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Abstract—An accurate measurement of the liver iron over-
load is essential for the management of diseases such as tha-
lassemia and hemocromathosis. The Magnetic Iron Detector is
a susceptometer, which measures the total iron overload in the
liver and has been used on more than 800 patients of Galliera
Hospital (Genoa, Italy) since February 2005. The iron overload
is obtained by calculating the difference between the measured
magnetization signal and the patient’s background signal,
which is the magnetization signal that would be measured for
that patient with a normal iron content. This study describes
two models for calculating the background signal using the
measurements and the anthropometric features of 84 healthy
volunteers. The first model introduces a statistical correction
to the signal computed from the body shape of the subject
assuming it to be made of water. The second model is based
on statistical learning and learns from the volunteers’ data a
mapping from the anthropometric features to the background
signal. We present two approaches to combine the models. The
assessment of the models on the 84 volunteers show that the
performances of the models are comparable and that we can
confidently estimate the background signals of patients. The
model sensitivity (0.9 g) allows the physicians to monitor the
iron overload variations due to the therapy. These models are
currently in use at the Galliera Hospital.

Keywords-Medical Computation; Liver Iron Overload; Mag-
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I. INTRODUCTION

An accurate assessment of body iron accumulation is
essential for the diagnosis and therapy of iron overload in
diseases such as hereditary hemochromatosis, thalassemia
and other forms of severe congenital or acquired anaemia.
For example, in hereditary hemochromatosis, the subject
adsorbs an excess of iron from the diet every day, while in
thalassemia major the iron overload is caused by the frequent
blood transfusions administrated to the patient to contrast its
anaemia. Being toxic, the iron in excess must be removed by
a tuned therapy: for this reason hemochromatosis patients are
subjected to phlebotomy therapy while a chelation therapy
is administrated to transfusion dependent patients.

The liver is the target organ for evaluation of the iron
overload. A normal liver contains about 0.5 g of iron [1],
whereas the overload can be higher than 10 g in severe

iron-overload states. The liver biopsy is considered the gold
standard to evaluate liver iron overload [1], [2]: this invasive
measure evaluates the iron concentration in a small sample
of hepatic tissue. Validated non-invasive techniques are MRI
[3] and SQUID-susceptometer [4].

The Magnetic Iron Detector (MID) susceptometer [5],
[6], [7], [8] quantifies the amount of iron in the liver by
measuring the susceptibility of the human body. A magnetic
field B, applied to the body, induces a magnetization of its
tissues. Because the iron deposits in the living biological
tissues exhibit paramagnetic behavior [7], [9], the change
of the field we are interested in is very small (∼ 10−6B
for a normal iron level). Since the MID generates a low
frequency magnetic field, the measurement is performed
with a pickup coil using the synchronous detection. The
apparatus of the MID susceptometer is sketched in Figure
1A. Two pickup coils are assembled symmetrically with
respect to the magnet in order to cancel the common mode
signal induced with no patient is placed between the magnet
and the lower pickup. The signal becomes non-zero when
the patient is placed in the measurement area.

Since February 2005, the MID is in use at the Gal-
liera Hospital of Genoa and more than 1300 iron overload
evaluations have been performed [7]. MID obtains the iron
overload by computing the difference between the measured
magnetization signal of the patient and its background

Figure 1. MID Instrumentation. (A) Two pickups are placed symmetrically
with respect to the magnet: the sum of their signals is zero in the absence
of a patient. (B) Weight function g(~r) of the MID (see Section III-A).
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signal, defined as the magnetization signal that the patient
would generate with a normal iron level. The evaluation of
the background signal is performed under the hypothesis
that the magnetization signal of a patient, without iron
overload, is the same as the one of a volunteer with the
same anthropometric characteristics.

Until January 2010, the background signal was calculated
by a statistical model [7], that was developed exploiting the
correlation coefficient between the measured magnetization
signal of volunteers (i.e., subjects with a normal iron level)
and the anthropometric variables. Moreover, a linear depen-
dence of the magnetization signal from the input variables
of the model was assumed. The sensitivity of this model is
about 1 g, which must be compared with the reproducibility
of the iron overload measurement of the same patients (less
than 0.5 g) and with the iron contents of a healthy liver
(about 0.5 g).

Two models have been developed in order to improve the
MID sensitivity. Each one were the object of two PhD theses
[8], [10]. The first model was developed following [11],
in which the direct calculation of the magnetization signal
was proposed assuming for the body a uniform magnetic
susceptibility distribution equal to that of water. The second
model is based on statistical learning theory [10], [12].

This paper is devoted to the description and the com-
parison between the two models. Moreover, we propose
two different methods for combining their results. The
performances of the models, evaluated on a common set
of 84 healthy volunteers, are quite equivalent, each one
introducing a benefit in the background signal calculation.
From January 2010 both this models are being used at
the Galliera Hospital (Genoa, Italy) for assessing the iron
overload with MID.

The paper is organized as follows: in Section II we
describe the measurement of the magnetic signal and the
anthropometric features recorded for each subject. In Section
III we first detail the two models developed to estimate
the background signal and then two approaches adopted
to combine their predictions; secondly we describe the
experimental protocol adopted to compare them. In Section
IV we present the experimental results and conclude the
paper with the discussion in Section V.

II. THE MEASUREMENTS

Here we describe the measurement of the magnetization
signal and the anthropometric features recorded for each
subject.

A. The Magnetization Signal

During the measurement, the patient is placed inside
the measurement area and the patient’s position along the
stretcher is such that the Y axis, positively oriented towards
the head, lays along the longitudinal symmetry axis of the
body (Figure 1A). The center of the patient’s trunk falls
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Figure 2. The iron-overload contribution to the magnetic signal. The
abscissa X (cm) is the position of the magnetic field axis relative to the
center of the trunk. (A) Anthropomorphic plastic phantom with different
doses of paramagnetic powder. (B) Magnetization signal of a patient with
liver iron overload and of a volunteer with similar anthropometric data.

on the X axis origin and the abscissa of the liver center
of mass is negative. As the stretcher moves along the rails,
the vertical axis of the magnetic field slides along the X
axis, allowing us to scan the whole liver region. Figure
2A reports the magnetization signals of an anthropomorphic
plastic phantom dosed with paramagnetic powder, equivalent
to 6.5 g and 30 g of iron. Figure 2B shows the comparison
between the signal from a patient with an iron overload of
about 9 g in the liver and that of a healthy volunteer with
similar anthropometric data.

The contribution to the magnetic susceptibility of the
iron overload is obtained by calculating the difference be-
tween the magnetization signal and the background signal
attributed to the patient on the basis of their anthropometric
characteristics. This difference is maximum when the mag-
netic field axis crosses the liver center of mass. The iron
overload in grams is obtained by dividing this signal by the
contribution to the signal of 1 g of iron uniformly distributed
in the liver of the subject [7].

B. Anthropometric Features

The anthropometric features measured for each subject
are: age, body weight and height, body mass index, body
surface area, torso cross section areas at the level of the
liver, the shoulders and the hips respectively and torso mean
thicknesses at the level of the liver, the shoulders and the
hips respectively. The last 6 features are calculated from the
3D-shape of the body which is measured with a system of
6 lasers located on the ceiling. An example of acquisition is
reported at the top of Figure 3. Note that the system is not
able to detect the empty regions under the body.

The liver iron overload is common to several diseases
[7]. As a consequence, no special requirements had been
imposed on volunteers enrolling. We applied the Student’s t-
tests for comparing the means of the anthropometric features
of the volunteers and patients populations. We obtained that,
with a confidence level of 0.01, the means are the same, with
the exception of the age and the torso mean thicknesses.
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III. COMPUTATIONAL MODELS FOR ESTIMATING THE
BACKGROUND SIGNAL

In this section we first present the two models developed
to compute the background signal. Secondly, we propose
two approaches to combine their predictions. Finally, we
discuss the experimental protocol adopted to compare their
performances.

A. Hybrid Waterman Model

Knowing the geometry of the body and the distribution of
its magnetic susceptibility, χ(~r), the magnetization signal of
the body, at position ~X = (X, 0, 0), is obtained by solving
the forward problem [13]

φ( ~X) =
∫
V

g(~r + ~X)χ(~r) d~r, (1)

where V is the volume of the body and g(~r) is the weight
function (Figure 1B) that gives the contribution to the
magnetization signal of a unitary volume of matter with
unitary magnetic susceptibility. The function g(~r) was ob-
tained measuring the magnetization signal of a ferromagnetic
probe. The quality of this weight function was verified
[8] with cylindrical samples of water whose magnetization
signals were measured by MID and calculated via (1).

The signal calculated assuming a uniform distribution
of susceptibility, equal to that of water (−9 · 10−6, SI
units), is called the waterman [11]. Figure 3A reports the
comparison between the measured magnetization signal and
the waterman signal for an average-built volunteer. Note that
in the position around X = 0 cm, the measured signal is
larger in absolute value than the waterman. The opposite
observation can be made for the border positions. This is
true quite in general as it is shown in Figure 3C, which
reports the spatial dependence of the differences between
the measured signal and the waterman for each volunteer.

The most likely explanation for this discrepancy is that the
waterman is computed on a volume bigger than the actual
body volume, since the 3D-shape includes the empty regions
under it. It was verified that a volume equivalent to that
of these regions and filled with water generates a signal
comparable to the error of the waterman [8]. In addition to
this contribution, the error also depends on the difference
between the magnetic susceptibility of the water and that
of the body tissues. As a first approximation, we used the
mean of the errors to correct the waterman signal and named
this method the hybrid waterman model. To compute the
background signal, first the waterman is calculated from the
3D-shape, then for each measuring position, the mean of the
errors reported in Figure 3C is added.

B. Statistical Learning Model

The statistical learning approach [14] aims to build an
estimator of the background signal from a set of given input-
output examples, called the training set. Another approach

Figure 3. The measured magnetization signal compared to the waterman
signal (A) and to the estimates of the other models (B) for a volunteer
(53 kg). (C) Differences (dots), and their average (solid line), between the
measured signal and the waterman for the 84 volunteers.

would be to directly model the probabilistic relationship
between input and output, for instance with Bayesian tech-
niques [15]. The input examples represent the anthropomet-
ric features of the volunteers and the output examples are the
corresponding background signals. Since we are interested in
estimating the background signal only at the fixed measuring
positions, it is a vector-valued learning problem, where each
output component corresponds to the measure in a specific
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position. It is important that the estimator we learn has good
generalization properties on new unseen data and does not
predict correctly only the training examples. We begin by
formulating the problem in mathematical terms, continue
presenting a well-known learning method and conclude the
section discussing some choices we made.

We consider a training set of input-output pairs {(xi, yi) :
xi ∈ Rp, yi ∈ Rd}ni=1, where Rp is called the input space
(p is the number of anthropometric features) and Rd is
the output space (d is the number of measuring positions).
We want to estimate a function f : Rp → Rd able to
generalize on unseen examples. An estimator, f , can be
found minimizing the empirical error

En(f) =
1
n

n∑
i=1

||yi − f(xi)||2d , (2)

which is the average prediction error on the examples of the
training set. We search for the estimator in a Reproducing
Kernel Hilbert Space (RKHS) [16] defined by a matrix-
valued kernel, K : Rp × Rp → B(Rd), where B(Rd) is
the space of d×d matrices. The function that minimizes the
empirical error En in a RKHS can be written as

f(x) =
n∑
i=1

K(x, xi)ci with ci ∈ Rd ∀i = 1, · · · , n .

(3)
The coefficients ci must satisfy

Kc = y ,

where c = (c1, . . . , cn) and y = (y1, . . . , yn) are nd-
dimensional vectors where we concatenated the coefficients
ci and the outputs yi, respectively. K is called the Gram
matrix and is a n×n block matrix, where each block (i, j)
is the d× d scalar matrix K(xi, xj).

To recover the coefficients c we should invert the matrix
K, but K is not guaranteed to be invertible, nor stable under
inversion. Tikhonov regularization [17], [18] solves these
issues by adding a regularization term to the empirical risk,
thus minimizing the following functional

1
n

n∑
i=1

||yi − f(xi)||2d + λ||f ||2K .

The norm defined by the kernel K controls the smoothness
of the candidate vector-valued estimator f and the relation-
ships between its components; λ is called the regularization
parameter that balances the trade-off between fitting the
training data and choosing simpler estimators. The estimator
obtained with Tikhonov regularization can still be written as
in (3), but the coefficients are now given by

c = (K + nλI)−1y ,

where I is nd×nd identity matrix. We note that the penalty
term has the effect of stabilizing the inversion of the matrix
K by increasing all its eigenvalues by nλ.

Several interesting kernels for vector-valued functions
have been recently introduced in the literature [19], [20].
Unfortunately, often these kernels require to fine tune many
parameters in order to properly leverage the relationships
among the output components.

After some preliminary assessment, we opted for a simple
matrix-valued kernel of the form K(x, x′) = k(x, x′)A,
where k(x, x′) is a scalar kernel and A is a positive semi-
definite d × d matrix. We chose a linear kernel k(x, x′) =
x · x′ that proved to produce results as accurate as the
non linear gaussian kernel, which requires the tuning of
the width and is more expensive to compute. The matrix
A was chosen to be the d-dimensional identity matrix. This
choice renders the vector-valued learning problem equivalent
to solving d scalar learning problems and the relationships
that exist among the output components are not exploited.
The only coupling among them is the common regularization
parameter λ, that imposes the same level of regularization
on each output. To choose the proper value of λ we followed
the procedure described in Section III-E.

C. Weighted Average Combined Model

The first combined model consists in computing the
weighted average of the predictions of the statistical learning
model (ysl) and of the hybrid waterman model (yhw). For
each measuring position, the weighted average is computed
according to the formula

y =
ysl

σ2
sl

+ yhw

σ2
hw

1
σ2

sl

+ 1
σ2

hw

, (4)

where σ2
sl and σ2

hw are the variances of the differences
between the measurements and the predictions.

D. Learning the Error of the Waterman Model

The second combined model uses the statistical learning
framework to estimate the difference between the measured
signal and the waterman, using as input variables the an-
thropometric features. If there exists a relationship between
the anthropometric features and the error of the waterman
model, we should be able to learn it and use the estimates
to correct the predictions of the waterman model. In the
following, we refer to this model as learning waterman.

E. Assessment of the Models

In order to assess the performance of a model we need
to separate the data from which the model is trained from
the data on which it is evaluated. Usually these are called
the training and the test sets. All model parameters must be
chosen using only the training set, otherwise we obtain a
biased estimate of the performance of the model. Since our
data is scarce we cannot split it into two sets. Therefore
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we resort to the Leave-One-Out Cross Validation (LOO-
CV), which consists in holding out one example for testing
and using the remaining N − 1 for training. The procedure
is repeated until all examples have been used for testing.
We thus obtain the predictions for each volunteer and the
corresponding errors. The distribution of these errors can be
used to assess and compare different models.

For the statistical learning and the learning waterman
models, we used two loops of LOO-CV. The inner loop is
used to assess the estimators obtained with different values
of the regularization parameter, λ, while the outer loop is
used to estimate the performance of the model trained with
the optimal value of λ. More precisely, one volunteer at a
time is held out for testing. The model is trained on the
remaining N − 1 volunteers with a regularizing parameter
λ1. This parameter is chosen via the inner LOO-CV loop.
That is, one of the N−1 volunteers is held out to assess the
predictions error of the models trained on N − 2 volunteers
with regularizing parameters λj , j = 1, . . . , 150. Therefore,
150 models will be trained and tested. Then another volun-
teer (of the N − 1) is held out, and other 150 models are
trained on the remaining N − 2 volunteers. The prediction
errors associated to the same regularizing parameter value λj
are averaged. The parameter value associated to the smallest
average error is used to train the model on all N − 1
examples. We repeat this procedure until all volunteers are
used once for the external loop, yielding N models with
their respective regularization parameters and predictions.

IV. RESULTS

Figure 4 reports the distributions (as box-plot representa-
tion) of the differences between the measurements and the
background signal computed with the different models for
the position X = 0 cm. The LOO-CV procedure described
in the previous section was used to obtain the predictions.
Table I reports the standard deviations of the LOO-CV
error distributions for positions between X = −8 cm and
X = +8 cm, which is the most significant range for the
background signal calculation.

We observe no significant differences between the models
in all positions, but for the position X = -8 cm, for which
the F-test yields p < 0.01 for the differences between the
variances of their error distributions. However, combining
the two models we do not achieve a significant increase
in prediction accuracy. This indicates that most of the
background signal is explained by the 3D-shape and that
the other features do not carry additional information.

Furthermore, we found a positive linear correlation (angu-
lar coefficient 0.7, R=0.77) between the errors of the hybrid
waterman and the statistical learning model, indicating that
the two models are not independent. In fact, we recall that
the statistical learning model uses 6 features that are directly
computed from the 3D-shape.
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Figure 4. Box-plots of the distributions of the errors

Table I
STANDARD DEVIATION OF THE DISTRIBUTION OF THE DIFFERENCES

BETWEEN THE MEASURED AND CALCULATED SIGNAL [µV ]

Model Measurement Position [cm]
−8 −4 0 +4 +8

Statistical Learning 0.51 0.41 0.36 0.42 0.50
Hybrid Waterman 0.36 0.37 0.35 0.39 0.44
Weighted Average 0.39 0.37 0.33 0.38 0.43

Learning Waterman 0.39 0.38 0.34 0.38 0.41

Since the center of mass of the patient’s liver falls between
X = −8 cm and 0 cm, the accuracy of the predictions
in the positions X = −8,−4 and 0 cm is paramount. The
average error in these position for the statistical learning
model is 0.43 µV, while for the other models is 0.36 µV,
which corresponds to an error of about 0.9 g of iron. This
error is 20% better than the error (1.1 g) of the first model
developed for calculating the background signal, that was
evaluated on a dataset consisting of 142 volunteers [8].

V. CONCLUSION AND FUTURE WORK

In this paper, we presented two models for calculating
the background signal of patients measured with the MID
susceptometer. Since 2005 this apparatus is in use at the
Galliera Hospital of Genoa and more than 1300 iron over-
load evaluations have been performed. Both models have
been developed on the measurements and the anthropometric
features of 84 healthy volunteers. The first model, named
hybrid waterman, calculates the magnetization signal gener-
ated by a water volume with the same external geometry of
the subject (waterman) and corrects it by adding the mean
error of the watermen evaluated in a population of healthy
volunteers. The second model is based on statistical learning
and learns from the volunteer data a mapping from the
anthropometric features to the background signal. Finally,
two methods to combine these models were proposed. Their
performances are very similar and the combination of the
two does not introduce significant accuracy gains. The
evaluated model error (about 0.36 µV, equivalent to 0.9 g
of iron) allows the physicians to monitor the iron overload
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variations due to the therapy of patients. In order to detect
mild overloaded states (between 0.5 and 1 g of iron) this
error should be reduced. The limit of 0.5 g corresponds
to the reproducibility error of the instrument [6], [7]. To
improve the MID error, the number and distribution of
healthy volunteers must be increased, while also improving
the quality and the number of measured anthropometric
parameters. Furthermore, we believe that classifying the
volunteers with respect to their anthropometric features and
developing of a different model for each category (e.g., ba-
bies, adults, oversize, etc) would reduce the error. Regarding
the statistical learning model, current work is focused on
developing a matrix-valued kernel that is able to exploit
the correlations among the measurements in the different
positions. A new generation Magnetic Iron Detector is now
under construction, all the techniques presented here will
be the basis for the development of new models for the
estimation of the background signal of the patients that will
be examined with the new susceptometer.

From January 2010 the statistical learning, the hybrid
waterman and the weighted average models are in use at
the Galliera Hospital in Genoa, Italy, for assessing the iron
overload with MID.
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