
A Grid-based Approach to Continuous Clustering of Moving Objects

Tongyu Zhu, Yuan Zhang, Weifeng Lv, Fei Wang
State Key Laboratory of Software Development Environment

Beihang University, Beijing, China
{zhutongyu, yuanzhang, lwf, wangfei }@nlsde.buaa.edu.cn

Abstract—With the rapid advances in wireless devices and
positioning technologies, tracking and clustering of moving
objects has drawn increasing attention. Previous methods of
clustering moving objects merge clusters by searching all the
existing clusters, which have an obvious decline in efficiency as
the number of clusters increases. This paper proposes a grid-
based approach to continuous clustering of moving objects. We
first employ dynamic grid to narrow the searching area when
merging clusters, and then develop an efficient split algorithm
to handle the split of clusters, which avoids multiple splits of
one cluster during a period of time. At last, a comprehensive
experimental evaluation has been conducted to validate our
approach, and the results indicate the efficiency and
effectiveness of our algorithm, especially for large data set.

Keywords- Moving object; clustering; grid; data mining

I. INTRODUCTION
Due to the growing popularity of wireless devices (e.g.,

PDAs, mobile phones, navigation devices) and the rapid
advances in wireless communication and positioning
technologies (e.g., GPS), tracking the behaviors and
movements of individuals becomes increasingly available,
which boosts various kinds of services exploiting knowledge
of object movement.

Clustering analysis aims to group similar data into the
same group and different data into distinct groups, which
provides a summary of data distribution patterns and
discovers data correlations in dataset. Early clustering
techniques mainly focused on analyzing static datasets [1],
[2], [3]. Recently, clustering moving objects has attracted
increasing attention [4], [5], [6], [7] which has various kinds
of applications, including mobile computing, targeted sales,
traffic jam prediction, weather forecast and animal migration
analysis.

As the positions of moving objects continuously change,
treating moving objects as static ones and periodically
clustering them with the methods for static datasets is a
brute-force approach which does not consider the
information of the movement. Some incremental clustering
schemes have been proposed [4], [6], [7], and they mainly
focus on dynamically maintaining a small set of moving
micro-clusters (MMCs) [4]. The concept of MMC is a group
of objects that are not only close to each other at current time,
but also likely to move together for a while.

The split and merge operations are central parts of the
schemes for incremental clustering of moving objects. As

has been observed in the literature, there are two kinds of
methods to deal with the split of a MMC. One is to delete the
extreme object [4] or the farthest object from the center of
MMC [7]. The other is to divide the MMC into two MMCs
[6]. Neither of them considers the situation that a MMC may
continuously split during a period of time, and when this
situation occurs, it will take a long time to handle the
multiple splits of a MMC. Moreover, when checking
whether a MMC can be merged with other MMCs, previous
schemes search all the existing MMCs, which have an
obvious decline in efficiency as the number of MMCs
increasing.

In this paper, we present a grid-based approach to
continuous clustering of moving objects. First, we develop
an efficient split algorithm to handle the split of a MMC,
which avoids multiple splits of one MMC during a period of
time. Then we employ hierarchical grids similar to that used
in [8] in order to narrow the searching area during merge
operation. The spatial area is divided into square grids, and
each grid will be dynamically divided or combined
according to the number of MMCs belonging to it.

Our contributions can be summarized as follows: we
develop an efficient split scheme which can avoid multiple
splits of one MMC during a period of time. We employ
hierarchical grids to narrow the searching area during merge
operation. We present the algorithms of maintaining the
dynamic grids and applying the dynamic grids to MMCs.

II. RELATED WORK
As one of the most important analysis techniques,

clustering has been an active area of research in the field of
data mining. A lot of clustering techniques have been
proposed for static data sets [1], [2], [3], [8], [9], [10], [11].
They can be classified into the partitioning, hierarchical,
density-based, grid-based and model-based method. The k-
means algorithm [1] is representative of partitioning method,
which aims at dividing the objects into k clusters in order to
minimize the metric relative to the centroids of the clusters.
The Birch algorithm [2] is a comprehensive hierarchical
method, which originally proposed the concept of micro-
clustering and the notion of clustering feature (CF) and CF
tree. The STING algorithm [8] is a grid-based method,
which divides the spatial area into rectancle cells and
employs a hierarchical stucture. It has high efficency
especially for large data set. To deal with the moving objects,
our approach extends the grid in STING to a dynamic one,

93

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

which will be dynamically divided or combined according to
the number of MMCs belonging to it.

