
Advances in Generalization and Decoupling of Software Parts in a Scientific
Simulation Workflow System

Arne Bachmann, Markus Kunde, Markus Litz, Andreas Schreiber
German Aerospace Center

Simulation and Software Technology
Cologne, Germany

{Arne.Bachmann, Markus.Kunde, Markus.Litz, Andreas.Schreiber}@dlr.de

Abstract— Scientific simulation workflows today consist of a
pool of simulation models of different domains that are linked
together. In the past this was often done with highly specific
connections between the simulation models, e. g., batch-scripts
or use of commercial integrated systems prescribing certain
procedures. This strong coupling led to several problems like
the non-reusability of a simulation model in other contexts
or other software environments. To address this situation a
concept called Chameleon was developed to provide a general
decoupled approach between the models. The separation of
concerns principle was applied to disconnect the models,
their data and a underlying simulation framework as clearly
as possible. The Chameleon ideas have been realized on
top of the integration frameworks ModelCenter and Remote
Component Environment. The feasibility and the advantages of
this concept will be pointed out in this paper. After discussing
our experiences with drawbacks and merits of the currently
used commercial framework and the transition to an open-
source framework we give an outlook on future topics, which
are relevant for a simulation software integration in scientific
collaboration on a daily basis.

Keywords—Scientific simulation; integration; workflow; col-
laboration; framework.

I. INTRODUCTION

Interdisciplinary collaboration in scientific simulation,
modeling and exploratory research is a common activity
among scientists in universities, companies and federal insti-
tutions. The requirements for this kind of locally distributed
cooperations between researchers from very diverse fields of
science are well-known [1], [2], and many software systems
try to fulfill them and provide researchers with tools such
as integrated environments, simulation data browsers and
provenance explorers to deal with the associated technical
challenges in scientific knowledge accumulation.

To our knowledge, there is no all-in-one solution available
yet, but rather a lot of specialized and/or experimental
academic tools, and a huge amount of commercial products
that often fail to address the specific needs of scientific
data management, flexibility to change workflows at any
time, real-time monitoring and powerful post-processing
facilities. Therefore, aside from similar solutions for this
vast software field like Keppler & Taverna [1], [3], iSight
[4], and many more, also at the German Aerospace Center

(DLR) efforts were undertaken to create a suitable system,
originally in the field of aircraft predesign, later adapted for
use in more loosely related fields such as assessment of air
traffic climate impact in the DLR-project climate-compatible
air transport system (CATS), innovative concepts in engine
design in Evaluation of Innovative Turbo Engines (EVITA),
and of national and international air traffic modeling (IML2).
The software system created at DLR and presented in this
paper certainly does not want to be the future all-in-one
solution described above, but strives to reach a new level of
conceptual and implementation abstraction and decoupling
of its inter-component relations.

As already presented in previous papers [5], [6], there
has been software development going on at DLR to provide
researchers in aerospace-related fields with tools necessary
to run distributed simulations and experiments on top of
the existing commercial integration framework ModelCenter
[7]. Use cases in scientific software integration were already
presented elsewhere [8], [9]. In this paper we present a
generalization of the simulation environment architecture we
developed over the last few years.

The paper is organized as follows: Section II gives an
overview about what we call the ”Chameleon-principle” and
shows the advantage of using a generalized and decoupled
approach in scientific simulation workflow systems. Sec-
tion III describes the original simulation environment set-up
we used and outlines the main advantages and challenges
with regards to the tenets of the Chameleon principle. In
Section IV the new simulation environment is introduced
with its (dis-)advantages regarding Chameleon. Section V
draws a conclusion including a brief evaluation of current
outcomes and how to proceed with further development
to steadily increase the usefulness and universality of our
software design for researchers and engineers.

II. THE CHAMELEON SIMULATION ENVIRONMENT

In short, Chameleon is the name of a concept for simu-
lation and scientific software integration environments, tar-
geted at experimenting and collaborating in interdisciplinary
scientific simulation, modeling and assessment.

