
Automatic Error Detection in Gaussian Processes Regression Modeling for
Production Scheduling

Bernd Scholz-Reiter, Jens Heger

BIBA - Bremer Institut für Produktion und Logistik GmbH
at the University of Bremen

Hochschulring 20, 28359 Bremen, Germany
e-mail: {bsr|heg}@biba.uni-bremen.de

Abstract— In the application field of production, scheduling
with dispatching rules is facing the problem that no rule
performs globally better than any other. Therefore, machine
learning techniques can be used to calculate estimates of rule
performances and select the best rule for each system state. A
number of estimates are of poor quality and lead to a wrong
selection of rules. Motivated by this problem, to further
stabilize the selection approach a general approach, to
automatically detect ‘faulty’ estimates from regression models
is introduced and analyzed in this paper. Therefore, different
models are learned and if their estimates differ strongly, it is
likely that at least one model delivers poor estimates.
Additionally, a difference-threshold for our example data is
defined. As a machine learning technique, we use Gaussian
process regression with different covariance functions
(kernels). The results have shown that our automatic detection
works in most cases and poorly tuned models can be detected.

Keywords-Gaussian processes; dispatching rules; machine
learning; scheduling; multiple classifier techniques.

I. INTRODUCTION
Alpaydin described machine learning in the following way:
“The goal of machine learning is to program computers to
use example data or experience to solve a given problem”
[8]. In regression, this means that the given data is analyzed
and used to calculate a regression function, which can be
used get estimates for unknown data points. In Fig. 1, an
example is depicted, where the regression function gives an
estimate for point c.

x

x
x

x
x

?

o
o
o

regression function

a b c d e f

estimate

e.
g.

, t
ar

di
ne

ss

e.g., utilization

Figure 1: An example of regression function

Our general motivation is the optimization of a
production system, e.g., reducing tardiness of jobs.
Decentralized scheduling with dispatching rules is applied
in many fields of logistics and production, which are
characterized by high complexity and dynamics. Instead of
calculating a global plan (a schedule for all jobs and
machines), dispatching rules work in an autonomous,
decentralized way. Dispatching rules, which are a special
kind of priority rules, assign a job to a machine. Each time,
the machine has finished a job and more jobs are waiting,
the next job to be processed is selected by calculating a
priority for each of the waiting jobs. This priority can be
based on attributes of the job, the machines or the system.
The job with the highest priority is chosen to be processed
next. Dispatching rules have been developed and analyzed
in the scientific literature for many years; see e.g., [1], [2]
and [3]. The most well know rules are Shortest Processing
Time first (SPT), Earliest Due Date (EDD) and First in
System First Out (FSFO). Many dispatching rules perform
well on different scenarios, but no rule has been found,
which outperforms other rules across various objectives. For
this reason, approaches to switch between rules depending
on the current system conditions have been proposed. Most
of these approaches use learning techniques (e.g., neural
networks) to estimate the performance of each dispatching
rule and select the best [4].

To calculate the performance of rules, we perform
simulation runs of the production system with several
dispatching rules and different system settings, e.g. different
utilization levels. Since lots of possible variants exist and
simulation runs are time consuming, we want to perform as
few simulation runs as possible and use machine learning to
estimate performances (e.g., tardiness) of not explicitly
simulated settings. The results of simulation running of a
production system are the learning data for models we learn
with Gaussian Process Regression. Based on these models,
the best dispatching rule for the current scenario is selected
[5]. This procedure avoids costly and unnecessary
simulation runs. It is practically not possible to run
preliminary simulation runs for all parameter combinations.

In most cases, this approach works successfully, but in

some cases the learning fails and results in improper

66Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

regression curves. This leads to a wrong selection of
dispatching rules and thus to a poor performance of the
production system. Our goal is to automatically detect, if the
learned model might be ‘faulty’. In this case, the learning
data is supplemented using additional simulation runs.

In this paper, we concentrate on the problem of improper
regression curves and their automatic detection. This is a
general problem, which not only occurs in dispatching rule
selection.

In this study, we use synthetic data instead of simulation
runs. On the one hand these simulation runs are time
consuming and on the other hand we need many different
functions to test our error recognition. Therefore, we are
using synthetic functions, which are similar to our
simulation runs and concentrate on the error detection.

Gaussian processes (GP) is one promising machine
learning technique [5]. --> These techniques have been
introduced in 1996 and were promoted in the machine
learning community by Williams et al. [6]. Analyses reveal
their good prediction performance in comparison with other
techniques [7]. As a further advantage, their formalism
allows providing a measure of prediction quality with each
predicted value in a natural way. Additionally, they are –
their mathematical background aside – relatively easy to
handle.