Recently, clustering of moving objects has drawn
increasing attention. Har-Peled [12] aims to show that
moving objects can be clustered once and the resulting
clusters are competitive at any future time during the motion.
Li et al. [4] first addressed clustering of moving objects by
applying micro-clustering and dynamically maintaining
bounding boxes of clusters. However, the bounding boxes of
the cluster are likely to be exceeded frequently, which makes
the number of maintenance events dominate the overall
runtimes of the algorithms.

Zhang and Lin [5] proposed a histogram technique based
on the clustering paradigm. A histogram must be
reconstructed if too many updates occur, and there are
usually a large number of updates at each timestamp, which
makes histogram maintenance lack of efficiency.

Kalnis et al. [13] presented three algorithms to discover
moving clusters from historical trajectories of moving
objects. They treat a moving cluster as a sequence of spatial
clusters that appear in consecutive snapshots of the object
movements. Such moving clusters can be identified by
comparing clusters at consecutive snapshots, the cost of
which can be very high.

Jensen et al. [6] proposed a scheme capable of
incrementally clustering moving objects in two-dimensional
Euclidean space, which extended the concepts of CF and CF
tree in Birch and employed a notion of object dissimilarity
considering object movement across a period of time. Their
experiments show this scheme performs significantly faster
than traditional methods which frequently rebuild clusters.

Lai and Heuer [7] developed an approach dynamically
maintaining a small set of MMCs, and they obtain global
clusters by clustering these representative MMCs with
traditional clustering algorithms for static data sets. Rosswog
and Ghose [14] consider the situation that the moving objects
intersect the space occupied by objects from another cluster
and extend the distance measure to a function of the position
history of the objects so as to improve the accuracy of
traditional data clustering algorithms on spatio-temporal data
sets.

III. PRELIMINARIES
In this section, we first introduce the model of MMC and

some concepts about it, and then we describe the structure of
the dynamic grid used in our approach and define some
notions associated with it.

A. Model of MMC
In this paper, we consider moving objects in two-

dimensional (2D) Euclidean space, which can be easily
extended to higher dimensions. We define the minimum
update interval (minUI), which denotes that the velocity of
all the moving objects can be treated as constant during this
interval. We assume that each moving object can transmit its
new position and velocity to the server at the beginning of
each minUI.

Each moving object can be represented as (oid, p, v, t),
where oid is the unique ID of this object, p is the position of

this object at time t and v is the velocity at time t. Both p and
v are 2D vectors. During each minUI, the position of a object
is a linear function of time and at time t1, it can be computed
as p(t1) = p + v(t1 - t), where t1>t.
Definition 1. The center of a MMC including N objects is of
the form (P, V), where

1
() /N

i iP p N
=

= ∑ and

1
(/)N

i iV v N
=

= ∑ . P and V are position and velocity of the
center respectively.

A MMC can be represented as (cid, objn, objid, center, cf,
t), where cid is the ID of this MMC, objn is the number of
moving objects in this MMC, objid is a list which contains
the ID of objects in this MMC, cf is the clustering feature
(CF) of this MMC and center is the center at time t. The CF
of a MMC is defined as follows.
Definition 2. The CF of a MMC including N objects is of the
form (SP, SP2, SV, SV2, SPV),
where 1

N
i iSP p== ∑ , 1

2 2N
i iSP p== ∑ , 1

N
i iSV v== ∑ ,

1
2 2N

i iSV v== ∑ and 1
N
i i iSPV p v== ∑ .

Claim 1. The CF at time tnow (tnow > t) can be maintained
incrementally as follows [6]:
CF’=(SP+SV(tnow-t), SP2+2SPV(tnow-t)+SV2(tnow-t)2, SV, SV2,
SPV+SV2(tnow-t)).
Claim 2. When an object (oid, p, v, t) is inserted or deleted
from the MMC, its CF can be modified as
CF’=(SP±p, SP2±p2, SV±v, SV2±v2, SPV±pv).
Definition 3. The average radius R(t) of a MMC is the
average Euclidean distance (ED) between its member objects
and its center. It can be computed as

2
2 2

1

1 1 ()() ((), ()) ()
objn

i c
i

SPR t D p t p t SP
objn objn objn=

= = −∑
 (1)

where D (pi (t), pc (t)) is the ED between object i and the
center.