34

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

During the DLR-projects TIVA, TIVA-II, UCAV-2010,
CATS and EVITA [10] work on a generalized simulation
environment began. Those efforts culminated recently in a
product called ”Chameleon Suite”, which denotes rather a
design principle than a singular software product, because
there are several ways that Chameleon can be (and was
to be) turned into executable software. Since commencing
development it was determined that for the software to
succeed there must be a modular and highly abstracted
software design, since the projects listed above all stretched
over several years and follow-up projects needed and need
to be able to build upon the existing software product,
while new requirements may arise at any point. The design
therefore follows the principle of separation of concerns
(SoC) to allow for later changes in any separate part without
inflicting consecutive adaptations in the other parts. Figure
1 shows the general idea of separating three distinct parts
of a simulation environment, namely the scientific simula-
tion applications (from now on called ”tools”) with their
respective specific input / output demands, the common data
format Common Parametric Aircraft Configuration Scheme
(CPACS) [11], the software libraries that can be used by
framework components as well as users’ applications, and
the software integration framework (also called ”platform”),
on which our software is built on.

Figure 1. Separation of concerns by decoupling core components in the
Chameleon simulation environment.

A. Scientific tool integration

The integrated simulation tools need to be separated from
the integration platform as well as from common functions
(externalized into reusable software libraries) and the data
format used to communicate between tools. Also, the input
and output data formats of integrated tools may differ from
the data format used to transfer information between tools,
when they are called from a workflow engine that controls

the execution flow, which is most often provided by the
integration framework.

B. The common data format

The data format and its underlying data model as the
original driving core component, originally launched in the
TIVA project, was specifically designed independently of
any implementation details, to capture the structural and
parametric description of aircraft configurations. The data
format is wished to progress and extend independently
from the integration environment on its own, although often
changes arise from current project demands. Changes to the
data format must only conform to the data integrity and
domain constraints, but not to the technical realization of
any tool using it. This way progress in disciplinary research
is encouraged and not hindered by dependencies on libraries
and existing integration state. Chameleon offers components
to work with CPACS data; this contains importing, exporting
and updating, spanning over several XML-files, including
remote web-resources.

C. The software integration framework

The software integration framework is the biggest asset
but also often the most aggravating lock-in for every collab-
orative simulation, or other workflow environment. In order
to keep even this heavy-weighing part on which everything
else rests upon interchangeable, we developed all other core
components in a way to stay decoupled and independent
of the underlying framework. This approach seems quite
bold, because frameworks differ largely in their capabilities
regarding parallelization, workflow, numeric optimization,
infrastructure, architecture, but also their supported data
types, structures and runtime models. Regardless of this,
we will show that it is possible to abstract a simulation
framework from the underlying integration platform while
not only retaining a useful and usable workflow and experi-
mentation system, but also gaining all features that emerging
frameworks may offer.

D. The common software libraries

As shown in Figure 2, there are two helper libraries for
data manipulation and direct data access, namely TIXI and
TIGL. They have been named after the TIVA project for
historical reasons.

The first supporting library that was developed was the
TIVA XML Interface (TIXI). Since CPACS data is com-
pletely based on XML, to simplify the access to the central
data format the TIXI library has been developed to shield
the application developer from dealing with the complexities
of XML structure handling. Dealing with the full functional
range of XML is mostly not necessary because many appli-
cations use input files based on quite simple data structures.
These data structures are often single floating point or
integer numbers, and their meaning depends on the exact

35

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

position of these numbers in the input or output file. More
advanced types of these files are name/value pairs or lists of
numbers to reflect vector or array data. On top of the full-
fledged XML-library libXML2 [12], the C-library TIXI was
designed to shield the developer from XML processing when
performing simple tasks like writing an integer or reading a
matrix.

A second dynamic library we developed is called TIVA
geometric library (TIGL) and can be used for easy pro-
cessing of geometric data stored inside CPACS data sets.
With TIGL it is possible to directly execute geometric
functions on fuselage and wing geometries. In the future,
the functional volume of the TIGL library shall be extented
to handling of other aircraft parts like for instance engine
nacelles. The geometric library itself uses again the TIXI
library to access CPACS data sets, while leveraging data ma-
nipulation of all supported geometry types to, e. g., build up
a prevalent 3D-Model of the contained aircraft in memory.
For the time being only wings and fuselages are supported,
with more to come. The functional range of the library
goes from the computation of surface points in Cartesian
coordinates up to export of airplane geometry to different file
formats (IGES, STL and VTK). Beside these computational
functions, TIGL can be used to obtain information about the
geometric structure itself, for instance how many wings and
fuselages the current airplane configuration has.

The overall architecture regarding those mostly indepen-
dent software parts is displayed in Figure 2.