The obvious problem with machine learning is that
learned models can only estimate values. Sometimes, their
estimates differ strongly from the original value. These
cases lead to wrong decisions. To provide more stability and
to automatically detect wrong estimates, we suggest
combining similar models. If one model strongly differs
from the comparison data, further learning steps, such as
adding more data, are necessary.

 This paper is organized as follows: in Section 2, we
introduce Gaussian processes and general problems with
machine learning techniques. Section 3 comprises our
approach and the settings of the performed experiments
followed by the results in Section 4. The paper concludes
with a short summary and provides directions towards
future research.

II. PROBLEM DESCRIPTION AND STATE OF THE ART
Regression models are used to provide estimates of

values, which are not exactly known, because it is too costly
to calculate them or just not possible. In our application
field, we experienced that a number of tuned models
provided poor estimates, which is a general problem in
regression. Therefore, in this paper, we determine how it is
possible to automatically detect such bad models.

A. Gaussian Processes
1) Introduction

O'Hagan [9] represents an early reference from the
statistics community for the use of a GP as a prior over
functions, an idea which was only introduced to the machine
learning community by Williams et al. [6].

We have a simulation model implicitly implementing a
(noisy) mapping between a vector of state variable (in our
case containing, e.g., utilization) and the objective function
(mean tardiness) ()y f x= + ε . The learning consists of
finding a good approximation f*(x) of f(x) to make
predictions at new points x.

To tune such a model using GP requires some learning
data as well as a so-called covariance function. This
covariance function, sometimes called kernel, specifies the
covariance between pairs of random variables and
influences the possible form of the learned function f*.

Since we want to check and compare the tuned models,
we use three different kernels, which are well suited for our
application. These are the squared exponential (SE)
covariance function (1), which is a common choice in
Gaussian Process Regression. Additionally, we use 2
functions of the Matérn class (2), with parameter d=3 and
d=5 (see [6], chapter 4), which are a good choice in many
engineering applications.

() ()2 2
2

1, exp ²
2

 = − − + 
 

y p q f p q n pqk x x x x
l

σ σ δ
 (1)

() ()() () ()2cov , , expp q p q f
df x f x k x x f r d r
l

σ
 

= = −  
  (2)

with f(t)=1+t for d=3
 f(t)=1+t+t²/3 for d=5.

The formulas further include the so-called
hyperparameters. These parameters of a covariance function
can be used to fine-tune the GP-model. The squared
exponential covariance function used in our experiments has
three hyperparameters. There is the length-scale l, the signal
variance 2

fσ and the noise variance 2
nσ . The Matérn functions

have the signal variance 2
fσ and factor l as well.

Additionally, since hyperparameters can be interpreted as
length-scale parameters in the case of the squared
exponential covariance function, further optimization is
possible. Rasmussen and Williams [10] describe the
hyperparameters informally like this: “how far do you need
to move (along a particular axis) in input space for the
function values to become uncorrelated”. Thus, the squared
exponential covariance function implements an automatic
relevance determination (ARD) [11], since the inverse of the
length-scale determines how relevant an input is. A very
large length-scale value means that the covariance will
become almost independent of that input. ARD has been
used successfully for removing irrelevant input by several
authors, e.g., Williams et al. [6].

Gaussian processes provide a quality estimate of their
predicted value, exemplarily denoted by the shaded area in
Fig. 2. Fifteen noisy training points are given and since

67Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

there is noise, the standard deviation close to the training
points is small, but not exactly zero. In between two points
as well as at the beginning and the end, the quality of the
estimates decreases.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

0

1

2

3

4

5

input, x

in
pu

t,
y

Standard Deviation
learned function
training points
original function

Figure 2. Example of a

Gaussian process regression function with noisy training points observed.
The mean prediction is shown as a black line and the shaded area denotes
twice the standard deviation. The full underlying original function is also

shown.

B. Application and Example
Learning with Gaussian processes is done by selecting a

covariance function and setting its free hyperparameters. To
learn or optimize the hyperparameters, the marginal
likelihood should be maximized [10]. Further, the setting of
the hyperparameters aims to a minimization of the
generalization error, which denotes the average error on
unseen test examples. This is done with cross-validation by
splitting the training data in learning and test data. An
optimization of the training error does not take place, this
may lead to an over-fitting of the data (see below).

C. Machine learning – model quality
A typical task in data mining is learning a model that

bases on available data. These models can be regression
models or classifiers. The problem evaluating such a model
is that it may have an adequate prediction capability, but
might fail to predict future unseen data [13]. This problem is
called overfitting, because the model fits well on the
training data, but the general quality might be poor. To
estimate the generalization performance in this context, a
procedure called cross-validation is recommended. The idea
of cross-validation originates in the 1930s and has been
further developed by Mosteller and Wallace and others in
the 1960s [12].

1) Cross-Validation
Cross-Validation is a statistical method for the evaluation of
learning algorithms by dividing data into two parts. One is
used to learn a model, the other used to validate it. The basic
form of cross-validation is the k-fold cross-validation. In k-
fold cross-validation, the data is first partitioned into k
equally sized folds. Subsequently, k iterations of training
and validation are performed. Within each iteration, a
different fold of the data is held-out for validation, while the
remaining k-1 folds are used for learning [13].

A special case of k-fold cross-validation is ‘leave-one-
out’ cross-validation. In this case, k is set to the number of
instances in the data. This means, that during each iteration,
all data points are used for learning except one, which is
used for testing. Leave-one-out cross-validation is used
especially, when the available data are very rare.

2) Bootstrapping
Another method for assigning measures of accuracy to

sample estimates is bootstrapping, which was introduced by
Efron and Tibshirani [16]. Bootstrapping is a method that
uses resampling to create sets of data derived from one
original data set. The bootstrap process can be described in
the following steps: b bootstrap samples are generated from
the original data set. Each of these samples has n elements,
which were generated by sampling with replacement n
times. By calculating the value of the estimator of the
replicates the bootstrap replicates can be obtained. The
variance of the estimates can be determined by computing
the variance of the estimates for the samples. The
assumptions gained from bootstrapping are similar to those
gained from cross-validation, i.e., stability of the algorithm
on the dataset, which should closely approximate the real
world [14]. More details and a comparison of cross-
validation and bootstrapping was conducted by Kohavi [14].

3) Problem description
In Fig. 3, two different kernel functions are used to learn

a model with 15 training points. Cross-validation is used to
optimize the hyperparameters. The learned function 2
provides estimates close to the original function. Learned
function 1 is not that close and has the form of a linear
average function. Errors or problems like this occur
regularly and deteriorate the estimates and the decisions
based on them.

Cross-validation and bootstrapping are good accuracy
estimation methods and are applicable for parameter setting
or performance estimation. Still, it is hard to detect with
these methods, if the learning model has obviously failed,
like function 1 in Fig. 2 did. These cases are responsible for
a high amount of the total error of the learning model. As a
solution for this problem, this paper presents the approach
of combining different models for automatic error
recognition.

68Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

0

1

2

3

4

5

input, x

in
pu

t,
y

Standard Deviation
learned function 1
training points
original function
learned function 2

Figure 3: An example for two learned regression curves, where the learned
function 1 one provided bad estimate and learned function 2 provides good

estimates close to the original function

III. APPROACH AND EXPERIMENTS
The presented approach aims to stabilize the learning

process by detecting ‘faulty’ regression curves
automatically. Therefore, we tune different models with
different kernels, e.g, covariance functions. If there are great
differences between these models, it is obvious, that at least
one model does not fit to the learning data. In these cases,
more learning data can help to improve the models.

Generally, adding more learning data can also reduce
errors. But this contradicts the objective of reducing costly
simulation runs by using machine learning.

A. Experimental setup
For our experiments we use the framework provided by

Rasmussen and Nickisch [10], [15]. Three covariance
functions (squared exponential and Matérn 3 & 5) are
implemented as learning kernels. The learning data is
synthetically generated by a neural network based
covariance function in combination with a periodic
component (see framework documentation [15], covariance
functions ‘NNone’ and ‘Periodic’). Hyperparameters are set
to l=1; sf =1 (NNone) and l=1/12, p=1, sf =1 (Periodic) and
noise variance = 1. This way, we get smooth functions,
which are similar to the curves resulting from simulation
runs with dispatching rules scheduling. But since we need a
lot of functions to get a general result, we use these
synthetic functions instead of simulations runs.

B. Experiments
For the analysis, 1000 random functions are generated as

described before, with a discretization level of 101 on the x-
level. We have used 13 learning data points and the
hyperparameters are optimized using cross-validation.

When using Gaussian processes regression, a covariance
function needs to be selected. The most common choice is
the squared exponential, but depending on the application
other covariance functions or their compositions might fit
better to the application data. In this paper two different
approaches are analyzed: First, one covariance function is
set as the default learning kernel and others are used to
check the results for errors.

If no preferable covariance function is known in advance
a more general approach is analyzed. In this case two or
more covariance function are used to learn a model and each
of their predictions are used to calculate a mean resulting
prediction.

