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Abstract—Mosix has long been recognized as a distributed 

operating system leader in the high performance computing 

community. In this paper, we analyze the load-balancing 

capabilities of a Mosix cluster in handling requests for different 

types of resources through real experiments on a Mosix cluster 

comprising of heterogeneous machines. 

Keywords-Mosix Load balancing; CPU–intensive process; 

I/O-intensive process; IPC-intensive process; Memory- intensive 

process. 

I.  INTRODUCTION 

Mosix used to be a pioneerd distributed operating system 
for cluster computing. It was built as an extension to the 
UNIX operating system kernel and provided a single system 
image to applications. Using Mosix, developers could build 
SMP machines by clustering a number of dispersed 
homogeneous machines running under UNIX. 

Load balancing the computational power of clustered 
machines is a well-known mandatory requirement to the 
provision of single system image and performance (i.e., 
response time) in homogeneous clusters [1]. Mosix has used 
a decentralized and probabilistic approach to balance the 
computational loads on clustered off-the-shelf machines. It 
has used a special mechanism for scalable dissemination of 
load information too. To prevent process or system 
thrashing, it has also used a process reassignment policy 
through sharing of memory.  

In this paper, we intend to show experimentally the                                                                 
capabilities of Mosix in balancing the loads on a Mosix 
cluster comprised of heterogeneous machines. We have 
designed and ran a number of tests to investigate if Mosix 
achieves its acclaimed capabilities in balancing the load on 
the cluster when requests for different cluster resources are 
called. 

The rest of paper is organized as follows. Section 2 
presents a brief description of the Mosix load-balancing 
mechanism. Section 3 presents our test programs and the 
results of running them on a 5-node Mosix cluster, and 
Section 4 concludes the paper. 

II. MOSIX LOAD BALANCING MECHANISM 

The load balancing mechanism of Mosix works in a 
decentralized manner using load information of the clustered 
machines. Process is the basic unit of load balancing in 
Mosix . It includes appropriate mechanisms such as process 

migration and remote system call for adaptive load 
balancing. It reassigns processes when it decides to balance 
the load between two nodes [2]. 

Mosix load balancing mechanism is based on three 
components, load information dissemination, process 
migration, and memory information dissemination. Mosix 
can assign a new process to the best machine as well as 
balancing the load on entire cluster [3]. In the remaining 
parts, we describe load dissemination and balancing 
mechanisms and our experiments written in C language 
based on process behaviors. 

Mosix employs CPU load, memory usage, and IPC 
information to calculate machine‟s load and process needs. 
Indeed these are load indices in Mosix. Mosix monitors these 
resources, gathers their information and status, and packs 
them into a message [3], [4]. It then sends the built message 
to some other machines. Mosix uses depreciation to calculate 
load information. When a new index is calculated, Mosix 
changes it with respect to the depreciation rate. With this 
idea, Mosix employs a history-based approach to balance the 
load. Mosix monitors resources many times in a second. At 
the end of each second, Mosix normalizes indices and sends 
them into two randomly selected machines in the cluster. 
Mosix stores information about a few numbers of machines 
due to scalability reasons. This limited number is called 
information window. When Mosix gathers information about 
local resources, it selects two machines, one from its window 
and the other from non-window machines. This mechanism 
makes Mosix scalable. The main challenge with this 
mechanism is what size of window is suitable. Simulations 
show that if there is N machines in the cluster, a window size 
equal to logN is suitable [3], [5]. 

One of the major drawbacks of Mosix information 
dissemination is its periodic approach. The periodic 
information dissemination can result in waste of network 
bandwidth and CPU time. On the other hand, if there are 
many changes in indices during a period, it will result in 
unsuitable information. Event-driven information 
dissemination solves these problems [6]. 

