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Abstract — Although production scheduling has attracted the 

research interest of production economics communities for 

decades, there still remains a gap between academic research 

and real-world problems. Genetic Algorithms (GA) constitute 

a technique that has already been applied to a variety of 

combinatorial problems. We will explain the application of a 

GA approach to bridge this gap for job-shop scheduling prob-

lems, for example to minimize makespan of a production pro-

gram or to increase the due-date reliability of jobs. The pre-

sented approach focuses on integrating a scheduling algorithm, 

based on GA, into a commercial software product, namely 

Microsoft Project 2003. We extended Microsoft Project in a 

range of aspects: A new graphical user interface is introduced 

to support users by a guided wizard describing the problem for 

which an optimal schedule is sought. The GA was developed to 

search for the solution with the maximum results for a given 

set of production logistical objectives. The developed GA algo-

rithm and operators are tested on real-world data from a one-

of-a-kind manufacturing department of a major company. It 

includes different aggregation operators for combining objec-

tives. Furthermore, the efficiency of the algorithm was com-

pared to benchmark tests available in literature. 

Keywords: Job-Shop Scheduling, Genetic Algorithms, Job-

Shop Benchmarks, Real-World Scheduling Problems 

I. PROBLEM STATEMENT 

A. Characteristics of job-shop scheduling problems 

Many jobs in industry and elsewhere require a collection 
of tasks or activities to be completing while satisfying tem-
poral, resource and precedence constraints. Temporal con-
straints impose that some activities, or a set of them have to 
be started or finished before or only after a certain point in 
time. Resource constraints dictate that two tasks requiring 
the same resource cannot be carried out simultaneously. 
Precedence constraints refer to the technological winding-up 
of a job. The objective is to create a schedule specifying 
when each task is to begin (or finish) and what resources it 
shall use in order to satisfy all the constraints while pursuing 
an objective, e.g., taking as little overall time as possible, 
minimizing mean delay, minimizing maximum delay, mini-
mizing the number of late jobs and so on. This is known as 
the job-shop scheduling problem (JSP). 

The JSP is a very important and well-studied scheduling 
problem. It is a basic model, which may be extended by 

additional characteristics like buffers, transportation, setup 
time, time lags, etc., allowing practical scheduling problems 
in practice are to be modeled more precisely. In its general 

form, it is -complete, meaning that there is probably no 

efficient procedure for exactly finding the shortest schedule 
for arbitrary instances of a problem. 

Bagchi [1, p. 109] references the JSP as follows: "Within 
the great variety of production scheduling problems that 
exist, the job shop scheduling problem (JSP) is one that has 
generated the largest number of studies. It has also earned a 
reputation for being notoriously difficult to solve. Neverthe-
less, the JSP illustrates at least some of the demands im-
posed by a wide array of real world scheduling problems… 
Attempts to tackle the multi objective job shop are still rela-
tively few." A JSP is usually solved using a heuristic algo-
rithm that takes advantage of special properties of a specific 
class of instances. This can be regarded as a backdoor to 
reducing the complexity of a given problem. 

B. Formal problem description 

An instance of the JSP consists of a set of NOJ  jobs i  

and NOM  machines j . Each job consists of a number of 

activities so that we can count the total number of activities 
NOA  as follows: 


1

NOM

i

i

NOA NOJ



   

Each job has fixed number and sequence of activities. 
Each activity has certain duration and requires a single ma-
chine for its entire duration. The activity following a pre-
ceding one within a job requires a different machine. An 
activity must be finished before each activity following it in 
its job. Two activities cannot be scheduled at the same time 
if they both require the same machine. The problem is to find 
a feasible schedule which minimizes some objective func-
tion, e.g., minimizing makespan, in other words the overall 
completion time of all activities, see Steininger [15, p. 26 f.]. 
These results in a complexity function for the JSP expressed 
as 

  !
NOM

O NOJ
 
  
 

 

which means in order to find the best schedule for a prob-
lem instance, we have to enumerate and evaluate all possible 
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schedules and the number of possible schedules to enumerate 
is the result of function (2). 

