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Abstract—With the rapid advances in wireless devices and 
positioning technologies, tracking and clustering of moving 
objects has drawn increasing attention. Previous methods of 
clustering moving objects merge clusters by searching all the 
existing clusters, which have an obvious decline in efficiency as 
the number of clusters increases. This paper proposes a grid-
based approach to continuous clustering of moving objects. We 
first employ dynamic grid to narrow the searching area when 
merging clusters, and then develop an efficient split algorithm 
to handle the split of clusters, which avoids multiple splits of 
one cluster during a period of time. At last, a comprehensive 
experimental evaluation has been conducted to validate our 
approach, and the results indicate the efficiency and 
effectiveness of our algorithm, especially for large data set. 
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I.  INTRODUCTION 
Due to the growing popularity of wireless devices (e.g., 

PDAs, mobile phones, navigation devices) and the rapid 
advances in wireless communication and positioning 
technologies (e.g., GPS), tracking the behaviors and 
movements of individuals becomes increasingly available, 
which boosts various kinds of services exploiting knowledge 
of object movement. 

Clustering analysis aims to group similar data into the 
same group and different data into distinct groups, which 
provides a summary of data distribution patterns and 
discovers data correlations in dataset. Early clustering 
techniques mainly focused on analyzing static datasets [1], 
[2], [3]. Recently, clustering moving objects has attracted 
increasing attention [4], [5], [6], [7] which has various kinds 
of applications, including mobile computing, targeted sales, 
traffic jam prediction, weather forecast and animal migration 
analysis. 

As the positions of moving objects continuously change, 
treating moving objects as static ones and periodically 
clustering them with the methods for static datasets is a 
brute-force approach which does not consider the 
information of the movement. Some incremental clustering 
schemes have been proposed [4], [6], [7], and they mainly 
focus on dynamically maintaining a small set of moving 
micro-clusters (MMCs) [4]. The concept of MMC is a group 
of objects that are not only close to each other at current time, 
but also likely to move together for a while.  

The split and merge operations are central parts of the 
schemes for incremental clustering of moving objects. As 

has been observed in the literature, there are two kinds of 
methods to deal with the split of a MMC. One is to delete the 
extreme object [4] or the farthest object from the center of 
MMC [7]. The other is to divide the MMC into two MMCs 
[6]. Neither of them considers the situation that a MMC may 
continuously split during a period of time, and when this 
situation occurs, it will take a long time to handle the 
multiple splits of a MMC. Moreover, when checking 
whether a MMC can be merged with other MMCs, previous 
schemes search all the existing MMCs, which have an 
obvious decline in efficiency as the number of MMCs 
increasing.  

In this paper, we present a grid-based approach to 
continuous clustering of moving objects. First, we develop 
an efficient split algorithm to handle the split of a MMC, 
which avoids multiple splits of one MMC during a period of 
time. Then we employ hierarchical grids similar to that used 
in [8] in order to narrow the searching area during merge 
operation. The spatial area is divided into square grids, and 
each grid will be dynamically divided or combined 
according to the number of MMCs belonging to it.  

Our contributions can be summarized as follows: we 
develop an efficient split scheme which can avoid multiple 
splits of one MMC during a period of time. We employ 
hierarchical grids to narrow the searching area during merge 
operation. We present the algorithms of maintaining the 
dynamic grids and applying the dynamic grids to MMCs. 

II. RELATED WORK 
As one of the most important analysis techniques, 

clustering has been an active area of research in the field of 
data mining. A lot of clustering techniques have been 
proposed for static data sets [1], [2], [3], [8], [9], [10], [11]. 
They can be classified into the partitioning, hierarchical, 
density-based, grid-based and model-based method. The k-
means algorithm [1] is representative of partitioning method, 
which aims at dividing the objects into k clusters in order to 
minimize the metric relative to the centroids of the clusters. 
The Birch algorithm [2] is a comprehensive hierarchical 
method, which originally proposed the concept of micro-
clustering and the notion of clustering feature (CF) and CF 
tree. The STING algorithm [8] is a grid-based method, 
which divides the spatial area into rectancle cells and 
employs a hierarchical stucture. It has high efficency 
especially for large data set. To deal with the moving objects, 
our approach extends the grid in STING to a dynamic one, 
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which will be dynamically divided or combined according to 
the number of MMCs belonging to it. 

Recently, clustering of moving objects has drawn 
increasing attention. Har-Peled [12] aims to show that 
moving objects can be clustered once and the resulting 
clusters are competitive at any future time during the motion. 
Li et al. [4] first addressed clustering of moving objects by 
applying micro-clustering and dynamically maintaining 
bounding boxes of clusters. However, the bounding boxes of 
the cluster are likely to be exceeded frequently, which makes 
the number of maintenance events dominate the overall 
runtimes of the algorithms. 

Zhang and Lin [5] proposed a histogram technique based 
on the clustering paradigm. A histogram must be 
reconstructed if too many updates occur, and there are 
usually a large number of updates at each timestamp, which 
makes histogram maintenance lack of efficiency. 

Kalnis et al. [13] presented three algorithms to discover 
moving clusters from historical trajectories of moving 
objects. They treat a moving cluster as a sequence of spatial 
clusters that appear in consecutive snapshots of the object 
movements. Such moving clusters can be identified by 
comparing clusters at consecutive snapshots, the cost of 
which can be very high. 

Jensen et al. [6] proposed a scheme capable of 
incrementally clustering moving objects in two-dimensional 
Euclidean space, which extended the concepts of CF and CF 
tree in Birch and employed a notion of object dissimilarity 
considering object movement across a period of time. Their 
experiments show this scheme performs significantly faster 
than traditional methods which frequently rebuild clusters. 

Lai and Heuer [7] developed an approach dynamically 
maintaining a small set of MMCs, and they obtain global 
clusters by clustering these representative MMCs with 
traditional clustering algorithms for static data sets. Rosswog 
and Ghose [14] consider the situation that the moving objects 
intersect the space occupied by objects from another cluster 
and extend the distance measure to a function of the position 
history of the objects so as to improve the accuracy of 
traditional data clustering algorithms on spatio-temporal data 
sets. 

III. PRELIMINARIES 
In this section, we first introduce the model of MMC and 

some concepts about it, and then we describe the structure of 
the dynamic grid used in our approach and define some 
notions associated with it. 

A. Model of MMC 
In this paper, we consider moving objects in two-

dimensional (2D) Euclidean space, which can be easily 
extended to higher dimensions. We define the minimum 
update interval (minUI), which denotes that the velocity of 
all the moving objects can be treated as constant during this 
interval. We assume that each moving object can transmit its 
new position and velocity to the server at the beginning of 
each minUI. 

Each moving object can be represented as (oid, p, v, t), 
where oid is the unique ID of this object, p is the position of 

this object at time t and v is the velocity at time t. Both p and 
v are 2D vectors. During each minUI, the position of a object 
is a linear function of time and at time t1, it can be computed 
as p(t1) = p + v(t1 - t), where t1>t. 
Definition 1. The center of a MMC including N objects is of 
the form (P, V), where 

1
( ) /N

i iP p N
=

= ∑ and 

1
( /)N

i iV v N
=

= ∑ . P and V are position and velocity of the 
center respectively. 

A MMC can be represented as (cid, objn, objid, center, cf, 
t), where cid is the ID of this MMC, objn is the number of 
moving objects in this MMC, objid is a list which contains 
the ID of objects in this MMC, cf is the clustering feature 
(CF) of this MMC and center is the center at time t. The CF 
of a MMC is defined as follows. 
Definition 2. The CF of a MMC including N objects is of the 
form (SP, SP2, SV, SV2, SPV), 
where 1

N
i iSP p== ∑ , 1

2 2N
i iSP p== ∑ , 1

N
i iSV v== ∑ ,

1
2 2N

i iSV v== ∑ and 1
N
i i iSPV p v== ∑ . 

Claim 1. The CF at time tnow (tnow > t) can be maintained 
incrementally as follows [6]: 
CF’=(SP+SV(tnow-t), SP2+2SPV(tnow-t)+SV2(tnow-t)2, SV, SV2, 
SPV+SV2(tnow-t)). 
Claim 2. When an object (oid, p, v, t) is inserted or deleted 
from the MMC, its CF can be modified as 
CF’=(SP±p, SP2±p2, SV±v, SV2±v2, SPV±pv). 
Definition 3. The average radius R(t) of a MMC is the 
average Euclidean distance (ED) between its member objects 
and its center. It can be computed as 

 

2
2 2

1

1 1 ( )( ) ( ( ), ( )) ( )
objn

i c
i

SPR t D p t p t SP
objn objn objn=

= = −∑
 (1) 

where D (pi (t), pc (t)) is the ED between object i and the 
center. 

According to [6], the average radius of a MMC at time t1 
can be updated based on the CF given at time t (t1>t) as 

 
2( 1) ( ) / ,R t a t b t c objn= ∆ + ∆ +  (2) 

Where a=SV2-(SV)2/objn, b=2(SPV-SPSV/objn), c=SP2-
(SP)2/objn and 1 .t t t∆ = −  

B. Structure of Dynamic Grid 
We employ the dynamic grid (DG) similar to that used in 

[8]. The spatial area is divided into square grids and the grids 
have a hierarchical structure. The first level of DG is the root 
and denotes the whole area, and the grids at the bottom level 
of DG are leaves. Each grid has four children at its lower 
level and each child corresponds to one quadrant of the 
parent grid. The children are numbered from 0 to 3. Fig. 1 
illustrates the first three levels of a DG and Fig. 1(b) 
indicates the numbered children of a grid. Actually, the 
structure of DG is a quadtree, in which each tree node 
corresponds to a grid in DG and each tree level 
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corresponding to a level in DG. In the following context, we 
no longer distinguish between grid and quadtree node. 

(a) (b) (c)

0

1 3

2

 
Figure 1.  The first three levels of a DG 

(a) the first level; (b) the second level; (c) the third level 

we can use a 6-tuple (Rcoord, height, cnum, cidlist, 
children, neighblist) to represent a grid, where Rcoord is the 
relative coordinate of the grid, height is the height of the grid, 
cnum is the number of MMCs in this grid, cidlist is the list 
which contains the ID of MMCs in this grid, children is a list 
containing the pointers of the grid’s children and neighblist 
is a list consisting of the pointers of the grid’s neighbors.  
Definition 4. The relative coordinate (RC) of a grid in DG 
can be represented by the form (x, y, l), where (x, y) is the 
RC of the upper left corner of the grid, and l is the length of 
this grid which is not larger than the threshold Dm (Dm will be 
defined in later section). The RC of the root is (0, 0, L), 
where L is the length of the whole area. If the RC of a grid is 
(x, y, l), then the RCs of its four children can be computed as 
(2x, 2y, l/2), (2x, 2y+1, l/2), (2x+1, 2y, l/2) and (2x+1, 2y+1, 
l/2) in order of children numbers.  
Definition 5. The neighbors of a grid in DG mean grids 
adjacent to it. As shown in Fig. 2, a grid G has at most 8 
neighbors which are numbered from 0 to 7 (e.g. Fig. 2(a)). 
The root of DG has no neighbor and other grids have at least 
3 neighbors (e.g. Fig. 2(b)). 

By employing RC, given the RC of a grid, we can easily 
compute the RCs of its neighbors. For example, in Fig. 2(a), 
if the RC of G is (x, y, l), then the RC of its neighbor 3 is (x-1, 
y, l), and the RC of its neighbor 7 is (x+1, y+1, l). 

G
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1

2

3

4
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7

G

1

6

7

G

0

1

2

3

4

(a) (b) (c)
 

Figure 2.  Neighbours of grid G 

Definition 6. Each grid in DG has two possible states: 
expanded and unexpanded. If the subtree of a grid contains 
no MMCs, this grid is unexpanded. Otherwise, it is expanded. 
Definition 7. Each level of DG has two possible states: 
expanded and unexpanded. As long as a grid at this level is 
expanded, this level is expanded. Otherwise, it is 
unexpanded. 
Definition 8. The height of a grid is equal to the number of 
expanded levels in its subtree except for itself. Thus the 
height of an unexpanded grid is 0 and the height of an 
expanded grid is equal to the maximum height of its children 
plus 1. 

IV. MAINTENANCE OF DYNAMIC GRID 
The DG in our approach is dynamically maintained since 

MMCs may continue leaving a grid and then entering 
another grid. This section introduces some important 
algorithm about DG, including initialization, insertion, 
deletion, division and combination. 

A. Initialization 
We construct the initial DG with h levels (an initial 

quadtree with h levels), where h can be estimated from the 
capability of each grid c and the total number of MMCs n, 
that is, h satisfies 4h-1c≥n.For each grid in DG, we initialize 
its cnum and height with 0, set its cidlist empty, compute its 
Rcoord as Definition 4 and initialize its neighblist according 
to Definition 5. 

We employ a hash table gridhash which maps each 
MMC ID to the pointer of the grid it belongs to, so that given 
the ID of a MMC, we can fast locate the grid it belongs to. 
Moreover, we store the pointer of each grid into a table, in 
which each grid pointer can be quickly accessed by the level 
it belongs to and the RC of the grid.  

B. Insertion and Division 
We decide which grid a MMC belongs to by checking 

which “minimum” expanded grid its center is in. The 
minimum expanded grids denote the expanded grids with the 
minimum length and the minimum length minl can be 
computed as minl = maxl / 2maxh, where maxl and maxh are 
the length and the height of the root in DG respectively. 

After finding the belonging grid, the MMC will be 
inserted into this grid. To insert a MMC with ID cid into grid 
G, we modify cnum of G and all the ancestors of G, add cid 
to cidlist of G, modify the hash table gridhash and check 
whether G needs to be divided. 

Divide(G)
Input: G (Rcoord, height, cnum, cidlist, children, neighblist) 
          is a grid to be divided
1 G.height++
2 modify the height of all the ancestors of G if neccesary  
3 for each MMC with the ID cid in G  
4 decide cid belongs to G.children[ch] via cid.p                           
5      add cid into G.children[ch].cidlist 
6    G.children[ch].cnum++
7      modify the hash table gridhash
8 clear G.clidlist
9 for each child ch of G
10 if  G.children[ch].cnum exceeds the grid capacity
11 Divide(G.children[ch])
end Divide.  

Figure 3.  Division algorithm for DG 

In order to limit the number of MMCs in one grid, we set 
the grid capability c. If the number of MMCs in a grid 
exceeds c, this grid will be “divided”, which means the 
MMCs in this grid will be redistributed to its children (at its 
lower level). The division algorithm is shown in Fig. 3. To 
divide a G, we first modify the height of G and all the 
ancestors of G according to Definition 8, and then for each 
MMC in G, we decide which child of G it belongs to and add 
its ID to the cidlist of this child. Meanwhile, we modify 
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cnum of this child and gridhash. When the redistribution is 
over, we check whether the children of G should be divided. 

C. Deletion and Combination 
When a MMC leaves a grid G, we should delete it from 

G. In order to delete the MMC cid from grid G, we modify 
cnum of G and all the ancestors of G, delete cid from 
G.cidlist. If G does not contain any MMC now, we proceed 
to check the parent of G p. If p contains no MMC, we 
combine the children of p. 

It’s not complex to combine the children of p. We just 
need set the height of p to 0 and modify the height of all the 
ancestors of p. Then, if the parent of p (if existed) contains 
no MMC now, the combination will repeat and probably so 
on up to the root. 

V. CLUSTERING BASED ON DYNAMIC GRID 
This section will present our clustering scheme which is 

based on DG. We first introduce the distance metric and data 
structures used in our approach, and then we describe the 
details of the main algorithms. 

A. Distance Metric 
We utilize the distance metric with weight value 

proposed in [6] and as the minUI is short, we simplify this 
distance metric that we just consider three timestamps and 
our distance metric can be defined as 

              
3

2
1 2 1 2

1
( , ) ( ( ), ( ))i i i

i
DM O O w D p t p t

=

= ∑              (3) 

where t1 is the current time t, t2 = t + minUI / 2, t3 = t + minUI, 
D (p1 (ti), p2 (ti)) is the ED between objects O1 and O2 at time 
ti, and wi (0 < wi < 1) is the weight value at time ti which 
satisfies w1≥ w2≥w3 and w1 + w2 + w3 = 1. 

Accordingly, the distance metric applying to an object O 
and a MMC C is 

              
3

2

1
( , ) ( ( ), ( ))i O i C i

i
DM O C w D p t p t

=

= ∑               (4) 

where pO is the position of O and pC is the center position of 
C. Also, the distance metric can be applied to two MMCs C1 
and C2 as follows 

                  
3

2
1 2 1 2

1
( , ) ( ( ), ( ))i i i

i
DM C C w D p t p t

=

= ∑              (5) 

where p1 and p2 are the center positions of C1 and C2 
respectively. 

B. Data Structures and Initialization 
Two data structures are needed: the event queue Q and 

the hash table MMChash. Q stores future split events <t, cid> 
in ascending order of t, where t is the split time and cid is the 
ID of the MMC. MMChash maps each object ID to the 
MMC it belongs to, so that given the ID of an object, we can 
fast locate the MMC it belongs to. 

During the initialization, we set the MMC capability C, 
which represents the maximum number of objects a MMC 
can contain, and we define the threshold Rm to represent the 
maximum average radius of a MMC. Also, we set the 
threshold Dm to denote that if the distance between an object 

and a MMC according to (4) exceeds Dm, this object cannot 
be inserted into the MMC. Then we construct the initial 
MMCs by the algorithm of object insertion introduced later. 