As mentioned earlier, Mosix employs CPU load, memory 
usage and IPC information to balance and distribute load 
among machines belonging to a cluster [3]. In the following, 
we first describe the Mosix basic load balancing mechanism 
and then discuss its memory sharing and IPC optimization. 
In general, a load-balancing algorithm must provide four 
steps: (1) indices computation (2) information dissemination 
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(3) load balancing trigger, and (4) load balancing operation. 
In step four, load balancer must decide on migration 
destination and a candidate process.  

CPU load balancing in Mosix operates based on the 
amount of available CPU for each process. Mosix computes 
the amount of CPU time taken by each process. It counts the 
number of executable processes in a period (one second) and 
normalizes it with CPU speed in favor of maximum CPU 
speed in the cluster. Then it changes the index in favor of 
depreciation to realize actual load based on load history. 
Gathered information is disseminated between some 
machines. The Mosix load balancing mechanism is triggered 
when the difference between a local machine‟s load and the 
windows machines‟ loads exceed a threshold. Load 
balancing pair contains a machine with lower load index that 
has enough memory space to host a migrant process. 
Selecting a migrant process is an important stage of load 
balancing operation. CPU-intensive processes have priority 
for migration. Mosix limits the number of times a process is 
allowed to migrate in order to prevent starvation. In this 
paper we have designed three types of processes, CPU-
intensive, memory-intensive and IO-intensive [1], [3], [5], 
[7]. 

Thrashing is a phenomenon in operating systems that 
occurs by the growth of page faults. When free memory in 
the system is decreased, processes requiring memory to bring 
in their pages into memory, page fault. Mosix migrates a 
process if free memory size drops below a threshold. Indeed, 
this algorithm distributes processes in the memory of the 
entire cluster. Although, this algorithm results in unbalanced 
CPU load, but it can increase performance when system into 
thrashes [3], [4], [8]. 

When free memory size drops below a threshold, 
memory sharing algorithm is triggered. When free memory 
size drops below this threshold, Mosix expects increases in 
page faults. Therefore, determination of this threshold is a 
crucial decision. Target machine at least must satisfy two 
conditions. First, target machine must have enough space to 
host a new process. Second, target machine must be in 
window. Mosix usually selects a target machine with the 
least CPU load. It selects a process with the least migration 
cost that has caused memory overload. Migration of the 
selected process must increase free memory size up to 
threshold and migration must not overload the target 
machine . If there is no such process, Mosix selects a larger 
process that can be placed at the target machine. After this 
replacement, if there is still memory overload, Mosix repeats 
the above two steps. We have designed a program for this 
algorithm [3], [8]. 

The main goal of balancing load based on IPC is to 
reduce the communication overhead between processes 
while keeping the load balanced as much as possible. CPU 
load balancing tries to utilize all processors equally while 
keeping communicating processes together results in lower 
communication cost. Therefore, it would reduce response 
time in the presence of load balancing if processes have low 
communication. However, in real science applications, 
communication between processes is high. Therefore, 
balancing the load based on IPC information can lower the 

response time. Mosix employs a producer consumer model 
to optimize its load-balancing algorithm. In this model, each 
consumer tries to find a producer that presents its product 
with lower cost. In the cluster environment, products are 
resources such as CPU cycles, memory and communication 
channels. Consumers are processes residing on machines. 
The cost of a resource is the amount of time that a process 
spends to use one unit of that resource. Whereas a process 
can run on another machine with lower cost, it is migrated to 
that machine [3], [9]. 

Mosix computes the cost of each process based on CPU 
load, free memory space, and IPC information. It uses a 
heuristic to compute an approximate response time. The 
algorithm is initiated when the cost difference between 
running the process on the current machine and running it on 
one of the window machines exceeds the migration cost. 
Mosix selects a process with maximum difference and a 
machine with the least cost as the target machine [3]. 

Mosix measures performance in terms of speed of CPU 

in GHz unit. It also measures the load of each node by 

counting the number of processes in each scheduling time 

and computes the primary load as the average of counted 

processes. It then normalizes the load relative to CPU 

speedup. A load unit represents 100% utilization of a 

'standard' processor [2], [3]. We use these measurements in 

reporting the results of our experiments in Section III.  