 
Figure 1.  Selected complexity functions 

Figure 1 illustrates the dimension of selected complexity 

functions, where n  is the number of problem elements, here 

the number of activities. The graph illustrates that the com-

plexity of JSP is much bigger than some other well-known 

problems, such as "Permutation problem" which is 

  !O n n , "Towers of Hanoi" which is   2
n

O n  , 

"Quicksort" which is   logO n n n  , and so on.  

C. 1.3 Classification of scheduling problems 

Classes of scheduling problems can be specified in terms 
of the three-field classification approach initial introduced by 
Conway, Maxwell and Miller [5] and extended by Graham 
[12] and Brucker [3], which is under a continuous 
reconsideration. 

The three-field classification is described as α | β | γ, 
where α specifies the machine environment, β specifies the 
job characteristics and γ describes the objective function or a 
combination of objective functions. Using the three-field 
classification to specify the problem instance of the JSP we 
are examining, the following taxonomy is noted: 

 max, | ,intree, |ijJ NOM NOJ t C  

Formula (3) describes a class of scheduling problems as 
JSP ( J ) with a fixed machine count of NOM  and a prede-

fined and fixed number of NOJ  jobs. The order of activities 

in each job is predefined and fixed as a directed graph with 
operation times ( ijt ), expresses as integer values, for each 

task. 
The three-field classification notes γ as the objective 

function or a combination of objective functions. In formula 
(3) γ specifies the "traditional" objective function ( maxC ), 

which de-scribes our goal as taking as little makespan as 
possible for the schedule of all NOJ  jobs using NOM  ma-

chines. 

II. MODELLING OF JSP SCHEDULING PROBLEMS 

A. Formal problem representation 

Even slightly different job-shop problems require com-
pletely different encodings in order to find a good solution. 

Thus, choosing a good representation is a very important 
component of solving a JSP. However, choosing a good 
representation for a scheduling problem is as difficult as 
choosing a good search algorithm for a search problem. Not 
all algorithms work equally efficient on a specific problem 
representation. To describe the representation technique 
developed for our solution we use a simple job-shop schedul-
ing problem as shown in Table I. 

 

Job 

       Machine 

jS  i  

[TU]ijt  

j  1 2 3 

1 (3,2,1)  3 5 1 

2 (1,2,3)  3 2 1 

3 (2,1,3)  1 2 5 

Table I.  Example of a production schedule problem with 3 jobs, routing 

information jS  for jobs, 3 machines and task operation times. 

The scheduling problem can be represented by a graph as 

shown in Table I. In addition to the activity nodes  ,j i  , it 

contains a source node a  with no duration (operation time), 

a sink node e , also with no duration (operation time), and 

two nodes called 2r  and 3r  which describe an imposed later 

start of job 2 and 3 relative to job 1. 

 
Figure 2.  Network representation of a JSP based on Table I 

The directed arcs running from the source node, through 

each activity node  ,j i  to the sink node describes the 

technological sequence of activities based on jS  in Table I. 

Each node shows the job id, the machine needed and the 
operation time ijt  . There are also undirected arcs in the 

network, which references all possible sequences of an activ-
ity of a given job on a specific machine. Such a representa-
tion is called a disjunctive network. 

B. Data representation and problem reduction 

Care must be taken when adopting such a graphical 
representation into a data structure, especially for the JSP in 
an area with hundreds of jobs, thousands of sequences and 
millions of possible activity orders at specific machines. 

