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Abstract— In the application field of production, scheduling 
with dispatching rules is facing the problem that no rule 
performs globally better than any other. Therefore, machine 
learning techniques can be used to calculate estimates of rule 
performances and select the best rule for each system state. A 
number of estimates are of poor quality and lead to a wrong 
selection of rules. Motivated by this problem, to further 
stabilize the selection approach a general approach, to 
automatically detect ‘faulty’ estimates from regression models 
is introduced and analyzed in this paper. Therefore, different 
models are learned and if their estimates differ strongly, it is 
likely that at least one model delivers poor estimates. 
Additionally, a difference-threshold for our example data is 
defined. As a machine learning technique, we use Gaussian 
process regression with different covariance functions 
(kernels). The results have shown that our automatic detection 
works in most cases and poorly tuned models can be detected. 

Keywords-Gaussian processes; dispatching rules; machine 
learning; scheduling; multiple classifier techniques. 

I.  INTRODUCTION 
Alpaydin described machine learning in the following way: 
“The goal of machine learning is to program computers to 
use example data or experience to solve a given problem” 
[8]. In regression, this means that the given data is analyzed 
and used to calculate a regression function, which can be 
used get estimates for unknown data points. In Fig. 1, an 
example is depicted, where the regression function gives an 
estimate for point c.  
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Figure 1: An example of regression function 

Our general motivation is the optimization of a 
production system, e.g., reducing tardiness of jobs. 
Decentralized scheduling with dispatching rules is applied 
in many fields of logistics and production, which are 
characterized by high complexity and dynamics. Instead of 
calculating a global plan (a schedule for all jobs and 
machines), dispatching rules work in an autonomous, 
decentralized way. Dispatching rules, which are a special 
kind of priority rules, assign a job to a machine. Each time, 
the machine has finished a job and more jobs are waiting, 
the next job to be processed is selected by calculating a 
priority for each of the waiting jobs. This priority can be 
based on attributes of the job, the machines or the system. 
The job with the highest priority is chosen to be processed 
next. Dispatching rules have been developed and analyzed 
in the scientific literature for many years; see e.g., [1], [2] 
and [3]. The most well know rules are Shortest Processing 
Time first (SPT), Earliest Due Date (EDD) and First in 
System First Out (FSFO). Many dispatching rules perform 
well on different scenarios, but no rule has been found, 
which outperforms other rules across various objectives. For 
this reason, approaches to switch between rules depending 
on the current system conditions have been proposed. Most 
of these approaches use learning techniques (e.g., neural 
networks) to estimate the performance of each dispatching 
rule and select the best [4]. 

To calculate the performance of rules, we perform 
simulation runs of the production system with several 
dispatching rules and different system settings, e.g. different 
utilization levels. Since lots of possible variants exist and 
simulation runs are time consuming, we want to perform as 
few simulation runs as possible and use machine learning to 
estimate performances (e.g., tardiness) of not explicitly 
simulated settings. The results of simulation running of a 
production system are the learning data for models we learn 
with Gaussian Process Regression. Based on these models, 
the best dispatching rule for the current scenario is selected 
[5]. This procedure avoids costly and unnecessary 
simulation runs. It is practically not possible to run 
preliminary simulation runs for all parameter combinations.  

 
In most cases, this approach works successfully, but in 

some cases the learning fails and results in improper 
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regression curves. This leads to a wrong selection of 
dispatching rules and thus to a poor performance of the 
production system. Our goal is to automatically detect, if the 
learned model might be ‘faulty’. In this case, the learning 
data is supplemented using additional simulation runs. 

In this paper, we concentrate on the problem of improper 
regression curves and their automatic detection. This is a 
general problem, which not only occurs in dispatching rule 
selection. 

In this study, we use synthetic data instead of simulation 
runs. On the one hand these simulation runs are time 
consuming and on the other hand we need many different 
functions to test our error recognition. Therefore, we are 
using synthetic functions, which are similar to our 
simulation runs and concentrate on the error detection. 