III. EVALUATION 

We have deployed a 5-node cluster of openMosix to 
analyze the behavior of Mosix in balancing the load on the 
nodes of the cluster. Each node of cluster had direct access to 
other nodes through an 8-port 10/100 Ethernet switch. All 
nodes ran openSUSE 11.2 as their operating system and 
were equipped with LAM/MPI. Table 1 shows more details 
of the testbed. 

 
TABLE 1  SPECIFICATION OF THE DEPLOYED 

OPENMOSIX CLUSTER  

System ID CPU Memory OS MPI 

Node1 Intel1.7GHz 256MB openSUSE11.2 LamMPI 

Node2 
IntelCeleron 
2.4GHz 

256MB openSUSE11.2 LamMPI 

Node3 Intel1.8GHz 256MB openSUSE11.2 LamMPI 

Node4 
IntelCeleron 
2.4GHz 

256MB openSUSE11.2 LamMPI 

Node5 
IntelCeleron 
2.4GHz 

1GB openSUSE11.2 LamMPI 

 
We have designed and ran 7 test programs to examine the 

behavior of openMosix„s load balancing mechanism with 
different types of node overloading including CPU, I/O, and 
IPC. We also tested its behavior on MPI directives. 

A. Test No. 1, CPU-intensive 

In this test, we check how openMosix reacts when 

cluster is overloaded with CPU-intensive processes. We use 
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a process (Figure 1) with an infinite loop that consumes as 

much CPU cycles as it could.  

 

while (1){ 

; 

   } 

Figure 1 - Pseudo code of a CPU-intensive process 

 

We ran 20 instances of this process with mosrun 

command. Table 2 shows the results of these runs; the 

number in each cell shows the number of instances of the 

process on that node; we have ignored non-Mosix 

processes; the mosrun command started from Node1. As it 

is shown in Table 2, openMosix spreads the load on the 

entire cluster, with respect to nodes‟ abilities. 

 
TABLE 2  CPU-INTENSIVE TEST RESULTS 

 Node1 Node2 Node3 Node4 Node5 

Startup 20 - - - - 

Balanced 4 4 4 4 4 

 

The performance of each node depended on its processor 

power. Figure 2 shows the performance of cluster on each 

node. 

 

 
Figure 2 - Performance of nodes 

 

Figure 3 shows the loads on the cluster nodes when 5 

instances of a specific process ran on the cluster. Mosix 

calculates load for each node in the cluster with respect to 

relative node performance and number of processes in run 

queue. When numbers of processes on each machine are 

equal the output load diagram is look like Figure 3. 

 

 
Figure 3 – Loads on nodes for CPU-intensive processes 

 

Normalizing load with respect to node‟s relative 

performance, Mosix attempts to overcome the impact of 

performance heterogeneity. It calculates relative 

performance through dividing each node‟s performance by 

maximum performance in cluster. 

B. Test No. 2, I/O-intensive 

In this test, we check how openMosix deals with I/O-

intensive processes. We use a process (Figure 4) with an 

infinite loop that sends an empty string to the standard 

output in each iteration.  

 

 

while(1){ 

 printf(“”); 

} 
Figure 4 – Pseudo code of an I/O-intensive process 

 

After running 20 instances of this I/O-intensive process 

on the cluster, Mosix migrated them to other nodes with 

respect to each node‟s performance. But before migrating 

each I/O-intensive process, it created a shadow process with 

a “./” prefix in front of its name on the main host mosrun 

executed. While the process was migrated, the shadow 

process remained to handle future references of the migrated 

process to its local host. Due to the existence of these 

shadow processes and remote references from the migrated 

process to the local host, Mosix was reluctant to migrate 

I/O-intensive processes like CPU-intensive processes. Table 

3 shows the results of this test, wherein the number in 

parentheses shows how many shadow processes were 

located on the local host. 