A data structure which is very efficient in the use of stor-
age (because of the size of a practical problem) as well as in 
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time has to be found to represent the introduced network. 
Gallo and Pallottino [10] introduced the so-called "Forward 
Star" data structure, which is the most efficient representa-
tion of all existing network data structures for representing a 
network [4]. The "Forward Star" data structure uses three 
arrays to describe a (directed) network. First we have an 

array called from , whose index represents all nodes of the 

network. The value of an index field references the index of 
the second array called succ , which is the index of a node to 

connect, referencing from . The third array is called cost  and 

reports the cost of a specific arc connecting two nodes.  
The "Forward Star" data structure allows for a perfect 

implementation of the activity order of any JSP, an efficient 
implementation in storage and time and a reduction of the 
initial problem described by the α | β | γ three-field classifica-
tion. Using the "Forward Star" data structure our problem is 
reduced to the following taxonomy (): 

 max, | , , |ijJ NOM NOJ chains t C  

As mentioned above, the selection of a good representa-
tion is very important for the solution of a JSP. Care must 
also be taken to adopt both representational schemes and the 
associated operators for an effective algorithm. When using 
the traditional way of solving a problem with GAs, the 
chromosomes are implemented as binary vectors. This sim-
ple representation is an excellent choice for problems in 
which a point naturally maps into a chromosome of zeros 
and ones. Unfortunately, this approach of zeros and ones 
cannot be used for real-word engineering problems such as 
JSP, because of the number of information needed to repre-
sent coding of the JSP. Therefore, we have to find a way to 
integrate the "Forward Star" data structure into a GA. 

III. GENETIC ALGORITHMS 

A. General principle 

The term Genetic Algorithm describes a set of methods, 
which can be used to optimize complex problems. As the 
name suggests, the processes employed by GAs are inspired 
by natural selection and genetic variation. This GA uses a 
population of possible solutions to a problem and applies a 
cycle of processes to modify them. These processes mimic 
those in nature in such a way that subsequent populations are 
fitter and more adapted to their environment. As generations 
progress over time, they become better suited to their 
environment and provide an advantageous solution in a 
given time.  

Since their development in the late 1980’s GAs [11] have 
been used to find solutions too many types of problems. A 
unique characteristic of a GA is that the fundamental algo-
rithm is unaware of the problem it is optimizing. All that is 
required is that the parameters entered into a model or sys-
tem can be efficiently transformed to and from a suitable GA 
chromosome format. This means GA optimization can be 
applied to many types of complex problems. Detailed intro-
ductions are given by Goldberg [11] and Davis [7]. 

The flowchart for the GA is given in Figure 3. First, an 
initial population of randomly generated sequences of the 

tasks in the schedule is created. These individual schedules 
form chromosomes which are subject to a form of evolution. 
Once an initial population has been formed, "selection", 
"crossover" and "mutation" operations are performed repeat-
edly until the fittest member of the evolving population con-
verges to an optimal fitness value. Alternatively, the GA may 
run for a user-defined number of iterations [11].  

 
Figure 3.  Principal flow of Genetic Algorithms. 

The size of the population is user-defined and the fitness 
of each individual, in this case a schedule, is calculated 
according to a function, in our case the makespan or an 
additive combination of different goals. It is also possible to 
use a fitness function on other calculated values like mean or 
maximum delay, number of delayed jobs and so on. Also 
combinations of different functions are possible. The 
schedules are then ranked according to the value of their 
fitness function and, after that, selected for reproduction.  

B. Schedule encoding and decoding 

GAs were derived by examining biological systems. In 
biological systems evolution takes place on chromosomes 
which are organic devices for programming the structure of 
living beings. In this sense, a living being is a decoded struc-
ture of all chromosomes. Natural selection is the link be-
tween chromosomes and the performance of the decoded 
structures. When implementing the GA, the variables that 
characterize an individual are represented in arrays (by index 
ordered lists). Each variable corresponds to a gene and the 
array corresponds to a chromosome in biological systems. 

Decision was made [15] to use the encoding schema 
introduced by Bean [2] to build the chromosomes. He calls 
his schema "Operation Based Representation". Encoding 
starts by enumerating jobs and corresponding activities in a 
list. Each activity in a job is encoded with the numerical id of 
the job in which it resides. All jobs and activities are encoded 
following that description in one potential schedule for the 
problem. The result is a chromosome which represents a 
potential schedule. 
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C. Crossover 

The GA uses crossover, where mating chromosomes are 
cut once. Crossover is the most delicate operation of GA 
because of the problem that it can produce irregular activity 
sequences for a job. We use a corrected 2-point crossover to 
avoid non-regular activity sequences of orders, which 
Goldberg [11] refers to as a PMX-crossover operator. The 
following figures will illustrate a crossover operation of a 
sample JSP with 4 jobs, each with 3 activities, and 4 ma-
chines (see Figure 4 to Figure 8), based on an example in 
Steininger [15, p. 146 f.]. 