According to [6], the average radius of a MMC at time t1
can be updated based on the CF given at time t (t1>t) as

2(1) () / ,R t a t b t c objn= ∆ + ∆ + (2)

Where a=SV2-(SV)2/objn, b=2(SPV-SPSV/objn), c=SP2-
(SP)2/objn and 1 .t t t∆ = −

B. Structure of Dynamic Grid
We employ the dynamic grid (DG) similar to that used in

[8]. The spatial area is divided into square grids and the grids
have a hierarchical structure. The first level of DG is the root
and denotes the whole area, and the grids at the bottom level
of DG are leaves. Each grid has four children at its lower
level and each child corresponds to one quadrant of the
parent grid. The children are numbered from 0 to 3. Fig. 1
illustrates the first three levels of a DG and Fig. 1(b)
indicates the numbered children of a grid. Actually, the
structure of DG is a quadtree, in which each tree node
corresponds to a grid in DG and each tree level

94

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

corresponding to a level in DG. In the following context, we
no longer distinguish between grid and quadtree node.

(a) (b) (c)

0

1 3

2

Figure 1. The first three levels of a DG

(a) the first level; (b) the second level; (c) the third level

we can use a 6-tuple (Rcoord, height, cnum, cidlist,
children, neighblist) to represent a grid, where Rcoord is the
relative coordinate of the grid, height is the height of the grid,
cnum is the number of MMCs in this grid, cidlist is the list
which contains the ID of MMCs in this grid, children is a list
containing the pointers of the grid’s children and neighblist
is a list consisting of the pointers of the grid’s neighbors.
Definition 4. The relative coordinate (RC) of a grid in DG
can be represented by the form (x, y, l), where (x, y) is the
RC of the upper left corner of the grid, and l is the length of
this grid which is not larger than the threshold Dm (Dm will be
defined in later section). The RC of the root is (0, 0, L),
where L is the length of the whole area. If the RC of a grid is
(x, y, l), then the RCs of its four children can be computed as
(2x, 2y, l/2), (2x, 2y+1, l/2), (2x+1, 2y, l/2) and (2x+1, 2y+1,
l/2) in order of children numbers.
Definition 5. The neighbors of a grid in DG mean grids
adjacent to it. As shown in Fig. 2, a grid G has at most 8
neighbors which are numbered from 0 to 7 (e.g. Fig. 2(a)).
The root of DG has no neighbor and other grids have at least
3 neighbors (e.g. Fig. 2(b)).

By employing RC, given the RC of a grid, we can easily
compute the RCs of its neighbors. For example, in Fig. 2(a),
if the RC of G is (x, y, l), then the RC of its neighbor 3 is (x-1,
y, l), and the RC of its neighbor 7 is (x+1, y+1, l).

G

0

1

2

3

4

5

6

7

G

1

6

7

G

0

1

2

3

4

(a) (b) (c)

Figure 2. Neighbours of grid G

Definition 6. Each grid in DG has two possible states:
expanded and unexpanded. If the subtree of a grid contains
no MMCs, this grid is unexpanded. Otherwise, it is expanded.
Definition 7. Each level of DG has two possible states:
expanded and unexpanded. As long as a grid at this level is
expanded, this level is expanded. Otherwise, it is
unexpanded.
Definition 8. The height of a grid is equal to the number of
expanded levels in its subtree except for itself. Thus the
height of an unexpanded grid is 0 and the height of an
expanded grid is equal to the maximum height of its children
plus 1.

IV. MAINTENANCE OF DYNAMIC GRID
The DG in our approach is dynamically maintained since

MMCs may continue leaving a grid and then entering
another grid. This section introduces some important
algorithm about DG, including initialization, insertion,
deletion, division and combination.