Gaussian processes (GP) is one promising machine 
learning technique [5]. --> These techniques have been 
introduced in 1996 and were promoted in the machine 
learning community by Williams et al. [6]. Analyses reveal 
their good prediction performance in comparison with other 
techniques [7]. As a further advantage, their formalism 
allows providing a measure of prediction quality with each 
predicted value in a natural way. Additionally, they are – 
their mathematical background aside – relatively easy to 
handle. 

The obvious problem with machine learning is that 
learned models can only estimate values. Sometimes, their 
estimates differ strongly from the original value. These 
cases lead to wrong decisions. To provide more stability and 
to automatically detect wrong estimates, we suggest 
combining similar models. If one model strongly differs 
from the comparison data, further learning steps, such as 
adding more data, are necessary. 

 This paper is organized as follows: in Section 2, we 
introduce Gaussian processes and general problems with 
machine learning techniques. Section 3 comprises our 
approach and the settings of the performed experiments 
followed by the results in Section 4. The paper concludes 
with a short summary and provides directions towards 
future research. 

II. PROBLEM DESCRIPTION AND STATE OF THE ART 
Regression models are used to provide estimates of 

values, which are not exactly known, because it is too costly 
to calculate them or just not possible. In our application 
field, we experienced that a number of tuned models 
provided poor estimates, which is a general problem in 
regression. Therefore, in this paper, we determine how it is 
possible to automatically detect such bad models.  

A. Gaussian Processes  
1) Introduction 

O'Hagan [9] represents an early reference from the 
statistics community for the use of a GP as a prior over 
functions, an idea which was only introduced to the machine 
learning community by Williams et al. [6].  

We have a simulation model implicitly implementing a 
(noisy) mapping between a vector of state variable (in our 
case containing, e.g., utilization) and the objective function 
(mean tardiness) ( )y f x= + ε . The learning consists of 
finding a good approximation f*(x) of f(x) to make 
predictions at new points x. 

To tune such a model using GP requires some learning 
data as well as a so-called covariance function. This 
covariance function, sometimes called kernel, specifies the 
covariance between pairs of random variables and 
influences the possible form of the learned function f*. 

Since we want to check and compare the tuned models, 
we use three different kernels, which are well suited for our 
application. These are the squared exponential (SE) 
covariance function (1), which is a common choice in 
Gaussian Process Regression. Additionally, we use 2 
functions of the Matérn class (2), with parameter d=3 and 
d=5 (see [6], chapter 4), which are a good choice in many 
engineering applications. 

  

( ) ( )2 2
2

1, exp ²
2

 = − − + 
 

y p q f p q n pqk x x x x
l

σ σ δ
      (1) 

 

( ) ( )( ) ( ) ( )2cov , , expp q p q f
df x f x k x x f r d r
l

σ
 

= = −  
   (2) 

with  f(t)=1+t for d=3 
   f(t)=1+t+t²/3 for d=5. 
 

The formulas further include the so-called 
hyperparameters. These parameters of a covariance function 
can be used to fine-tune the GP-model. The squared 
exponential covariance function used in our experiments has 
three hyperparameters. There is the length-scale l, the signal 
variance 2

fσ and the noise variance 2
nσ . The Matérn functions 

have the signal variance 2
fσ and factor l as well. 

Additionally, since hyperparameters can be interpreted as 
length-scale parameters in the case of the squared 
exponential covariance function, further optimization is 
possible. Rasmussen and Williams [10] describe the 
hyperparameters informally like this: “how far do you need 
to move (along a particular axis) in input space for the 
function values to become uncorrelated”. Thus, the squared 
exponential covariance function implements an automatic 
relevance determination (ARD) [11], since the inverse of the 
length-scale determines how relevant an input is. A very 
large length-scale value means that the covariance will 
become almost independent of that input. ARD has been 
used successfully for removing irrelevant input by several 
authors, e.g., Williams et al. [6]. 

Gaussian processes provide a quality estimate of their 
predicted value, exemplarily denoted by the shaded area in 
Fig. 2. Fifteen noisy training points are given and since 

67Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences



there is noise, the standard deviation close to the training 
points is small, but not exactly zero. In between two points 
as well as at the beginning and the end, the quality of the 
estimates decreases.  
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Figure 2.  Example of a  

Gaussian process regression function with noisy training points observed. 
The mean prediction is shown as a black line and the shaded area denotes 
twice the standard deviation. The full underlying original function is also 

shown. 

B. Application and Example 
Learning with Gaussian processes is done by selecting a 

covariance function and setting its free hyperparameters. To 
learn or optimize the hyperparameters, the marginal 
likelihood should be maximized [10]. Further, the setting of 
the hyperparameters aims to a minimization of the 
generalization error, which denotes the average error on 
unseen test examples. This is done with cross-validation by 
splitting the training data in learning and test data. An 
optimization of the training error does not take place, this 
may lead to an over-fitting of the data (see below). 

 

C. Machine learning – model quality 
A typical task in data mining is learning a model that 

bases on available data. These models can be regression 
models or classifiers. The problem evaluating such a model 
is that it may have an adequate prediction capability, but 
might fail to predict future unseen data [13]. This problem is 
called overfitting, because the model fits well on the 
training data, but the general quality might be poor. To 
estimate the generalization performance in this context, a 
procedure called cross-validation is recommended. The idea 
of cross-validation originates in the 1930s and has been 
further developed by Mosteller and Wallace and others in 
the 1960s [12].  

 
 

1) Cross-Validation 
Cross-Validation is a statistical method for the evaluation of 
learning algorithms by dividing data into two parts. One is 
used to learn a model, the other used to validate it. The basic 
form of cross-validation is the k-fold cross-validation. In k-
fold cross-validation, the data is first partitioned into k 
equally sized folds. Subsequently, k iterations of training 
and validation are performed. Within each iteration, a 
different fold of the data is held-out for validation, while the 
remaining k-1 folds are used for learning [13]. 

A special case of k-fold cross-validation is ‘leave-one-
out’ cross-validation. In this case, k is set to the number of 
instances in the data. This means, that during each iteration, 
all data points are used for learning except one, which is 
used for testing. Leave-one-out cross-validation is used 
especially, when the available data are very rare.  

2) Bootstrapping 
Another method for assigning measures of accuracy to 

sample estimates is bootstrapping, which was introduced by 
Efron and Tibshirani [16]. Bootstrapping is a method that 
uses resampling to create sets of data derived from one 
original data set. The bootstrap process can be described in 
the following steps: b bootstrap samples are generated from 
the original data set. Each of these samples has n elements, 
which were generated by sampling with replacement n 
times. By calculating the value of the estimator of the 
replicates the bootstrap replicates can be obtained. The 
variance of the estimates can be determined by computing 
the variance of the estimates for the samples. The 
assumptions gained from bootstrapping are similar to those 
gained from cross-validation, i.e., stability of the algorithm 
on the dataset, which should closely approximate the real 
world [14]. More details and a comparison of cross-
validation and bootstrapping was conducted by Kohavi [14]. 

3) Problem description 
In Fig. 3, two different kernel functions are used to learn 

a model with 15 training points. Cross-validation is used to 
optimize the hyperparameters. The learned function 2 
provides estimates close to the original function. Learned 
function 1 is not that close and has the form of a linear 
average function. Errors or problems like this occur 
regularly and deteriorate the estimates and the decisions 
based on them.  