C. Object Insertion and Deletion 
Since the length of each grid is not larger than Dm, to 

insert an object O, we just need search MMCs in G and the 
neighbors of G instead of searching all the preexisting 
MMCs. As shown in Fig. 4, we first find the grid G O 
belongs to, and then search MMCs that are not full in G and 
the neighbors of G to find the nearest MMC to O according 
to (4). If the distance between the nearest MMC and O is 
larger than Dm, we create a new MMC for O. Otherwise, we 
try to insert O into this MMC. We compute the virtual CF of 
this MMC after absorbing O according to Claim 2 and then 
compute the virtual radius. If the virtual radius is larger than 
Rm, which indicates the insertion will lead this MMC into 
split, the insertion is failed and we create a new MMC for O. 
Otherwise, we update this MMC, modify MMChash, check 
whether this MMC changes its belonging grid, update the 
split event about this MMC in Q and the insertion is 
successful. 

InsertObj(O)
Input: object O
1 find the grid G object O belongs to
2     search MMCs which are not full in G and G.neighblist
3     if the distance between O and the MMC cid nearest to it
       is larger than Dm
4         create a new MMC for O
5     else
6        compute the virtual CF and virtual radius vr of cid
          absorbing O
7    if vr ≥ Rm  
8     create a new MMC for O
9    else
10         cid.objn++                            
11     update cid.cf and cid.center
12       add O into cid.objid
13         modify the hash table MMChash
14         if cid changes the grid it belongs to
15            insert cid into the new grid
16            delete cid from the old grid
17         update the split event about cid
end InsertObj.

 
Figure 4.  The algorithm of object insertion 

To delete an object O from a MMC is a reverse process 
of the object insertion. We just need remove O from objid of 
the MMC and update objn, center, cf of this MMC. 

D. Split 
The split of a MMC occurs when its average radius 

exceeds Rm. According to (2), the split time is when R (t) = 
Rm. For simplicity, we consider 2 2( ) mR t R= , that is, 

2 2( ) / ma t b t c objn R∆ + ∆ + = . It’s a quadratic equation 
about t∆  and the solution is 

 
2 2

2

( 4 ( )) / (2 ),   0

( ) / ,                                 0
m

m

b b a c R objn a a
t

R objn c b a

 − + − − ≠∆ = 
− =    

(6) 
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According to [6], from current time t to t + minUI, the 
split time of a MMC during minUI can be determined in the 
process: if 2 2( ) mR t R> , the split time is the current time. 
Otherwise, if 2 2( ) mR t minUI R+ ≤ , there is no need to split 
during minUI, and if not, the split time can be computed 
according to (6). 

As a MMC often splits many times during minUI, after 
its split, we need know whether it will split again during 
minUI, so we compare its average radius at current time and 
at the end of minUI with Rm. This algorithm is shown in Fig. 
5. 

willSplit(cid, endtime)
Input: MMC cid and  the end time of the interval endtime
Output: true if split will happen, otherwise false 
1 if the average radius of cid at current time is 
       larger than Rm  
2     return true  
3    else 
4     compute the average radius of cid at endtime                            
5     if it is larger than Rm
6           return false
7         else  
8             return true
end willSplit.  

Figure 5.  The algorithm deciding whether the split will happen 

Split(cid, starttime,endtime)
Input: MMC cid, split time starttime and 
           the end time of the interval endtime
Output: A list of the deleted objects ID idlist
1 update cid.cf, cid.center to starttime
2 while willSplit(cid, endtime) is true  
3   for each object O in cid 
4         compute DM(O, cid) and record the ID of the 
               object with the maximum DM                 
5     delete the object with the maximum DM from cid
6         add the ID of this object into idlist
7     return idlist
end Split.  

Figure 6.  Split algorithm 

To avoid multiple splits of a MMC during minUI, we 
propose a new approach to handle the split event. When a 
MMC with the ID cid splits at time t, we first compute the 
distance between each object in cid and the center of cid 
according to (4). Then we delete the object with the 
maximum distance from cid and check whether cid will split 
again during minUI. If it will, we repeat the process above. 
Otherwise, the split ends and we check whether cid changes 
its belonging grid. The algorithm is shown in Fig. 6. 