A. Initialization
We construct the initial DG with h levels (an initial

quadtree with h levels), where h can be estimated from the
capability of each grid c and the total number of MMCs n,
that is, h satisfies 4h-1c≥n.For each grid in DG, we initialize
its cnum and height with 0, set its cidlist empty, compute its
Rcoord as Definition 4 and initialize its neighblist according
to Definition 5.

We employ a hash table gridhash which maps each
MMC ID to the pointer of the grid it belongs to, so that given
the ID of a MMC, we can fast locate the grid it belongs to.
Moreover, we store the pointer of each grid into a table, in
which each grid pointer can be quickly accessed by the level
it belongs to and the RC of the grid.

B. Insertion and Division
We decide which grid a MMC belongs to by checking

which “minimum” expanded grid its center is in. The
minimum expanded grids denote the expanded grids with the
minimum length and the minimum length minl can be
computed as minl = maxl / 2maxh, where maxl and maxh are
the length and the height of the root in DG respectively.

After finding the belonging grid, the MMC will be
inserted into this grid. To insert a MMC with ID cid into grid
G, we modify cnum of G and all the ancestors of G, add cid
to cidlist of G, modify the hash table gridhash and check
whether G needs to be divided.

Divide(G)
Input: G (Rcoord, height, cnum, cidlist, children, neighblist)
 is a grid to be divided
1 G.height++
2 modify the height of all the ancestors of G if neccesary
3 for each MMC with the ID cid in G
4 decide cid belongs to G.children[ch] via cid.p
5 add cid into G.children[ch].cidlist
6 G.children[ch].cnum++
7 modify the hash table gridhash
8 clear G.clidlist
9 for each child ch of G
10 if G.children[ch].cnum exceeds the grid capacity
11 Divide(G.children[ch])
end Divide.

Figure 3. Division algorithm for DG

In order to limit the number of MMCs in one grid, we set
the grid capability c. If the number of MMCs in a grid
exceeds c, this grid will be “divided”, which means the
MMCs in this grid will be redistributed to its children (at its
lower level). The division algorithm is shown in Fig. 3. To
divide a G, we first modify the height of G and all the
ancestors of G according to Definition 8, and then for each
MMC in G, we decide which child of G it belongs to and add
its ID to the cidlist of this child. Meanwhile, we modify

95

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

cnum of this child and gridhash. When the redistribution is
over, we check whether the children of G should be divided.

C. Deletion and Combination
When a MMC leaves a grid G, we should delete it from

G. In order to delete the MMC cid from grid G, we modify
cnum of G and all the ancestors of G, delete cid from
G.cidlist. If G does not contain any MMC now, we proceed
to check the parent of G p. If p contains no MMC, we
combine the children of p.

It’s not complex to combine the children of p. We just
need set the height of p to 0 and modify the height of all the
ancestors of p. Then, if the parent of p (if existed) contains
no MMC now, the combination will repeat and probably so
on up to the root.

V. CLUSTERING BASED ON DYNAMIC GRID
This section will present our clustering scheme which is

based on DG. We first introduce the distance metric and data
structures used in our approach, and then we describe the
details of the main algorithms.

A. Distance Metric
We utilize the distance metric with weight value

proposed in [6] and as the minUI is short, we simplify this
distance metric that we just consider three timestamps and
our distance metric can be defined as

3

2
1 2 1 2

1
(,) ((), ())i i i

i
DM O O w D p t p t

=

= ∑ (3)

where t1 is the current time t, t2 = t + minUI / 2, t3 = t + minUI,
D (p1 (ti), p2 (ti)) is the ED between objects O1 and O2 at time
ti, and wi (0 < wi < 1) is the weight value at time ti which
satisfies w1≥ w2≥w3 and w1 + w2 + w3 = 1.

Accordingly, the distance metric applying to an object O
and a MMC C is

3

2

1
(,) ((), ())i O i C i

i
DM O C w D p t p t

=

= ∑ (4)

where pO is the position of O and pC is the center position of
C. Also, the distance metric can be applied to two MMCs C1
and C2 as follows

3

2
1 2 1 2

1
(,) ((), ())i i i

i
DM C C w D p t p t

=

= ∑ (5)

where p1 and p2 are the center positions of C1 and C2
respectively.