Figure 2. Coarse depiction of Chameleon’s architecture.

E. Advantages of the Chameleon approach

The general idea of our decoupled architecture is to sim-
plify the technicalities connected with distributed computing
and provisioning of highly specialized simulation tools of
different scientific fields as much as possible. Therefore, the
simplicity to set up and configure workflows and to introduce
new tools into the environment was one of the main drivers
during development.

The second most important advantage of the Chameleon
approach is the additionally gained ”business” value stem-
ming from the decoupling principle: Every newly integrated
tool that is based on the abstraction of core components as

explained above instead of on legacy technology provides
an instant bonus to current and future simulation projects
because it is abstracted in a way that allows not only
its reuse in other projects and contexts, but also in other
integration frameworks and with other data formats. This is,
in a nutshell, the main advantage of adhering to a strict SoC
in a scientific workflow environment, that, to our knowledge,
is unprecedented. Interfacing with a common data format
increases interoperability and cooperations become easier to
start with each newly added tool. Inclusion of many tools
into one environment boosts productivity and reproducibility
of results. Validation capabilities are much stronger when
working with workflows instead of plain, manually set up
process chains (like batch files or hand-crafted converter
scripts).

Additionally to the separation of core parts in Chameleon,
a host of different helper components is deployed for every
Chameleon version, spanning convenient helper components
for finding errors, sending email-notifications (useful in
long-running workflows), graphical components for data
extraction, data mapping, three-dimensional visualization
plugins, script language integration, logging and more.
These components cannot always be copied as they are
from one Chameleon instantiation to another Chameleon
implementation based on another integration framework, but
they are rather provided, pre-manufactured and supported by
the Chameleon team to comprise a comprehensive collection
of tools needed to design scientific workflows, experiment
with domain values and exchange data and ideas with
colleagues. The usage of the libraries, of the data format,
and most of the workflow features are virtually just the same,
from a user’s perspective, regardless of the platform used.

In the following two subsections we will present the cur-
rently supported integration frameworks that Chameleon was
developed to run on, along with their respective advantages
and drawbacks.

III. PHOENIX MODELCENTER

The simulation environment ModelCenter (MC) is a
commercial product from Phoenix Integration, a software
vendor located in Philadelphia, USA. MC is based on a
client / server architecture where the ModelCenter applica-
tion itself is a client-side Microsoft Windows application
to build and monitor simulation workflows. On the server-
side an application server called Analysis Server is used to
provide the software infrastructure for distributed execution
of simulation models. Alternatively, a product called Center-
Link can be used, which allows asynchronous and queued
execution of packaged models independently of the MC
client. Simulation models can be constructed as scientific
workflows in MC and run either in the the integrated
workflow environment or on the above-mentioned server.
A scientific workflow can be either a data- or process-
driven tool chain with capabilities similar to the Business

36

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Process Modelling Notation (BPMN). The following sections
enumerate the key advantages and drawbacks of MC when
used as the foundation for the Chameleon simulation envi-
ronment:

A. Advantages

• Tool based simulation approach; application wrapping
• Runtime tool execution depending on fixed number of

input- and output variables, synchronous data transfer
• Data- and process-driven approach available
• Choice of several workflow-driving schedulers
• Many integration components included: Optimizers,

Calculation software integration (e. g., , Excel, Matlab,
ANSYS)

B. Disadvantages

• Even moderately large data sizes not supported
• No integrated support for XML-based data formats

(yet), although internally running on XML-technology
• No server-based GUI for the individual tools providable

(availability not foreseeable in the future)
• No runtime support for wiring up complex workflows

(e. g., wizard functionality)
• Hard to conceive ways on how to add support for

collaboration in teams
• No possibility to add additional cross-cutting tech-

nologies like, e. g., provenance, data management, user
access rights; may be included in an upcoming version

On the one hand, the listing shows that the simulation envi-
ronment comes with all general functionality to work with
the basic idea of Chameleon in combination with simulation
workflows. But on the other hand, the disadvantages bar us
from building a really integrated simulation environment,
which addresses the needs of researchers regarding a full-
fledged collaboration software. ModelCenter is a useful
software for creation of simple simulation workflows, but
a simulation environment should address not only the pro-
cess, but also potentially complex and dynamic data (-
management) and the collaboration issues.

IV. REMOTE COMPONENT ENVIRONMENT

The integration framework Remote Component Environ-
ment (RCE) [13], formerly known as Reconfigurable Com-
puting Environment, is an open-source product from the
DLR institute Simulation and Software Technology (SC)
[14], department Distributed Systems and Component Soft-
ware (VK) and the Fraunhofer Institute for Algorithms and
Scientific Computing (SCAI). RCE is a grid component
framework for distributed computing based on the Eclipse
Rich Client Platform (RCP) and provides core functions
needed in a distributed environment. These features, among
others, are:

• Authorization and authentification (AA)
• Detaching of running workflows from the client’s GUI

• Operating system independency due to use of the RCP
and Java platform (Linux, Windows, Solaris, AIX, Mac)

• Modular framework based on OSGi [15] allows for
further enhancements regarding emerging technologies,
e. g., provenance and knowledge management

• Inter-instance file transfer and notifications
• Visual workflow editor
• Data management
• Distributed logging view

RCE was originally designed in a project concerned with
the predesign of ships in collaboration with dockyard com-
panies. Because predesign processes for ships have a lot in
common with the predesign tasks for aircraft, RCE was a
natural candidate to create a Chameleon environment on.
Similar to the structure of the previous section, an examina-
tion regarding advantages and disadvantages follows:

A. Advantages

• Tool-wrapping for simulation tool integration
• Runtime tool execution based on a data-channel con-

cept, leading to asynchronous data transfers
• Data-driven approach, allowing streaming of input and

output data values
• GUIs allowed for server-side simulation tools, accessi-

ble from every RCE instance in a network
• Support for wiring up complex workflows (wizards)
• Possibility to extend the system for collaboration tasks
• Open architecture allows to add additional technologies

like provenance, data management and visualization

B. Disadvantages

• No process-driven approach available yet
• No workflow-scheduling approaches, logic is currently

implemented only in the integrated components
• Young product; needs an active community, code com-

mitters and operational experience
It is obvious that RCE is able to execute simulation
workflows as well. The main advantage of RCE is the
flexibility of being built on top of the open source RCP and
OSGi platforms and therefore having the opportunity to add
collaboration topics and additional technologies to it. For
institutions like DLR, working on strongly multidisciplinary
projects with locally distributed teams of manifold profes-
sions there is a need for supporting and integrating new
technologies in addition to create and execute workflows
whenever need arises.

V. CONCLUSION AND FUTURE WORK

The transition from a data format and tool integration in
ModelCenter – which was developed over several years and
in several projects as mentioned in Section I – to the new
integration framework RCE, was prototypically exercised
and evaluated. The software development overhead was
quite small in comparison to the former projects, because

37

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

of several facts: The data format and its accessor libraries
were already created, tested and broadly in use. Installation
overhead is minimized, since the infrastructure is already in
place and cooperation in server configuration is widely given
and responsibilities are accepted. The component framework
offered by the OSGi-platform reduces the overhead (”boiler-
plate code”) needed to create and integrate new compo-
nents. The shortcomings of the existing framework were
largely known and many workarounds had been in place.
Therefore in the new framework we could often directly use
its capabilities to reach the same goal without having to
resort to a workaround. In many parts, the RCE framework
had differing concepts and a different philosophy to the
definition of workflow. Here the challenge lay in the fact that
most logic for RCE integration goes into the components
instead of the workflow engine. We hope that upcoming
versions of RCE will have more powerful features to ease
the developer’s overhead to integrate components in a useful
and usable way.

In this paper we have shown the advantage of a gen-
eralized and decoupled concept for integrating data, tools
and frameworks. We demonstrate how easily our Chameleon
principle can be adapted to the open source grid computing
framework RCE. The reason for changing the framework is,
beside the proof of generalizability, that the new framework
is a more eligible candidate for a real simulation system.
This is because we learned that collaboration in teams and
support of users in creating a workflow is much more impor-
tant than just to execute the same process over and over again
without changes. The wide field of collaboration is, beside
the core integration technology, the next main approach
we want to address in our Chameleon software suite. Our
future work will be about the integration of provenance
information and to provide a possibility to semantic checks
during creation of workflows.

REFERENCES

[1] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific work-
flow management and the kepler system,” Concurrency and
Computation: Practice and Experience, vol. 18, no. 10, pp.
1039–1065, 2006.

[2] T. Schlauch and A. Schreiber, “Datafinder. a scientific data
management solution,” in PV 2007, Oct. 2007. [Online].
Available: http://elib.dlr.de/53369[Online;2010-07-19]

[3] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li,
P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and
C. Wroe, “Taverna: lessons in creating a workflow environ-
ment for the life sciences,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1067–1100,
2006.

[4] “SIMULIA iSight website,” http://www.simulia.com/
academics/isight.html, [Online; 2010-07-19].

[5] A. Bachmann, M. Litz, M. Kunde, and A. Schreiber, “A dy-
namic data integration approach to build scientific workflow
systems,” in Proceedings of the 4th International Conference
on Grid and Pervasive Computing, vol. 1, Geneva, May 4. – 8.
2009.

[6] A. Bachmann, M. Kunde, M. Litz, A. Schreiber, and
L. Bertsch, “Automation of aircraft pre-design using a ver-
satile data transfer and storage format in a distributed com-
puting environment,” in Advanced Engineering Computing
and Applications in Sciences, 2009. ADVCOMP ’09. Third
International Conference on, Oct. 11. – 16. 2009, pp. 101 –
104.

[7] “Process integration & design optimization,” http://www.
acel.co.uk/pdfs/designsimulation/, [Online; 2010-03-19].

[8] L. Bertsch, G. Looye, T. Otten, and M. Lummer, “Integration
and application of a tool chain for environmental analysis
of aircraft flight trajectories,” in The 9th AIAA Aviation
Technology, Integration, and Operations Conference (ATIO),
Sep. 21. – 24. 2009.

[9] C. M. Liersch, T. Streit, and K. Visser, “Numerical im-
plications of spanwise camber on minimum induced drag
configurations,” in 47th AIAA Aerospace Sciences Meeting
Including The New Horizons Forum and Aerospace Exposi-
tion, Orlando, Florida, USA, Jan. 5. – 8. 2009.

[10] “DLR project websites,” TIVA: http://www.dlr.de/fa/
desktopdefault.aspx/tabid-1474/2079_read-3561/, TIVA-
II: http://www.dlr.de/fw/desktopdefault.aspx/tabid-
2959/4455_read-20454/, UCAV-2010: http://www.dlr.
de/sc/desktopdefault.aspx/tabid-5141/8654_read-11626/,
CATS: http://www.dlr.de/pa/desktopdefault.aspx/tabid-4618/,
[Online; 2010-07-19].

[11] D. Böhnke, “Dataintegration in preliminary airplane design,”
Master’s thesis, Universität Stuttgart, Jul. 2009, Work in
progress, to be published in Sep. 2009.

[12] “libxml2,” http://www.xmlsoft.org, [Online; 2010-04-01].

[13] D. Seider, “RCE homepage,” http://www.rcenvironment.de,
2008, [Online; 2010-07-19].

[14] “German Aerospace Center website,” http://www.dlr.de/sc,
[Online; 2010-07-19].

[15] “OSGi Wikipedia entry,” http://en.wikipedia.org/wiki/OSGi,
[Online; 2010-07-19].

38

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

http://elib.dlr.de/53369 [Online; 2010-07-19]
http://www.simulia.com/academics/isight.html
http://www.simulia.com/academics/isight.html
http://www.dlr.de/fa/desktopdefault.aspx/tabid-1474/2079_read-3561/
http://www.dlr.de/fa/desktopdefault.aspx/tabid-1474/2079_read-3561/
http://www.dlr.de/fw/desktopdefault.aspx/tabid-2959/4455_read-20454/
http://www.dlr.de/fw/desktopdefault.aspx/tabid-2959/4455_read-20454/
http://www.dlr.de/sc/desktopdefault.aspx/tabid-5141/8654_read-11626/
http://www.dlr.de/sc/desktopdefault.aspx/tabid-5141/8654_read-11626/
http://www.dlr.de/pa/desktopdefault.aspx/tabid-4618/
http://www.dlr.de/sc
http://en.wikipedia.org/wiki/OSGi

	Introduction
	The Chameleon simulation environment
	Scientific tool integration
	The common data format
	The software integration framework
	The common software libraries
	Advantages of the Chameleon approach

	Phoenix ModelCenter
	Advantages
	Disadvantages

	Remote Component Environment
	Advantages
	Disadvantages

	Conclusion and future work
	References