After the split, we check whether cid can be merged. 
Then we build a new MMC newcid for the deleted objects. If 
the average radius of newcid is less than Rm, we check 
whether it can be merged with other MMC except cid. 
Otherwise we just add the split event about newcid into Q. 

E. Merge 
The merge operation first searches for a MMC for 

merging. The search process is similar to that in the object 

insertion algorithm. To find a MMC that can be merged with 
MMC cid, we get the grid G containing cid via the hash table. 
Then we search the MMCs that have enough space to absorb 
cid in G and the neighbors of G. If the MMC that can absorb 
cid without split during minUI exists, it’s what we want. 
Otherwise, we choose the MMC which have the latest split 
time after absorbing cid. The details of this algorithm are 
shown in Fig. 7. 

FindMMC(cid, endtime)
Input: MMC cid and the end time of the interval endtime
Output: MMC cid1 to be merged with cid   
1 G = gridhash(cid)   //G is the belonging grid of cid
2 for each MMC cid1 except cid in G and G.neighblist 
3   if cid1.objn + cid.objn≤C   //C is MMC capacity
4         vcf = cid1.cf + cid.cf                           
5         compute the split time during the interval according to vcf
6            if the merged MMC will not split during the interval 
7                  return cid1
8              else
9                  record cid1 with the latest split time
10    return cid1        
end FindMMC.

 
Figure 7.  The algorithm of finding a MMC for merging 

After finding the MMC cid1, we merge it with cid. We 
first add all the object IDs which are in cid1.objid into 
cid.objid and modify the hash table MMChash. Then we 
update objn, cf and center of cid. At last, we update the split 
event about cid in Q and remove the MMC cid1. 

VI. EXPERIMENTS 
This section presents the results of our experiments. We 

first introduce the experiment settings and data, and then 
compare our approach with other algorithms. 

A. Experiment Settings and Data Preparation 
All the experiments are conducted on an Intel Core 2 

Quad 2.66 GHz PC with 3.25 GB RAM. We use synthetic 
data sets generated by our data generator. The whole space is 
a square space of size 32768×32768 units. Objects start at a 
random position in the space with random velocity from 0 to 
5. We set minUI to 10 seconds and at the end of each minUI, 
we randomly choose parts of the objects and randomly 
change their velocity within 0 to 5. The total continuous 
clustering time is set to 1000 seconds. 

We compare our grid-based approach (GridCMO) with 
other three approaches not based-on grid: the algorithm that 
handles split by removing the farthest objects (RECMO), the 
one using the split algorithm in [6] (DVCMO) and another 
one using the same split algorithm as our approach but not 
based-on grid (CMO). We conduct the experiments on 7 
data sets with different size and run each algorithm 50 times 
on each data set. 

B. Clustering Time 
We compare the clustering speed of the four methods. 

The average clustering speed of the four algorithms is 
shown in Fig. 8. 
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Figure 8.  Average clustering speed 

As can be seen from Fig. 8, GridCMO and CMO are 
faster than RECMO and DVCMO, which validates the 
efficiency of our split algorithm. GridCMO is the fastest one. 
This suggests that our dynamic grids accelerate the 
clustering. Moreover, the gaps between GridCMO and the 
other three methods are increasing as the data size increases, 
which indicates the dynamic grids employed in our 
approach are efficient especially for large data sets.  

C. Average Radius 
We proceed to compare the average radius of the MMCs 

obtained by the four methods, which can measure the 
conpactness of MMCs generated by these algorithms. The 
results are shown in Fig. 9.  

 
Figure 9.  Avarage radius 

As can be seen from Fig. 9, DVCMO has the minimum 
average radius because it handles the split by dividing the 
MMC into two parts with smaller radiuses, while the other 
three algorithms handle the split by deleting some 
“extreme” objects and aim to maintain a MMC as long as 
possible. GridCMO and CMO have the similar average 
radiuses which are close to that of DVCMO. This indicates 
that our split algorithm can keep the compactness of MMCs. 
RECMO has the maximum average radius because it only 
removes one object from the MMC each time it handles the 
split. 

VII. CONCLUSION 

This paper proposes an efficient grid-based approach for 
continuous clustering of moving objects. We develop an 
efficient split algorithm to handle the split of clusters, which 
avoids multiple splits of one cluster during a period of time. 
Also, we employ dynamic grids to narrow the searching area 
when merging clusters. The experimental evaluation has 
been conducted and validates that both our split algorithm 
and the dynamic grids accelerate the clustering as well as 
keep the compactness of the clusters. Our future work aims 
at applying the clustering scheme in the real world. 
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