis, K. Tserpes, A. Menychtas, A. Litke, and T.
Varvarigou, An innovative workflow mapping mechanism
for grids in the frame of quality of service, Future
Generation Computer Systems 24 (6) (2008) pp. 498–511.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopa, “Marketoriented cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities” In Proceedings of the 10th IEEE
International Conference on High Performance Computing and
Communications (HPCC-08), pp102-110

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