B. Data Structures and Initialization
Two data structures are needed: the event queue Q and

the hash table MMChash. Q stores future split events <t, cid>
in ascending order of t, where t is the split time and cid is the
ID of the MMC. MMChash maps each object ID to the
MMC it belongs to, so that given the ID of an object, we can
fast locate the MMC it belongs to.

During the initialization, we set the MMC capability C,
which represents the maximum number of objects a MMC
can contain, and we define the threshold Rm to represent the
maximum average radius of a MMC. Also, we set the
threshold Dm to denote that if the distance between an object

and a MMC according to (4) exceeds Dm, this object cannot
be inserted into the MMC. Then we construct the initial
MMCs by the algorithm of object insertion introduced later.

C. Object Insertion and Deletion
Since the length of each grid is not larger than Dm, to

insert an object O, we just need search MMCs in G and the
neighbors of G instead of searching all the preexisting
MMCs. As shown in Fig. 4, we first find the grid G O
belongs to, and then search MMCs that are not full in G and
the neighbors of G to find the nearest MMC to O according
to (4). If the distance between the nearest MMC and O is
larger than Dm, we create a new MMC for O. Otherwise, we
try to insert O into this MMC. We compute the virtual CF of
this MMC after absorbing O according to Claim 2 and then
compute the virtual radius. If the virtual radius is larger than
Rm, which indicates the insertion will lead this MMC into
split, the insertion is failed and we create a new MMC for O.
Otherwise, we update this MMC, modify MMChash, check
whether this MMC changes its belonging grid, update the
split event about this MMC in Q and the insertion is
successful.

InsertObj(O)
Input: object O
1 find the grid G object O belongs to
2 search MMCs which are not full in G and G.neighblist
3 if the distance between O and the MMC cid nearest to it
 is larger than Dm
4 create a new MMC for O
5 else
6 compute the virtual CF and virtual radius vr of cid
 absorbing O
7 if vr ≥ Rm
8 create a new MMC for O
9 else
10 cid.objn++
11 update cid.cf and cid.center
12 add O into cid.objid
13 modify the hash table MMChash
14 if cid changes the grid it belongs to
15 insert cid into the new grid
16 delete cid from the old grid
17 update the split event about cid
end InsertObj.

Figure 4. The algorithm of object insertion

To delete an object O from a MMC is a reverse process
of the object insertion. We just need remove O from objid of
the MMC and update objn, center, cf of this MMC.

D. Split
The split of a MMC occurs when its average radius

exceeds Rm. According to (2), the split time is when R (t) =
Rm. For simplicity, we consider 2 2() mR t R= , that is,

2 2() / ma t b t c objn R∆ + ∆ + = . It’s a quadratic equation
about t∆ and the solution is

2 2

2

(4 ()) / (2), 0

() / , 0
m

m

b b a c R objn a a
t

R objn c b a

 − + − − ≠∆ = 
− =

(6)

96

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

According to [6], from current time t to t + minUI, the
split time of a MMC during minUI can be determined in the
process: if 2 2() mR t R> , the split time is the current time.
Otherwise, if 2 2() mR t minUI R+ ≤ , there is no need to split
during minUI, and if not, the split time can be computed
according to (6).

As a MMC often splits many times during minUI, after
its split, we need know whether it will split again during
minUI, so we compare its average radius at current time and
at the end of minUI with Rm. This algorithm is shown in Fig.
5.

willSplit(cid, endtime)
Input: MMC cid and the end time of the interval endtime
Output: true if split will happen, otherwise false
1 if the average radius of cid at current time is
 larger than Rm
2 return true
3 else
4 compute the average radius of cid at endtime
5 if it is larger than Rm
6 return false
7 else
8 return true
end willSplit.

Figure 5. The algorithm deciding whether the split will happen

Split(cid, starttime,endtime)
Input: MMC cid, split time starttime and
 the end time of the interval endtime
Output: A list of the deleted objects ID idlist
1 update cid.cf, cid.center to starttime
2 while willSplit(cid, endtime) is true
3 for each object O in cid
4 compute DM(O, cid) and record the ID of the
 object with the maximum DM
5 delete the object with the maximum DM from cid
6 add the ID of this object into idlist
7 return idlist
end Split.

Figure 6. Split algorithm

To avoid multiple splits of a MMC during minUI, we
propose a new approach to handle the split event. When a
MMC with the ID cid splits at time t, we first compute the
distance between each object in cid and the center of cid
according to (4). Then we delete the object with the
maximum distance from cid and check whether cid will split
again during minUI. If it will, we repeat the process above.
Otherwise, the split ends and we check whether cid changes
its belonging grid. The algorithm is shown in Fig. 6.

After the split, we check whether cid can be merged.
Then we build a new MMC newcid for the deleted objects. If
the average radius of newcid is less than Rm, we check
whether it can be merged with other MMC except cid.
Otherwise we just add the split event about newcid into Q.

E. Merge
The merge operation first searches for a MMC for

merging. The search process is similar to that in the object

insertion algorithm. To find a MMC that can be merged with
MMC cid, we get the grid G containing cid via the hash table.
Then we search the MMCs that have enough space to absorb
cid in G and the neighbors of G. If the MMC that can absorb
cid without split during minUI exists, it’s what we want.
Otherwise, we choose the MMC which have the latest split
time after absorbing cid. The details of this algorithm are
shown in Fig. 7.

FindMMC(cid, endtime)
Input: MMC cid and the end time of the interval endtime
Output: MMC cid1 to be merged with cid
1 G = gridhash(cid) //G is the belonging grid of cid
2 for each MMC cid1 except cid in G and G.neighblist
3 if cid1.objn + cid.objn≤C //C is MMC capacity
4 vcf = cid1.cf + cid.cf
5 compute the split time during the interval according to vcf
6 if the merged MMC will not split during the interval
7 return cid1
8 else
9 record cid1 with the latest split time
10 return cid1
end FindMMC.

Figure 7. The algorithm of finding a MMC for merging

After finding the MMC cid1, we merge it with cid. We
first add all the object IDs which are in cid1.objid into
cid.objid and modify the hash table MMChash. Then we
update objn, cf and center of cid. At last, we update the split
event about cid in Q and remove the MMC cid1.

VI. EXPERIMENTS
This section presents the results of our experiments. We

first introduce the experiment settings and data, and then
compare our approach with other algorithms.

A. Experiment Settings and Data Preparation
All the experiments are conducted on an Intel Core 2

Quad 2.66 GHz PC with 3.25 GB RAM. We use synthetic
data sets generated by our data generator. The whole space is
a square space of size 32768×32768 units. Objects start at a
random position in the space with random velocity from 0 to
5. We set minUI to 10 seconds and at the end of each minUI,
we randomly choose parts of the objects and randomly
change their velocity within 0 to 5. The total continuous
clustering time is set to 1000 seconds.

We compare our grid-based approach (GridCMO) with
other three approaches not based-on grid: the algorithm that
handles split by removing the farthest objects (RECMO), the
one using the split algorithm in [6] (DVCMO) and another
one using the same split algorithm as our approach but not
based-on grid (CMO). We conduct the experiments on 7
data sets with different size and run each algorithm 50 times
on each data set.

B. Clustering Time
We compare the clustering speed of the four methods.

The average clustering speed of the four algorithms is
shown in Fig. 8.

97

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Figure 8. Average clustering speed

As can be seen from Fig. 8, GridCMO and CMO are
faster than RECMO and DVCMO, which validates the
efficiency of our split algorithm. GridCMO is the fastest one.
This suggests that our dynamic grids accelerate the
clustering. Moreover, the gaps between GridCMO and the
other three methods are increasing as the data size increases,
which indicates the dynamic grids employed in our
approach are efficient especially for large data sets.

C. Average Radius
We proceed to compare the average radius of the MMCs

obtained by the four methods, which can measure the
conpactness of MMCs generated by these algorithms. The
results are shown in Fig. 9.

Figure 9. Avarage radius

As can be seen from Fig. 9, DVCMO has the minimum
average radius because it handles the split by dividing the
MMC into two parts with smaller radiuses, while the other
three algorithms handle the split by deleting some
“extreme” objects and aim to maintain a MMC as long as
possible. GridCMO and CMO have the similar average
radiuses which are close to that of DVCMO. This indicates
that our split algorithm can keep the compactness of MMCs.
RECMO has the maximum average radius because it only
removes one object from the MMC each time it handles the
split.

VII. CONCLUSION

This paper proposes an efficient grid-based approach for
continuous clustering of moving objects. We develop an
efficient split algorithm to handle the split of clusters, which
avoids multiple splits of one cluster during a period of time.
Also, we employ dynamic grids to narrow the searching area
when merging clusters. The experimental evaluation has
been conducted and validates that both our split algorithm
and the dynamic grids accelerate the clustering as well as
keep the compactness of the clusters. Our future work aims
at applying the clustering scheme in the real world.

ACKNOWLEDGMENT
This work was supported by China 973 Fundamental

R&D Program (No.2005CB321903) and China 863 High-
tech Program (No.2009AA043305).

REFERENCES
[1] J. Macqueen, “Some Methods for Classification and Analysis of

Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, 1967.

[2] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’96), pp. 103-
114, 1996.

[3] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’99), pp. 49-60,
1999.

[4] Y. Li, J. Han, and J. Yang, “Clustering Moving Objects,” Proc. 10th
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD ’04), pp. 617-622, 2004.

[5] Q. Zhang and X. Lin, “Clustering Moving Objects for Spatio-
Temporal Selectivity Estimation,” Proc. 15th Australasian Database
Conf. (ADC ’04), pp. 123-130, 2004.

[6] C.S. Jensen, Dan Lin, and Beng Chin Ooi, “Continuous Clustering of
Moving Objects,” IEEE Transl. on Knowledge and Data Engineering,
vol. 19, pp. 1161-1174, 2007.

[7] Chih Lai and E.A.Heuer, “Efficiently maintaining moving micro
clusters for clustering moving objects,” Proc. 3rd IEEE Int’l Conf. on
System of Systems Engineering (SoSE '08), pp. 1-6, 2008.

[8] W. Wang, J. Yang, and R. Muntz, “Sting: A Statistical Information
Grid Approach to Spatial Data Mining,” Proc. 23rd Int’l Conf. Very
Large Data Bases (VLDB ’97), pp. 186-195, 1997.

[9] R. Ng and J. Han, “Efficient and Effective Clustering Method for
Spatial Data Mining,” Proc. 20th Int’l Conf. Very Large Data Bases
(VLDB ’94), pp. 144-155, 1994.

[10] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering
Algorithm for Large Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’98), pp. 73-84, 1998.

[11] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical
Clustering Algorithm Using Dynamic Modeling,” Computer, vol. 32,
no. 8, pp. 68-75, Aug. 1999.

[12] S. Har-Peled, “Clustering Motion,” Discrete and Computational
Geometry, vol. 31, no. 4, pp. 545-565, 2003.

[13] P. Kalnis, N. Mamoulis, and S. Bakiras, “On Discovering Moving
Clusters in Spatio-Temporal Data,” Proc. Ninth Int’l Symp. Spatial
and Temporal Databases (SSTD ’05), pp. 364-381, 2005.

[14] J. Rosswog and K. Ghose, “Accurately clustering moving objects
with adaptive history filtering,” Proc. 24th Int’l Symp. Computer and
Information Sciences (ISCIS 2009), pp. 657-662, 2009.

98

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

	I. Introduction
	II. Related Work
	III. Preliminaries
	A. Model of MMC
	B. Structure of Dynamic Grid

	IV. Maintenance of Dynamic Grid
	A. Initialization
	B. Insertion and Division
	C. Deletion and Combination

	V. Clustering Based on Dynamic Grid
	A. Distance Metric
	B. Data Structures and Initialization
	C. Object Insertion and Deletion
	D. Split
	E. Merge

	VI. Experiments
	A. Experiment Settings and Data Preparation
	B. Clustering Time
	C. Average Radius

	VII. Conclusion
	This paper proposes an efficient grid-based approach for continuous clustering of moving objects. We develop an efficient split algorithm to handle the split of clusters, which avoids multiple splits of one cluster during a period of time. Also, we employ dynamic grids to narrow the searching area when merging clusters. The experimental evaluation has been conducted and validates that both our split algorithm and the dynamic grids accelerate the clustering as well as keep the compactness of the clusters. Our future work aims at applying the clustering scheme in the real world.
	Acknowledgment
	References