Cross-validation and bootstrapping are good accuracy 
estimation methods and are applicable for parameter setting 
or performance estimation. Still, it is hard to detect with 
these methods, if the learning model has obviously failed, 
like function 1 in Fig. 2 did. These cases are responsible for 
a high amount of the total error of the learning model. As a 
solution for this problem, this paper presents the approach 
of combining different models for automatic error 
recognition. 
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Figure 3: An example for two learned regression curves, where the learned 
function 1 one provided bad estimate and learned function 2 provides good 

estimates close to the original function 
 

III. APPROACH AND EXPERIMENTS 
The presented approach aims to stabilize the learning 

process by detecting ‘faulty’ regression curves 
automatically. Therefore, we tune different models with 
different kernels, e.g, covariance functions. If there are great 
differences between these models, it is obvious, that at least 
one model does not fit to the learning data. In these cases, 
more learning data can help to improve the models. 

Generally, adding more learning data can also reduce 
errors. But this contradicts the objective of reducing costly 
simulation runs by using machine learning.   

A. Experimental setup 
For our experiments we use the framework provided by 

Rasmussen and Nickisch [10], [15]. Three covariance 
functions (squared exponential and Matérn 3 & 5) are 
implemented as learning kernels. The learning data is 
synthetically generated by a neural network based 
covariance function in combination with a periodic 
component (see framework documentation [15], covariance 
functions ‘NNone’ and ‘Periodic’). Hyperparameters are set 
to l=1; sf =1 (NNone) and l=1/12, p=1, sf =1 (Periodic) and 
noise variance = 1. This way, we get smooth functions, 
which are similar to the curves resulting from simulation 
runs with dispatching rules scheduling. But since we need a 
lot of functions to get a general result, we use these 
synthetic functions instead of simulations runs. 

B. Experiments 
For the analysis, 1000 random functions are generated as 

described before, with a discretization level of 101 on the x-
level. We have used 13 learning data points and the 
hyperparameters are optimized using cross-validation. 

When using Gaussian processes regression, a covariance 
function needs to be selected. The most common choice is 
the squared exponential, but depending on the application 
other covariance functions or their compositions might fit 
better to the application data. In this paper two different 
approaches are analyzed: First, one covariance function is 
set as the default learning kernel and others are used to 
check the results for errors.  

If no preferable covariance function is known in advance 
a more general approach is analyzed. In this case two or 
more covariance function are used to learn a model and each 
of their predictions are used to calculate a mean resulting 
prediction.  

1) One main covariance function is selected 
In the first set of experiments the squared exponential 

covariance function is set as the main learning model. To 
detect the cases, the considered model is of less quality, the 
Matérn functions with parameter d=5 (d=3 leads to very 
similar results) comes into operation. The learning error is 
determined by calculating the difference between the 
squared exponential and the original function. The 
differences between Matérn and squared exponential are 
also calculated. If these values correlate, a threshold level 
for the difference between the squared exponential and the 
Matérn functions indicates a higher error in the learning 
model. 

2) Predictions based on multiple covariance functions 
In the second set of experiments the squared exponential 

is not set as the standard model. Instead, both models are 
used equally. That means, the learning error in these 
experiments is the difference between the original function 
and the mean prediction of both models. The difference 
between both models is also calculated. If these data 
correlates, errors in the examined models can be detected, 
without knowing, which model works better to the 
application data in advance.  

IV. RESULTS 
Fig. 4 depicts the results of the differences between two 

learning models (squared exponential to Matérn 5) and the 
error to the original function (squared exponential to 
original data). Some correlating high errors for both are 
highlighted. Fig. 6 does the same for (mean (squared 
exponential-Matérn 3) to original data).  

The first set of experiments show that the difference 
between the two models correlates to the error. There are 
many data pairs in Fig. 4 showing this for high values 
exemplarily. The higher the difference in the two models, 
the higher the error of the squared exponential learning 
model. Fig. 5 shows that there is a linear dependency 
between both values. Many data points are close to 0, which 
means, that most times the learning worked well and the 
difference between the models is small. This makes it easy 
to find different threshold levels to divide the functions into  
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Figure 4: 1000 synthetic functions learned by the squared exponential and 

the Matérn 5 function. The error between the original function and the 
squared exponential function are depict as well as the difference between 

squared exponential and Matérn.  
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Figure 5: Correlation between differences in the two learned models 

(squared exponential and Matérn 5) and the error between the squared 
exponential function and the original data 

 

TABLE I.  THRESHOLD AND RESULTS DISTRIBUTION 

threshold
number of functions 
above threshold in %

total error of functions 
above threshold in %

0.25 9.0 61.5
0.2 10.7 64.8
0.15 11.8 69.2
0.1 14.4 74.4

0.075 15.5 76.1
0.05 18.2 78.2
0.03 20.8 81.3
0.02 32.3 82.8  

 
 
 
 

 
Figure 6: 2000 synthetic functions learned by the squared exponential and 

the Matérn 3 function. The error between the original function and the mean 
of squared exponential function and Matérn 3 are depict as well as the 

difference between squared exponential and Matérn 3. 

 
Figure 7: Correlation between differences in the two learned models 

(squared exponential and Matérn 3) and the error between the squared 
exponential function and the original data 

 

TABLE II.  THRESHOLD AND RESULTS DISTRIBUTION 

threshold
number of functions 
above threshold

total error of functions 
above threshold in %

0.14 23.85 29.16
0.143 21.95 26.67
0.145 21.05 25.77
0.147 19.65 24.02
0.15 17.90 21.88
0.16 12.35 14.65  
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good and faulty learning models. Possible settings are 
depicted in table 1. A threshold level of 0.03 seems to be 
appropriate for this experimental setting. If the difference 
between squared exponential and Matérn 5 is higher than 
0.03, about 20% of the functions are detected, which are 
responsible for about 80% of the total error. By adding more 
data to the learning process of these recognized 20% of 
functions up to 80% of the total error can be reduced. 

The second set of experiments show similar results. 
There is also a linear dependency between the difference of 
the models and the total error of the learning model 
consisting of both covariance functions. That means, if the 
two learning models differ, the total error gets higher. Fig. 7 
shows that in most cases at least one model differs from the 
original values, because there are only a few functions close 
to [0, 0]. This is different to the results depict in Fig. 5. The 
effect can be seen in table 2. The 19% of functions, which 
are over the threshold level of 0.147 are responsible for 
about 24% of the total error.  

The results demonstrate that there is a correlation 
between the difference in the learning models and the total 
error. This is a promising result, however, the approach to 
work with the mean value of two learning models is only 
good for a small improvement. One possible reason for this 
can be the minimized number of learning data. At least one 
model does not provide good estimates in most cases, which 
reduces quality of the mean value estimates of both. 

Even if the approach brings only a small improvement in 
our experiments here, the approach can be very useful in the 
real-life application, because there are regularly a few 
models, which are extremely wrong, e.g., some regression 
curves go up to infinity. If these cases can be found 
automatically, this stabilizes the general learning approach a 
lot. 

V. CONCLUSION AND FURTHER STEPS 
The presented experiments show that automatic error 

detection, i.e., faulty tuned models, in Gaussian processes 
with different kernels is a promising approach. The 
experiments have shown, that if estimates from different 
kernels differ strongly, the difference to the original function 
is high.  

 The benefit from the approach is, that if less regression 
models are ‘faulty’, the ‘learning’ is more stable and less 
unfavorable decisions are made. The approach to use 
different learning kernels, which all seem appropriate for this 
application, is promising. Since deviations in the models are 
a clear indication that at least one model provides poor 
estimates. 

Next steps are to further improve the approach where the 
average estimates of two learning models are used. Some 
preliminary tests to find the most appropriate kernel and use 
this kernel mainly, can be a promising approach.  

Nevertheless, the presented approach brings more 
stabilization to the learning process and further steps will be 
to implement it in the application of production scheduling in 
the future. 
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