 
Step 1: Select two individuals randomly from the popula-

tion (Figure 4).  

 
Figure 4.  Crossover operator, step 1: Parent selection. 

Step 2: Select a segment of the first chromosome which 

starts and ends with the same job number (Figure 

5). Selected segment: 4124. 

 
Figure 5.  Crossover operator, step 2: Segment selection. 

Step 3: Select a segment of the second chromosome 

which starts and ends with the same job number 

as the selected segment of the first chromosome 

(Figure 6). Selected segment: 4131134. 

 
Figure 6.  Crossover operator, step 4: Segment exchange. 

Step 4: Exchange the selected segments between the two 

chromosomes to get the "child". The result is two 

chromosomes with non-regular activity se-

quences of jobs. Child 1 has too many activities 

and child 2 lacks some genes/activities (Figure 7). 

This result necessitates a correction step. 

Step 5: The following process, called "normalization", 

initializes this correction step. It examines the 

original segment of a child with the exchanged 

segment of the same child (Figure 7). The result 

of that examination for child 1 is: 2 are missing; 3, 

1, 1 and 3 are added. For child 2 we get: 3, 1, 1 

and 3 are missing and 2 is added. 

 
Figure 7.  Crossover operator, step 5: Correction of child 1. 

Step 6: Having detected the added and missed genes, we 

can start the correction step: For child 1 we delete 

3, 1, 1 and 3 at first occurrence in child 1 without 

inspecting the exchanged segment; for child 1 we 

add 2 at the end of exchanged segment (Figure 8). 

The same operations are executed on child 2 and, 

at the end of all steps; we have two new and cor-

rect chromosomes.  

 
Figure 8.  Crossover operator, step 6: Correction of child 2. 

D. Mutation 

Mutation is the process of random dissimilarity of the value 

of a gene with small probability. It is not a primary operator, 

but it ensures that the possibility of searching any section in 

the problem space is never zero and prevents complete loss 

of genetic material through reproduction and crossover. We 

execute the mutation operator as a permutation by first pick-

ing (and deleting) a gene before reinserting it at a randomly 

chosen position of the permutation (Figure 9). 

 
Figure 9.  Mutation operator: Gene flipping. 

E. Fitness 

The fitness function is used to evaluate the fitness of each 

individual in the population and depends on the specific 

application. Since a GA proceeds toward more fit individu-

als and the fitness value is the only information available to 

the GA, the performance of the algorithm is highly sensitive 
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to the fitness function. In case of optimization routines, the 

fitness is the value of the objective function to be optimized.  

F. Selection 

To selectively reproduce the population and to determine 

the next generation we use a hit and miss selection proce-

dure based on the fitness function. This could be imple-

mented using a roulette wheel method. An imaginary rou-

lette wheel is constructed with a segment for each individual 

in the population. An individual’s section size is based on 

the fitness value of the particular individual. A fit individual 

will occupy a larger slice of the roulette wheel than a 

weaker one. Selection is made by rotating the roulette wheel 

a number of times equal to the population size. When the 

roulette wheel stops, the individual it points to is selected. 

This means that fitter individuals will have a propensity to 

be selected more frequently than weaker ones.  
The GA needs a few additional parameters to work. 

These parameters specify the size of the population, use of 
operators and so on. 

G. Population size 

The population size depends on the nature of the problem 
[13]. Typically, it contains several hundreds or thousands of 
possible solutions. The population is generated randomly, so 
it is possible to cover the entire range of possible solutions. 
We use a population size of 500 individuals, which repre-
sents 500 possible schedules. 