 
TABLE 3  I/O-INTENSIVE TEST RESULTS 

 Node1 Node2 Node3 Node4 Node5 

Startup 20 - - - - 

Balanced 4 (20) 4 4 4 4 
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C. Test No. 3, Memory-intensive 

In this test, we checked how openMosix dealt with 

memory-intensive processes. We used a process (Figure 5) 

containing CPU-intensive parts because memory-only-

intensive processes did not trigger the Mosix load balancer 

mechanism.  

 

 

for(i=1;i<1000000;i++){ 

                            malloc(10000); 

                         } 

while (1){ 

                  ; 

                    } 

Figure 5 - Pseudo code of a memory-intensive process  

 
By running the code shown in Figure 5, a large amount 

of RAM was occupied at the beginning and then a CPU-
intensive phase started. In regular situations, Mosix tried to 
reduce the load on a specific node by migrating some of the 
processes in that node to other nodes. Nevertheless, in this 
case it refused to do any migration although the nodes were 
overloaded. Migration of a large amount of memory is 
costly. Therefore, Mosix keeps memory-intensive processes 
in their places as long as the administrator does not force a 
migration. 

 

D. Test No. 4, IPC-intensive – Direct 

A process is IPC-intensive when it repeatedly sends 

messages to other processes. When a process sends too 

many messages, it becomes a candidate for migration by 

Mosix. However, as in the case of memory-intensive 

processes, the migration is costly and Mosix does not 

migrate them automatically. This reaction is a part of 

Mosix‟s policy in dealing with communicating processes. 

Figure 6 shows the results of running our test on 17 

instances of two IPC-intensive sender and receiver 

processes.  

 

 
Figure 6 – Loads for IPC-intensive processes before migration 

 

Mosix does not migrate any IPC-intensive processes in 

this experiment due to their communication cost. Migrating 

each IPC-intensive process may result in heavy 

communication cost. So, Mosix attempt to extract process‟ 

IPC behaviors and make decision based on it. But when a 

process passes its IPC age, Mosix does not find its transition 

soon. 

In the next experiment, processes on the first node were 

migrated to another node manually. After moving all 

processes to Node 5, the load of the first machine remained 

almost unchanged (Figure 7), implying that all IPC 

messages were redirected to the home node. 

 

 
Figure 7 – Loads for IPC-intensive processes after migration 

 

Whereas IPC-intensive processes have heavy 

communication cost, migrating them does not change their 

home node‟s load. Migrated processes communicate with 

their deputy on home node and communicate via their home 

node. Therefore, home node‟s load increases and processes 

response time falls down.  

E. Test No. 5, IPC-intensive – Shared memory 

Shared memory is another popular IPC mechanism that we 
had to investigate its support in Mosix. When the “mosrun” 
command was executed, Mosix returned the error message 
“MOSRUN: Attaching SYSV shared-memory not supported 
under MOSIX (try ‘mosrun -e’ or ‘mosrun -E')”. This error 
means that MOSIX does not support shared-memory-based 
communication between processes. 

F. Test No. 6, Forked processes 

A child process inherits the features of its parents. In 

Mosix, a parent can fork a child that can in turn fork its own 

child. The hierarchy of parent-child can grow until the 

number of processes reaches a threshold.  

We tested the inheritability of parent features in their 

children in Mosix and found out that whenever a parent 

process created a child process, Mosix passed the features of 

the parent to the child process (Table 4).   
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TABLE 4  FEATURE INHERITANCE OF FORKED 

PROCESSES 
 Node1 Node2 Node3 Node4 Node5 

Startup 1 - - - - 

Balanced * * * * * 

G. Test No. 7, Pipe-based processes 

To investigate the behavior of Mosix in pipe-based IPC 

communications, we tested a pair of producer consumer 

processes. We initialized the consumer process manually 

that later created the producer process to provide input for 

the consumer process. 

When the “mosrun” command was executed, Mosix 

returned the error message “MOSRUN: Attaching SYSV 

shared-memory not supported under MOSIX (try ‘mosrun -

e’ or ‘mosrun -E')”. This error means that MOSIX does not 

support pipe-based IPC communication between processes. 

We thus used the “mosrun –e” command instead. The 

results were interesting. After running the test program with 

“mosrun -e” command, 10 processes were initialized on the 

first node but after a short time Mosix migrated some of 

them. Figure 8 shows the cluster status immediately after 

initializing processes on the first node while Figure 9 shows 

the cluster status some time after migrations happened and 

cluster became stable. 

 

 
Figure 8 – Loads for Pipe-based processes before migration 

 

Mosix treats piped processes as like as IPC-intensive 

processes but there is some difference. When processes 

communicate via pipe, their waiting time is more than the 

time they uses messages. Since Mosix counts number of 

processes in ready queue at each scheduling period, it 

calculates fewer loads. 

The interesting point is that although Mosix migrated 

some processes to other nodes than their home (first node), 

the load on the home node remained unchanged (Figure 9). 

This was because copies of migrated processes remained on 

the home node to communicate with their producer 

counterparts. We can thus conclude that this migration had 

been redundant and only had increased the network traffic 

with undesirable effect on overall performance. 
 

 
Figure 9 – Loads for Pipe-based processes after migration 

 

By migrating some piped processes to other cluster 
nodes, communications must take place through 
communication infrastructures and file system. So, the home 
node‟s load does not changed after migrating piped 
processes. 

H. Test No. 8, MPI-based processes 

MPI uses sockets and shared memory [10], while Mosix 
does not efficiently support these two communication 
mechanisms. Therefore, MPI processes could not be 
migrated by Mosix. A new “direct communication” feature 
has been recently added to Mosix that provides migratable 
sockets for MOSIX processes, but there is still no support for 
shared memory in Mosix [11], [ 12]. 

Therefore, it is impossible to run default MPI-based 
applications on a Mosix cluster yet. However, there are some 
short ways. LamMPI, configured with the “--with-rpi=tcp” 
option can bypass this limitation of Mosix. 

In fact, “--with-rpi=tcp” option ensures that no shared 
memory is used in communications between processes. 
Therefore, when there is no shared memory in use, Mosix 
handles an MPI process like any other process. 

I. Test No. 9, Priority in migration 

To investigate how Mosix prioritizes processes for 

migration, we ran a number of tests. We tried to identify 

what processes become candidates for migration by Mosix. 

We compared two types of processes in each test, but 

compared all four types of CPU-intensive, I/O-intensive, 

IPC-intensive, and memory-intensive processes in our final 

experiment.  

In our experiments, Mosix migrated CPU-intensive 

processes with low allocated memory first. It then migrated 

I/O-intensive processes and at last equally migrated the IPC-

intensive and memory-intensive processes. However, this 

order was not fixed on all Mosix clusters because of Mosix 

decision making function. For example, if the power of 

machines and the amount of available physical memory 

installed on each machine in a Mosix cluster were widely 

different, the pattern of Mosix migration priority might be 

diverse.  
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IV. CONCLUSION AND  FUTURE WORKS 

We ran a number of test programs on a 5-node Mosix 
cluster to check the real abilities of Mosix in providing a 
reasonably high performance in handling different requests. 
We found that Mosix did not guarantee the performance 
improvement in all cases and that it even reduced the 
performance by making wrong decisions. 

We showed that the Mosix cluster handled CPU-
intensive, memory-intensive, and I/O-intensive processes 
effectively although it was slow and sometimes inaccurate 
when the cluster was overloaded with large memory-
intensive processes. It also properly supported feature 
inheritance by inheriting all features of parents in the forked 
children. 

We also showed that Mosix did not support shared-
memory-based communications between processes and as a 
result did not support MPI-based processes too unless 
processes used a different mechanism for their 
communications than the shared memory. Worst of all, 
Mosix misbehaved in dealing with pipes and made decided 
wrongly in migrating tightly-connected processes to other 
machines, lowering the performance and increasing the 
network traffic rather than improving the performance. 
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