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Abstract—A new derivative-free optimization method for
unconstrained optimization of partially separable functions
is presented. Using average curvature information compuig
from sampled function values the method generates an averag

Hessian-like matrix and uses its eigenvectors as new search

directions. For partially separable functions, many of the
entries of this matrix will be identically zero. The method is able
to exploit this property and as a consequence update its sear
directions more often than if sparsity is not taken into accaint.
Numerical results show that this is a more effective methoddr
functions with a topography which requires frequent updating
of search directions for rapid convergence.

The method is an important extension of a method for non-
separable functions previously published by the authors. Tiis
new method allows for problems of larger dimension to be
solved, and will in most cases be more efficient.
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underlying mathematical function. In these cases deveati
based methods are not directly applicable, which leadseto th
need for methods that do not explicitly require derivatives
For an introduction to derivative free methods the reader is
referred to [1].

Generating set search (GSS) methods are a subclass
of derivative-free methods for unconstrained optimizatio
These methods can be extended to handle constraints, but
we will focus on the unconstrained case when the domain
D in the problem (1) is equal t&R™. A comprehensive
introduction to these methods can be found in [12]. In their
most basic form these methods only use function values
and do not collect any information such as average slope or
average curvature information. Computing this inform@tio
however, can significantly speed up convergence, and this is
done in the methods presented in [2], [3], [4].

In addition, information about the structure of the funotio
known a priori can also be useful. Suppose that the objective

with applications in statistical parameter estimationg-ec
nomics, medicine, industry — simply put, anywhere a math-
ematical model can be used to represent some real-world

f = Zf’m
i=1

process or system which is to be optimized. Mathematicallywhere each element function has the property that it is un-

we can express such a problem as

min_f(z), (1)

z€DCRn

where f is the objective function, based on the model which
is defined on the domai®. These models can range from
simple analytic expressions to complex simulations. Well
known optimization methods such as Newton’s method us
derivatives to iteratively find a solution. These derivasiv
must be provided, either through explicit formulas/congput

code, or, for instance, automatic differentiation.

Suppose, however, that the objective function is pro-
duced by some sort of non-differentiable simulation, or
that it involves expressions which can only be computed
numerically, such as the solution to differential equagion
integrals, and so on. In this case derivatives might not exis
or they may be unavailable if the numerically computed
function is subject to some kind of adaptive discretization

and truncation and therefore is non-differentiable, untike
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affected when we move along one or more of the coordinate
directions. For example, we might have

(1,22, 23) = fi(z1,32) + fo(w2,73). 2

Then, the function is said to be partially separable [9] and

we say thatf; has a large null space. If is partially

separable and twice continuously differentiable, then its
essian matrix,

er ... _9f
81% 0x10xy,
2 . .
v f(I) = . . )
o’y ... &f
Oxp Oz Ox2

wiII2 be sparse. For the function (2) the Hessian element
52— will be zero. If the function (2) is not twice contin-

uously differentiable, then the matrix of the correspogdin
finite differences, that is, the matrix with
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Given set of search directior@, step lengthy and an
initial guessz «— x.

flxr + h,xo, 23 + k) — f(x1 + h, 22, 23) While ¢ is larger than some tolerance
Repeat untilz has been updated or glle Q have

—f(z1, 29,23 + k) + f(ivl,:vz,%)}/(hk) =0, (3) been used:
in position (i,7) = (1,3) (and with similar expressions Get next search directiope Q.
for all other (i, j)-pairs) will be sparse for any, and any If f(z +dq) < f(z) = p(5)
nonzeroh and k, none of which have to be the same for Updatez: = < z + dq.
each(i, j)-pair. The sparsity structure is the same as for the Optionally increase.
differentiable case, so that the expression (3) is idelhtica End if
zero. This result can be extended to any partially separable End repeat
function, as proved in [5]. If no search direction provided a better function

In [15] a GSS method which exploits such structure value, decreasé.

is presented, which is applicable to the case where these Optionally updateQ.
element functions are individually available. End while

In this paper we present a GSS method which takes
advantage of the structure of partially separable funstion
without requiring the element functions (which may or may
not be differentiable) to be available. It is an extension @ &
of the paper [4]. We use the concept of average curvature A
introduced in [4].

This paper is organized as follows: In section Il we outline
a basic framework for GSS, as well as the previous work of
the authors on which the present paper is based. In Sections © @ >0
Il and IV we present our main contribution, which is the
framework for handling partially separable functions. Sec
tion V contains numerical results, and concluding remarks

are given in Section VI. new search directions. It is shown that the efficiency of the
method can be greatly improved compared to just using the
coordinate directions as the search directions throughout
The computation of curvature information can be done
the following way, which is a slight modification of
the methodology presented in [4]. Consider Figure 2, and
assume that the current point is the point markedand
that the next two search directions in the repeat-loop in the
pseudo code are the directions shown,and ¢.. When

, : p(z) searching along two directions in a row, there are four
P mu_st b_e_ no_ndecrea_smg and satisfyn o =~ = 0. Possible outcomes. Success-success (both the search along
For S|mpI|c_|ty,_|ncr_eaS|ng the step Ieng_th can be _th_ogghql andg- produce function values which satisfy the sufficient
of as multiplying it by 2, and decreasing it as dividing decrease condition), success-failure (the search algng
by 2, although .these rules may be more advanced._ F roduces a sufficiently lower function value, but the search
thg formgl requirements on these rules, see [12]..G|ve longgs does not), failure-success, and finally failure-failure.
m|!d requirements on the functiofi the step lengta W'I_I ._In all of these four cases, by computing the function value
ultimately go to zero, and the common convergence criterion: o fourth point, the function values at four points in a
for all GSS methods is thatis smaller than some tolerance. rectangle can be obtained. The details are given in Table .

As can be seen _from the pseud_o gode in Figure 1, th@rhe function values at four such pointsb, ¢ andd can be
set of search directions can be periodically updated. In [4]i serted into the formula

n
the authors present a method that computes average curva-
ture information from previously sampled points, assemble fle) = f(b) = f(d) + f(a), 4)
this information in a Hessian-like matrix and uses the 16— al [|d -
eigenvectors of this matrix as the search directions, whichf the objective function is twice continuously differealile,
amounts to a rotation of the old search directions. Once thithen (4) is equal ta;f V2 f(i)qe, Where i is some point
rotation has been performed, the process restarts, and newmithin the rectanglezbcd. If the function is not twice con-
curvature information is computed, periodically resigtin  tinuously differentiable, (4) captures the average cumeat

Figure 1. Simplified framework for a sufficient decrease GSShwd.

q2

Figure 2. Location of sampled points used for curvature agatn.

Il. GENERATING SET SEARCH USING CURVATURE
INFORMATION

We restrict ourselves to a subset of GSS methods, namehq
sufficient decrease methods withh search directions, the
positive and negative ofi mutually orthogonal directions,
of unit length. These directions will in generadtbe the co-
ordinate directions. A simplified framework for the methods
we consider is given in Figure 1. The univariate function
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Outcome Notes . . . .
SS The search along, moves the current best point The. _search d|rect.|ons iQ are then replaced with the
to b, and the search along moves the current best positive and negative of the eigenvectors(af
point toc. The function value af must be computed
separately.
) I11. EXTENSION TO SEPARABLE FUNCTIONS
SF The search along; moves the current best point
to b, and the search alongx computes the function . . .
value atc, but does not move the current best point. _ Suppose the functlplf IS partlaII)_/ sep_arable. As men-
The function value at must be computed separately. tioned in the introduction, the Hessian will be spars¢ it
. twice continuously differentiable, and if the Hessian ig no
FS The search along, computes the function value at . . . . .
point , but does not move the current best point. The defined, the matrix of average curvature information vv_|II
search alongz computes the function value at point be sparse [5]. Let be the number of nonzero elements in
d. The function value at point must be computed the lower diagonal of these curvature matrices. Then, even
separately. . . . .
though the matrixC' can be restricted to have this sparsity
FF Neither the search alorg nor g2 update the current pattern, the matrix’ cannot be assumed to be sparse, since

best point, but the function values at poibtand d
are obtained. The function value at pomnmust be
computed separately.

we cannot expect the finite differences (4) to be zero for
arbitrary search direction®. However, sparsity can still be

exploited.

Define the Kronecker product. Given two matrices
A € R™*™ and B, then the Kronecker producl ® B is
given as

Table |
THE FOUR POSSIBLE OUTCOMES WHEN SEARCHING ALONG TWO
CONSECUTIVE DIRECTIONS SMEANS SUCCESSF MEANS FAILURE.

in the rectangle. A® B =
The rectangle lies in the plane spanned by the search
directionsq; andg, since these were used consecutively. By
successively reordering how the “get next search direttionThe Kronecker product is useful in the present context
statement considers the directions@y one can obtain cur- because of the relation
vature information with respect to all thén—1)/2 possible
different combinations of search directions, in a finite and
uniformly bounded number of steps, which dependsnon
since there areD(n”) elements of curvature information Herevec(X) andvec(C) are vectors containing the entries
which must be assembled. (For this reason, the method is ngf the matrices and C' stacked row-wise [11].
suitable forn larger than abous0, but exploiting structure
can allow for much largen, as will be explained in Section 4¢
1)
The information can be assembled in a magfy, so that
Cp, in the case of a twice continuously differentiabfe ) ) )
containsg? V2 f(#)q; in positions(i, j) and (j, 1), which is Since we impose a sparsity structure .611 as well as
curvature information with respect to the coordinate syste Symmetry, all the entries in the upper triangle, as well as
defined by then directions in Q. (Note that the point:  all the zero entries ofec(C) can be removed from (8),
is different for each(s, j)-pair.) The diagonal elements of resulting in the overdetermined equation system
Cg must be computed separately, for instance when the step
length is reduced, since the preceding repeat-loop, cardbin
with the currentf-value then gives the function values at
three equally spaced points on a straight line fomadearch ~ where the vectoec(C) contains ther elements ofC' to
directions. be determined, and the? x r 0-1 matrix P, adds together
Once the matrixC, is complete, it is subjected to the the columns corresponding to upper and lower diagonal
rotation elementsC;; and Cj; for all off-diagonal elements, and
5) deletes the columns corresponding to zero entrigs.ifror
example, ifC is to be tridiagonal and is of size&x 3, that

where @ is the matrix with then unique search directions is,

(6)

AmlB AmnB

AXB =C < (BT @ A)vec(X) = vec(C).  (7)

Using (6) and (7) the rotation (5) can be written implicitly

Q" ® Q" )vec(C) = vee(Cy). (®)

QT ® QT)P.vec(C) = vec(Cyp), 9)

C — QCQQ",

as its columns, ordered so that they correspond to the X X
ordering of the elements ;. C' now contains curvature C=| x x x|,
information with respect to the standard coordinate system X X
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then it has one zero element and five nonzero elements ibet f be twice continuously differentiable and the Hessian

the lower triangle, so thaP. has sized x 5 and reads: Lipschitz-continuous in the sense that
10000 IV2f (@) = V2 ()l < Ll = yl. (12)
010 00
0000 0 Definer pairs of vectorgp®) ¢ k= 1,...,r, all of unit
01 0 0 0 length, such that théth row of A is equal to
P.=|10 01 00 (20)
¢ (B)T & o(K)T
000 10 (p ®q )Pc- (13)
00000 This means some of these vectors will be equal, but the pairs
00010 will be unique. In addition let pointsz*, k =1,...,r, be
L0 0 0 0 1] such that element of Prowvec(Cq),

Since the equation system (9) is overdetermined, we can (T2 prdey (k)
selectr rows from the coefficient matrix and the right-hand (Frowvec(Co))r = p" Vo f(2%)q™.
side, resulting in the: x r equation system Let 7 be such that

Prow(Q" ® Q") P.vec(C) = Prowvec(Cq),  (11)

where Prow is anr x n? 0-1 matrix which selects rows. ) )
Prow will be the first » rows of a permutedi? x n? Let N be the neighborhood of points such that
identity matrix. The resulting equation system (11) will be
signifi%/antly smaller than itsgcognterpart {8) whe(n az sparsi N = {I‘ le =2l <m k=1,... ’T} '
structure is imposed o, and the corresponding effort g, convenience, let us restate (11), as
required to compute the right-hand side is similarly snralle
If there are onlyO(n) elements to be determined, then the Avec(C) = Prowvec(Cg). (14)
number of steps needed to compute the entire right-hand side
Prowvec(Cq) does not depend om, which does away with
the practical limit on dimension discussed in the previou
section.

Exactly W_h_ich rowsPro\_N_shouId s_ele_ct in ord_e_r to create IV2f(z) — C|| < ||[A~Y|nLn.
a well-conditioned coefficient matrix is nontrivial, and is
sometimes called the subset selection problem in the literProof. Let us rewrite the contents dfrowvec(Cq):
ature (see e.g., [7]). One suitable solution procedure is to

max ||z* — || = 1.
]

Lemma 2: AssumeA is invertible. LetC' be the symmet-
sric n X n matrix constructed from the solution of (14). Then,
there exists an: € NV such that

determine these rows by computing a strong rank-revealing (Per;W"QeC(C;Q)):)
QR factorization of the transpose 6fow(Q” ® Q) and = pWTV2f(2")g™.
selecting the rows chosen by the theory and algorithms of = pkT (VQf(a:) + V2 f(2F) — VQf(a:))q(k)

Gu and Eisenstat, presented in [10]. An implementation of
this selection procedure can be found in [14].

P72 p(@)g®] +
IV. CONVERGENCE THEORY [p(k)T(VQf((Ek) - VQf(x))q(k)} . (15)

The method presented so far, being a sufficient decrease _ N o o )
method with 2n search directions which are the positive Then, and in addition defining = vec(V*"/(x)), equation
and negative ofy mutually orthogonal directions, adheres to (14) can be written as

the algorithmic framework and convergence theory of Lucidi Avee — AR 16
and Sciandrone [13]. We can therefore state the following vee(C) = te (16)
theorem, without proof. Here(Ah)y is the expression in the first parenthesis of (15),

Theorem 1:Suppose f is continuously differentiable, ande¢; is the expression in the last parenthesis of (15). If
bounded below and the level séfx) = {y’f(y) < f(x)} we consider the norm of a single elementirthis is
S[a;:igr:;ract. _Then, the method converges to a first-order el < PP NIVEFE) = V2E@) g™

y point.

We now prove that iff is twice continuously differen- < Ln, (17)
tiable, then the computed curvature matéixconverges to
the true Hessian in the limit.

Define

using (12) and the fact thatand ¢ have unit length. When
solving (14), we get

A= Prow(QT @ QT)P.. vec(C) = h+ A7 e.
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If we consider a single element &ec(C) and h we can
write
|(V&e(C)k — el < A7 [exl,

which can also be written
|Cij = (V2 f(@))is] < ([ A7 []ex]
Using the property of the 2-norm that

(18)

[[All2 < nmax |al,
]

as well as (17) we can extend (18) to
IC = V2f(@)|| < [|A7Y[nLn,

which completes the proofl]

We must now prove that there always exists a mafriwith
rankr, and that the termf A=!|| is uniformly bounded. Since
A is made up of the rows of the matriR” ® Q7)P., there
will be a choice of rows which imply full rank if the matrix
(QT ® QT)P. has rankr.

Lemma 3:For any orthogonal matrix) and any sparsity
structure to be imposed o€, the matrix (Q7 @ QT)P.
has full rankr, and its smallest singular valug. satisfies
o, > 1.

Proof. Since @ is orthogonal, so isQ”, and also

last corner point used for computirdg Suppose, that when
the computation of” is started the step length ds,.., and

that the maximum possible number of step length increases
beforeC' is computed ig. Then we have

t
n S Z 6maka71-
k=0
The only variable in this expression dg,,x, and we know
it goes to zero as the method converges. Consequently, so
mustn. O
This allows us to state the following theorem:

Theorem 6:Assume thatf is twice continuously differ-
entiable, bounded below and that the level séfs) are
compact. Then, as the method convergésconverges to
the true Hessian.

The proof follows from the preceding Lemmas. This result,
together with the preliminary numerical results in [6] &l

us to conjecture that the method actually converges to
second-order stationary points.

V. NUMERICAL RESULTS

For the sake of brevity, there are many common imple-
mentation details for GSS methods which have been omitted
in this paper. For instance, it is possible to have individua

(QT ® QT). For any sparsity structure, right-multiplying step lengths (e.gn step lengths, one for each positive-
(QT @ QT) with P. either adds together two columns, or negative search direction pair), to compute an approximate
deletes columns. Consequently, the columns of the regultingradient and performing Newton-like steps, have variation
matrix (Q7 ® QT)P. are orthogonal (which implies full on how step length(s) can be increased and decreased,
rank), and have either length one or lengif. It then choosep in several ways, and so on. These all affect
follows that the singular values are equal to the length othe numerical performance of the method. The purpose

the column vectors, either 1 ar2. O

Lemma 4: Prow can be chosen such that for a given
the smallest singular value ¢f is uniformly bounded below,
and consequently thatd || is uniformly bounded.

of the present paper is, however, to show the benefits of
exploiting sparsity when computing curvature information

in the context of GSS methods. For this reason, it is the
relative increase in performance when exploiting sparsity

Proof. This result follows from the theory and methods of that is important in our numerical experiments, which used,

Gu and Eisenstat [10], which guarantee that the rowsl of
(or equivalently the columns od”, as is done in [10]) can
be selected from the rows ¢0)” ® QT)P. in such a way
that the smallest singular value df is larger than or equal
to the smallest singular value 607 @ QT)P., divided by
a low order polynomial im andr. Sincen andr are given
and the smallest singular value @7 ® QT)P. is always
larger than or equal to 1, the result follows.

among other thingsy individual step lengths. The results
are shown in Table Il. The table reads, from left to right,
the function name, and the dimensianThe functions are

all differentiable, so the column indicates the number of
nonzero elements in the Hessian matrix. Then follow the
number of function evaluations required to reduce the ob-
jective function value from the recommended initial sauati

to 1075, first for the method exploiting sparsity, and finally

Finally, we show that; goes to zero as the GSS method for the method not exploiting sparsity. The functions allda

converges to a stationary point.

an optimal objective function valug* = 0.

Lemma 5: Assume that the step length expansion factor As one can see, one sometimes can get significant sav-
is uniformly bounded by, say)/. Then, as the step length ings when exploiting sparsity, for example for the ex-

0 go to zero, so does.

tended Rosenbrock function, CRAGGLVY, MOREBV and

Proof. That the step length goes to zero is an integral part TQUARTIC. The reason for this is that the new method is
of the convergence theory of GSS methods and is proved iable to rotate its search directions more often, which adapt

e.g. [12].n is the diameter of neighborhood of points.
Since all the points inV" lie within the rectangles of points
used in the formula (4), it follows thaj must be smaller

them to the local topography of the objective function.
If we look at the extended Rosenbrock function there
are several advantages to exploiting sparsity. Firstlyethe

than maximum possible distance between the first and thare 3n/2 nonzero elements in the Hessian, which means
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Function n r  Sparsity No sparsity
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