H. Probability of crossover 

The parameter probability of crossover affects the rate at 
which the crossover operator is applied [11]. A higher 
crossover rate introduces new chromosomes more quickly 
into the population. If the crossover rate is too high, good 
individuals are eliminated faster than selection can produce 
improvements. A low crossover rate may cause stagnation 
due to the lower exploration rate. We use probability of 
crossover with a value of 0.6. 

I. Probability of mutation 

Probability of mutation is the likelihood with which each 
gene of each individual in the new population undergoes a 
random change after a selection process. A low mutation rate 
helps to prevent any gene positions from getting stuck to 
single values, whereas a high mutation rate results in essen-
tially random search [11]. We use a value of 0.05 for muta-
tion probability. 

J. Final result 

It is a characteristic of the GA that once fairly good solu-
tions have been found their features will be carried forward 
into even better solutions, which will ultimately lead to a 
near-optimal solution. Therefore, GAs are particularly attrac-
tive for scheduling.  

Compared with other optimization methods, GAs are 
suitable for traversing large search spaces since they can do 
this relatively rapidly and because the mutation operator 
diverts the method away from local minima. Being suitable 
for large search spaces is a useful advantage when dealing 

with schedules of increasing size since the solution space 
will grow very rapidly. It is important that these large search 
spaces are scanned as fast as possible to enable the practical 
and useful implementation of schedule optimization. 

 
Figure 10.  Microsoft Project 2003 with integrated REIMOS. 

IV. APPLICATION EXAMPLES  

A. Scheduling problem in a one-of-a-kind manufacture 

We have tested our approach, REIMOS (German 
abbreviation for "Sequence planning for multi-product 
manufacturing systems”) [15], in a one-of-a-kind manufac-
ture of a major German company. For confidentiality rea-
sons, the model mix, job and operation data are under a non-
disclosure agreement and we are not allowed to publish the 
data. But we have also tested our approach with a few pub-
licly available benchmark sets for JSP, which can be ac-
quired by any researcher from a public website (Taillard 
[16], e.g. Figure 12). 

B. Benchmark tests 

Early on, research of scheduling problems started a 
competition on the "best schedule" of a specific problem. For 
that reason some researchers designed (calculated) very hard 
to solve scheduling problems as so called "benchmark in-
stances" [9]. Some modern benchmark instances are distrib-
uted by Taillard [16] and called JSP-15-15, JSP-20-15 and 
JSP-50-20. The name of the benchmark is derived from 
scheduling a problem; in the case of JSP-15-15 it stands for 
15 jobs on 15 machines and so on (Figure 11). Taillard [16] 
also published the list of best results for each scheduling 
problem instance, allowing our own results to be compared 
with those of other researchers. 

We used three benchmark instances to model Microsoft 
Project 2003 files as input for REIMOS and started a GA run 
with the parameter values mentioned above (3.8, Figure 11 
& 12). Our algorithm for benchmarking was modified to 
write a so-called "debugging output", so we know specific 
values for the GA at every step. For example, these values 
are: number of iterations, best calculated schedule and so on. 
We compared the best schedule found thus far with the best 
known schedule of Taillard [16] and calculated a quality 
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level, which is the percentage reached of so far “best” known 
solution by Taillard [16]. This is shown in Figure 12 for JSP-
15-15. 

 
Figure 11.  Benchmark instance JSP-15-15 in Microsoft Project 2003. 

For all benchmark instances we attained a quality level 
around 95 % of the best known solution calculated over 1000 
generations GA runtime. On a so-called standard PC suitable 
for the use of Microsoft Office, one calculation run around 
10 to 20 minutes, which were our time goal for planning a 
schedule. We could have gone even further and let it run for 
hours or days, but the effect would not bring a realistic 
benefit. The problem with the best known solution by 
Taillard [16] is that we did not know its runtime, implemen-
tation of algorithm, computer etc. So it was hard to say "how 
good was best" from an economical point of view. 

 
Figure 12.  Results of benchmark instance JSP-15-15 with REIMOS. 