1) One main covariance function is selected
In the first set of experiments the squared exponential

covariance function is set as the main learning model. To
detect the cases, the considered model is of less quality, the
Matérn functions with parameter d=5 (d=3 leads to very
similar results) comes into operation. The learning error is
determined by calculating the difference between the
squared exponential and the original function. The
differences between Matérn and squared exponential are
also calculated. If these values correlate, a threshold level
for the difference between the squared exponential and the
Matérn functions indicates a higher error in the learning
model.

2) Predictions based on multiple covariance functions
In the second set of experiments the squared exponential

is not set as the standard model. Instead, both models are
used equally. That means, the learning error in these
experiments is the difference between the original function
and the mean prediction of both models. The difference
between both models is also calculated. If these data
correlates, errors in the examined models can be detected,
without knowing, which model works better to the
application data in advance.

IV. RESULTS
Fig. 4 depicts the results of the differences between two

learning models (squared exponential to Matérn 5) and the
error to the original function (squared exponential to
original data). Some correlating high errors for both are
highlighted. Fig. 6 does the same for (mean (squared
exponential-Matérn 3) to original data).

The first set of experiments show that the difference
between the two models correlates to the error. There are
many data pairs in Fig. 4 showing this for high values
exemplarily. The higher the difference in the two models,
the higher the error of the squared exponential learning
model. Fig. 5 shows that there is a linear dependency
between both values. Many data points are close to 0, which
means, that most times the learning worked well and the
difference between the models is small. This makes it easy
to find different threshold levels to divide the functions into

69Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
g p p

Difference Matern 5 and SEiso

E
rro

r S
E

is
o

DiffSEisoToMatern3
ErrorSEiso

Figure 4: 1000 synthetic functions learned by the squared exponential and

the Matérn 5 function. The error between the original function and the
squared exponential function are depict as well as the difference between

squared exponential and Matérn.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
g p , p

Difference Matern 5 and SEiso

E
rro

r S
E

is
o

ErrorSEiso=F(DiffSEisoToMatern5)

Figure 5: Correlation between differences in the two learned models

(squared exponential and Matérn 5) and the error between the squared
exponential function and the original data

TABLE I. THRESHOLD AND RESULTS DISTRIBUTION

threshold
number of functions
above threshold in %

total error of functions
above threshold in %

0.25 9.0 61.5
0.2 10.7 64.8
0.15 11.8 69.2
0.1 14.4 74.4

0.075 15.5 76.1
0.05 18.2 78.2
0.03 20.8 81.3
0.02 32.3 82.8

Figure 6: 2000 synthetic functions learned by the squared exponential and

the Matérn 3 function. The error between the original function and the mean
of squared exponential function and Matérn 3 are depict as well as the

difference between squared exponential and Matérn 3.

Figure 7: Correlation between differences in the two learned models

(squared exponential and Matérn 3) and the error between the squared
exponential function and the original data

TABLE II. THRESHOLD AND RESULTS DISTRIBUTION

threshold
number of functions
above threshold

total error of functions
above threshold in %

0.14 23.85 29.16
0.143 21.95 26.67
0.145 21.05 25.77
0.147 19.65 24.02
0.15 17.90 21.88
0.16 12.35 14.65

70Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

good and faulty learning models. Possible settings are
depicted in table 1. A threshold level of 0.03 seems to be
appropriate for this experimental setting. If the difference
between squared exponential and Matérn 5 is higher than
0.03, about 20% of the functions are detected, which are
responsible for about 80% of the total error. By adding more
data to the learning process of these recognized 20% of
functions up to 80% of the total error can be reduced.

The second set of experiments show similar results.
There is also a linear dependency between the difference of
the models and the total error of the learning model
consisting of both covariance functions. That means, if the
two learning models differ, the total error gets higher. Fig. 7
shows that in most cases at least one model differs from the
original values, because there are only a few functions close
to [0, 0]. This is different to the results depict in Fig. 5. The
effect can be seen in table 2. The 19% of functions, which
are over the threshold level of 0.147 are responsible for
about 24% of the total error.

The results demonstrate that there is a correlation
between the difference in the learning models and the total
error. This is a promising result, however, the approach to
work with the mean value of two learning models is only
good for a small improvement. One possible reason for this
can be the minimized number of learning data. At least one
model does not provide good estimates in most cases, which
reduces quality of the mean value estimates of both.

Even if the approach brings only a small improvement in
our experiments here, the approach can be very useful in the
real-life application, because there are regularly a few
models, which are extremely wrong, e.g., some regression
curves go up to infinity. If these cases can be found
automatically, this stabilizes the general learning approach a
lot.

V. CONCLUSION AND FURTHER STEPS
The presented experiments show that automatic error

detection, i.e., faulty tuned models, in Gaussian processes
with different kernels is a promising approach. The
experiments have shown, that if estimates from different
kernels differ strongly, the difference to the original function
is high.

 The benefit from the approach is, that if less regression
models are ‘faulty’, the ‘learning’ is more stable and less
unfavorable decisions are made. The approach to use
different learning kernels, which all seem appropriate for this
application, is promising. Since deviations in the models are
a clear indication that at least one model provides poor
estimates.

Next steps are to further improve the approach where the
average estimates of two learning models are used. Some
preliminary tests to find the most appropriate kernel and use
this kernel mainly, can be a promising approach.

Nevertheless, the presented approach brings more
stabilization to the learning process and further steps will be
to implement it in the application of production scheduling in
the future.

ACKNOWLEDGEMENTS
The authors are grateful to the generous support by the

German Research Foundation (DFG), grant SCHO 540/17-1.

REFERENCES
[1] J. H. Blackstone, D. T. Phillips, and G. L. Hogg, “A state-

of-the-art survey of dispatching rules for manufacturing job shop
operations,” International Journal of Production Research, vol. 20,
no. 1, pp. 27–45, 1982.

[2] R. Haupt, “A survey of priority rule-based scheduling,”
OR Spektrum, vol. 11, no. 1, pp. 3–16, 1989.

[3] S. S. Panwalkar and W. Iskander, “A survey of
scheduling rules,” Operations Research, vol. 25, no. 1, pp. 45–61,
1977.

[4] W. Mouelhi-Chibani and H. Pierreval, “Training a neural
network to select dispatching rules in real time,” Computers &
Industrial Engineering, vol. 58, no. 2, pp. 249 – 256, 2010,
scheduling in Healthcare and Industrial Systems.

[5] B. Scholz-Reiter, J. Heger, and T. Hildebrandt, “Gaussian
processes for dispatching rule selection in production scheduling,”
Procceeding of the International Workshop on Data Mining
Application in Government and Industry 2010 (DMAGI10) As Part
of The 10th IEEE International Conference on Data Mining., 2010.

[6] C. K. I. Williams and C. E. Rasmussen, “Gaussian
processes for regression,” Advances in Neural Information
Processing Systems, vol. 8, pp. 514–520, 1996.

[7] C. E. Rasmussen, “Evaluation of gaussian processes and
other methods for non-linear regression,” PhD thesis, Department
of Computer Science, University of Toronto, 1996.

[8] E. Alpaydin, Introduction to Machine Learning (Adaptive
Computation and Machine Learning Series). The MIT Press, 2004,
vol. 14, no. 1.

[9] A. O’Hagan, “Curve fitting and optimal design,” Journal
of the Royal Statistical Society, vol. 40, no. 1, pp. 1–42, 1978.

[10] C. E. Rasmussen and C. K. I. Williams, Gaussian
Processes for Machine Learning (Adaptive Computation and
Machine Learning). The MIT Press, December 2006.

[11] R. M. Neal, Bayesian Learning for Neural Networks
(Lecture Notes in Statistics), 1st ed. Springer, August 1996.

[12] F. Mosteller and D. L. Wallace, “Inference in an
authorship problem,” Journal of the American Statistical
Association, vol. 58, no. 302, pp. 275–309, 1963. [Online].
Available: http://www.jstor.org/stable/2283270

[13] P. Refaeilzadeh, L. Tang, and H. Liu. (2008) Cross-
validation, glossar, Arizona State University. last checked
07.07.2011. [Online]. Available: www.public.asu.edu/~ltang9/-
papers/ency-cross-validation.pdf

[14] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in International joint
conference on artificial Intelligence, 1995, pp. 1137–1143.

[15] C. E. Rasmussen and H. Nickisch. (2011) Gpml matlab
code version 3.1. last checked: 07.07.2011. [Online]. Available:
www.gaussianprocesses.org

[16] Efron, B. and Tibshirani, R.: An introduction to the
bootstrap, Chapman & Hall, 1993

71Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

	I. Introduction
	II. Problem description and state of the art
	A. Gaussian Processes
	1) Introduction

	B. Application and Example
	C. Machine learning – model quality
	1) Cross-Validation
	2) Bootstrapping
	3) Problem description

	III. Approach and Experiments
	A. Experimental setup
	B. Experiments
	1) One main covariance function is selected
	2) Predictions based on multiple covariance functions

	IV. Results
	V. Conclusion and further steps
	Acknowledgements
	References