V. CONCLUSION AND OUTLOOK 

A computer algorithm being based on the evolution of 
living beings may be surprising, but the extensiveness with 
which this approach is applied in so many areas is even more 
surprising. Genetic algorithms have already proven their 
efficiency in many application areas, commercial, educa-
tional and scientific. Their usefulness in solving various 
kinds of problems have made them a preferable choice com-
pared to traditional, mainly heuristic approaches.  

The adaptation of a GA to schedule jobs in manufactur-
ing shops with time, resource and precedence constraints has 
been demonstrated here [15]. The simplicity of the methods 
used supports the assumption that GA can provide a highly 
flexible and user-friendly solution to the JSP. The use of 
standard software and an implemented "add-in" for 
Microsoft Project 2003 to realize the GA has shown that this 
approach can be used for solving real industrial scheduling 
problems [15]. 

VI. REFERENCES 

[1] Bagchi, Tapan P., 1999. Multiobjective Scheduling by 
Genetic Algorithms. Boston, Dordrecht, London: Kluwer 
Academic Publishers. 

[2] Bean, James C., 1994. Genetic Algorithms and Random Keys 
for Sequencing and Optimizations. ORSA Journal of 
Computing. 6 (2), 154-160. 

[3] Brucker, Peter, 2004. Scheduling Algorithms. Berlin, 
Heidelberg, New York et al.: Springer Verlag. 

[4] Cherkassky, B. V., Goldberg, A. V., Radzik, T., 1993. 
Shortest Paths Algorithms: Theory and Experimental 
Evaluation. Technical Report 93-1480, Computer Science 
Department, Stanford University. 

[5] Conway, Richard W., Maxwell, William L., Miller, Louis W., 
2003. Theory of Scheduling. Mineola (NY): Dover 
Publications. 

[6] Darwin, Charles, 1859. On the Origin of Species by Means of 
Natural Selection. London (UK): John Murry. 

[7] Davis, Lawrence, 1996. Handbook of Genetic Algorithms. 
Florence (KY): International Thomson Computer Press. 

[8] Domschke, Wolfgang, Scholl, Armin, Voß, Stefan, 1997. 
Produktionsplanung. Berlin, Heidelberg, New York et al.: 
Springer Verlag. 

[9] Fisher, Howard, Thompson, Gerald L., 1963. Probabilistic 
Learning Combinations of Local Job-Shop Scheduling Rules. 
In: Muth, John F.; Thompson, Gerald L., (Eds.). Industrial 
Scheduling. Englewood Cliffs (NJ): Prentice-Hall, 225-251. 

[10] Gallo, Giorgio, Pallottino, Stefano, 1982. A new Algorithm to 
find the Shortest Paths between all Pairs of Nodes. Discrete 
Applied Mathematics. Amsterdam, 3 (4), 23-25. 

[11] Goldberg, David E., 1989. Genetic Algorithms in Search, 
Optimization and Machine Learning. München: Addison 
Wesley. 

[12] Graham, Ronald L., Lawler, Eugene L., Lenstra, Jan Karel et 
al., 1979. Optimization and approximation in deterministic 
sequencing and scheduling. Annals of Discrete Mathematics, 
16 (5), 287-326. 

[13] Haupt, R. L., 2000. Optimum population size and mutation 
rate for a simple real genetic algorithm that optimizes array 
factors. IEEE Antennas and Propagation Society International 
Symposium, 2, 1034-1037. 

[14] Roy, Bernard, Sussmann, B., 1964. Les problèmes 
d'ordonnancement avec contraintes disjonctive. Montrouge 
(F): SEMA Groupe. 

[15] Steininger, Peter, 2007. Eine Methode zur 
Reihenfolgeplanung bei Mehrprodukt-Fertigungssystemen. 
Dissertation, Universität Karlsruhe. Aachen (D): Shaker 
Verlag. 

[16] Taillard, Éric D., 2006. Scheduling instances. 
http://ina2.eivd.ch/Collaborateurs/etd/ 
problemes.dir/ordonnancement.dir/ordonnancement.html. 

99Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences


