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Abstract—In this paper, the scheduling of the sampling fre-
guencies of a set of independent controllers that share a limited
resource is addressed. Bandwidth or CPU time limitations are
assumed to be translated to constraints on the sum of the
sampling frequencies. For the individual loops,H> sampled-
data controllers are proposed, whose performance indexes can
be calculated for the different sampling frequencies. A weighted
sum of the individual loop performance conforms a global cost
index. The problem is then posed as an optimization one, and
some sensible simplifying alternatives are proposed, based on
a grid of frequency points, that allow to solve it with Linear
Programming (and hence with a low computing cost).
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I. INTRODUCTION

In digitally controlled systems, limitations on the fre-
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(computation and transmission cost) and sampling-period
dependent controller performance measures in order te solv
a joint optimization whose results are the scheduler sargpli
periods and the controllers to be applied.

For instance Branicky et al. [3] proposed an optimality-
based choice of sampling period for a multiple-loop control
over a network based on a performance measure for each
loop and some schedulability constraints. In [4] the olbject
was stability robustness, although first-order systemswer
only considered. Integral of Absolute Error as a function of
sampling period was considered in [5]. Interestingly, Gerv
et al. [6] discuss a generic approach in which the sampled-
data cost of a controller is evaluated.

This paper roots on the last of the above cited works,
formalizing the ideas to sampled-data output-feedbagk
control, and proposing a linear programming approximation

quency of the contr_ol computation_s are frequent. Theyon a finite grid of sampling frequency points.
may arise from multiple tasks running on the same pro- The structure of the paper is as follows. Next section
cessor so that a higher frequency of the control taskgjiscusses some preliminary ideas and states the problem to

would saturate the CPU load; they may also arise when
communication network between process and controllers

Be solved. Section Ill reviews sampled-data control. Off-
Ifne (fixed rate) scheduling is discussed on Section IV. An

present and it has a limited bandwidth to be shared betweegkample section and some conclusions are also provided.
multiple controllers, Programmable Logic Controllers and

other information-processing elements. Apart from band-
width limitations, increasing the network or computer load

also gives rise to increased delays and sampling jitterchvhi

might as well result in a performance loss in the task

requiring the limited resource.

In most control literature, criteria for selection of sam-
pling time do not usually consider the underlying resourc

limitation. Basically, the desired settling time, perfante

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a network that is shared by several control loops
S(controllers, sensors and actuators).

The network resources used by each control loop and the
achieved performance depend on the sampling frequency of
that loop and the controller designed for it. Hence, each loo

ewiII be characterized by:

attenuation level, etc. result in a recommended sampling * Its sampling frequency;

period, in most cases with practical “rules of thumb” (se
[1] or [2]); it is left to the underlying real-time schedulty

achieve such a period with a reduced jitter, by dedicating

« A controller scheduling policy’(f;)
« A theoretical performance measure with that controller

Ji(fi)

e

to the task whichever computing/network resources are Therefore, due to the overall bandwidth limitations, if

necessary.
The so-called co-design research line [3] tries to consid

the performance of one loop needs to be improved by
emncreasing its sampling frequency, other loops must reduce

the design of both the control system and the communicatiotheir frequency and, hence, their performance. The problem
and multi-tasking structures as a joint problem. Basic¢allyto be discussed in this paper is how to apportion the limited
the idea is combining restrictions on the sampling periodresource between loops while trying to maximize the overall

arising from schedulability issues and bandwidth limaati
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performance by minimizing a global cost index (composed
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of the weighted sum of individual indices), such as: given by:
T(freo o) = Do i) @ ot = A Bt G ©
i=1 Vi1 = Aothr + Gawy, 9)
2z = Crog + Dyug (10)

where h; are weights allowing the designer to emphasize
the need of more accurate control of some processes. As yr = Cozg + C3tbx + Dauy (11)
commented in the introduction, this idea has been prewousl|

explored in literature. The result is an optimal samplingWhere the above discrete-time matrices are given by:
frequency distribution given the network constraints.

AT AST
This paper has chosen tli¢, performance measure as Ay =eh vAT% =€ (12)
cost index (minimum-variance controller when subject to . As
. N i : B = e™*Bds (13)
white-noise inputs). Indeed, if{, sampled-data optimal 0

controllers are used in the loops, the optimal performance ] L
of each loop can be calculated as a function of its sampling"dG1, Ga, C1 and D, are any matrices satisfying:
period via well-known sampled-datd, formulae.

QT _ T ASsvc(ye\T o(A9)T s
[1l. SAMPLED-DATA OPTIMAL CONTROL GiG; = [y e’ GG e ds (14)

T _ T _ATs T As
The main issues ift{, sampled-data optimal control are (C1D1)(C1Dy) = [y €= *(CD)T(CD)eRds (15)

reviewed next.

. . . . . . . where:
Consider a linear time-invariant continuous-time process 4 B
iven by: =
g y A ( 0 0 ) (16)

t = Af{x + B°u + GY 2 . . .

. 1% + . ut Cﬂf ) and all of the above matrices can be obtained from matrix
¥ = Ay + Gow (3) exponential formulae without the need of actually carrying

z=Cx+ Du (4)  out any integration [9].
y = Cox + C31) + Dou (5) The obtained variance approaches that of the continuous-

time H, controller when the sampling period tends to zero
so that it has a transfer function representation given by: [10]. Indeed, as a piecewise-constant control is a valid pos
sibility for the optimal control action:(¢), the continuous-
z=Gu(s)v+ Gis(s)u (6)  time solution of the above minimum-variance problem will
y = Ga1(s)v + Gaa(s)w + Gaz(s)u (7)  be equal or better than any sampled-data optimal solution.
The sampled-data system will have a closed-l@6pnorm

where z denotes the variables to be controlledare the  given by that of the above discrete system plus a factor given
manipulated inputsy are the measurements andw are  py [10]:

assumed to be white-noise disturbances to be denoted as

process noise and measurement noise, respectively, witthun 1 7 T-s A e T (AT 7

variance (all variance information is included in matri¢&s f/o /0 trace(C2e™ "G (G7)" e TCadrds (17)

ad G§). The state variables are denoted as process state,

whereas the state variablésare states of the measurement It is well known that the optimal controllers have the

noise generator subsystem, assumed to evolve uninfluencéatrm of a Kalman filter observer plus a static state feedback,

by x. and that optimal control weights in classical linear quéidra
Given a sampling period’, a sampled-data controller regulator setups can be translated to the aldgygroblems

will be designed so that its input will be the sequence ofby a suitable choice of’ and D.

sampled outputs, and its output will be a sequence of If the measurement-noise dynami€s, is sufficiently

control actionsy, to be fed to the continuous-time plant via fast, the measurement noise will appear as a constant-

a zero-order hold. variance stationary process when sampled at all except very
The control objective is to obtain the controller that small sampling periods; in that case, the dynamics of the

minimizes the variance of, tr(E(zz1)) for a given, fixed, statesiy) can be eliminated in practice an@s: replaced

sampling period’. Such a problem is denoted in literature asby a discrete stochastic process with a constant variance

the H, sampled-data optimal control problem. It was shownequal to the stationary variance of the continuous one. This

in [7], [8] that such a problem can be cast as a pure discreteyields the classical “measurement noise variance” in dtscr

time H, optimal control problem for the discretized model stochastic process models.
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IV. RESOURCE SCHEDULING » Vvariations of the above problems including some perfor-
Basically, the computing and network resources required ~ Mance requirements for individual loops(fi) < Jo.;
by a control task will be proportional to the sampling or multi-criteria settings (obtaining, for instance, a

frequency. Hence, the objective is achieving maximum Pareto front on performance vs. available bandwidth).

performance (in terms to be later detailed) given a finite ) L

“bandwidth” bound,3, set up from computer and network A. Alternatives for the optimization problems

load analysis. Depending on the shape ¢f, the allowed values for the
The objective of this paper is proposing an schedulingdecision variableg”, the value of the exponent parameger

methodology that allows an efficient use of the assignedn (18) and the chosen problem formulation from the options

control bandwidth by devoting more resources to processesbove, the required optimization algorithm will be diffete

that need a better control and, hence, must be operated atSeveral interesting options are discussed below:

a higher sampling rate. The ideas in the previous section 1) Discrete optimization over a finite set of alternatives:

allow to easily obtain the optimal performance as a functionset up two or three performance levels for each process, say:

of the sampling rate of a particular process. Consideringﬂgh_frequency, normal-frequency, low-frequency sampli

now r independent control loops, which should share arThen, the problem gets transformed to a choice between a

computer or a network, we will denote ag f) the optimal  finite set of decision variables and it can be explored by
disturbance-rejectioft, performance obtained for process pryte force if the number of controlled loops is small.

by gcontroller operating at frequengy(i.e., with sampling 2) Linear (approximate) optimizationSet up a dense
periodT = 1/f). . enough grid of pointsf;. Then, for each individuad;(-)”
Taking into account all loops simultaneously, an overallfynction, compute the linear interpolation between thelava
performance measure may be defined as: able frequency points, giving rise to a piecewise-lingar)
r interpolation function. Subsequently, determine an irter
T(fryeeo o) =D himi(fi)? (18)  of interest[f;”, f;"] where individual performanceg (-) are
i=1

convex functions. Doing this for all the controlled loopset
where h; are weights allowing the designer to emphasizecontroller cost will then be the sum of univariate convex
the need of more accurate control of some processes. ThHanctions and, hence, a convex piecewise-affine function.
selection of these weights should depend on the disturlbance It is well known that piecewise-affine functions can be
acting on each loop, and on the economic cost derived frompptimized via Linear Programming. Let us describe the basic
the resulting loop error. The higher the disturbance and théea below:

cost, the higher the weight. Denote asf;, k = 0,...,k the grid points in the above
The needed resources as a function of controller frequenayterval [f;” = f;, f1,..., ;i = f7].
may be expressed as: In that interval,~}(f) may be approximately expressed
r as the piecewise-linear interpolation between grid points
R(fi,...  fr) = Zd,;f,; (19) to be denoted asy;(f) ~ ~;(f) . Conveniently, such
i=1 linear interpolation can be rewritten as a linear-programgm

for some given constantd; to be determined based on Optimization:
processor load and number of bits transmitted by each %
control task (transmission time plus computation time). On Ny N 21
the sequel, the vector of frequencies for each control loop %) =mlf) + HelinI;)akek (21)
will be denoted ag. ' ' ' B
The goal of the bandwidth scheduling will be to obtain subject to the linear constraints
the sampling frequencieg; for each of the control loops %
taking into account the performance and resource measures * * -
defingd above P aS<fi=fi D a=I-1; (22)

k=0
Then, some scheduling problems of interest may be ) ) ]
conceived: and wheren;, are the piecewise slopes, defined as
« Given a resource constraint o Vil fien) = wi(f7)
R(F)<p (20) fimi = fi

obtain the lowest/(F). that fulfils the conditiona1 > «f due to the assumed
« Given a performance objectivé,, obtain the lowest convexity of+;(-) in the given interval.

level of resources needed to achieve it: minimizg) Carrying out a similar derivation for each of the loop

constrained toJ(F') < Jp. performances (choosing a gridding withintervals for each
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1), the overall cost can be expressed as:

J(F) = minzhi V() + Zai,kéi,k 23 C=(0 15625 ),C.=( 0 1 0 |,D.=| O
i,k i=1 k=0 O 0 0 01
_ 27)
subject toe; . < fi — fi e 1 E:Lo ¢ix = fi—f . Hence, In order to select the discrete dynamic controllers for both

the optimization problem to be solved consists of the abovéystems, we obtain the sampled models at different fre-
problem constrained to the additional conditidnd,f; <  duenciesf following the procedure commented in Section
/3. Such problem is a linear programming one that can bdl. Once converted we obtain for each frequency #e
efficiently solved. controller and the minimurfi{3-gain bound for disturbance
Remark: An interesting particular case results when théejection. These values are presented in Figure 1. As it
weightsd; = 1, and the grid pointg’; are uniformly spaced ~can be seen at low frequencies the closed-1&6p norm
so the distance between the grid points is an exact divisor cdpproaches the open loop valuiesg7), as it was expected,
the bound3. In that case, as LP optimal solutions always lieand at high frequencieg ~ 1K H z it approaches the norm
at slope changes or constraint bounds, the result of the LPf the continuous-timé+, optimal controller, whose value
optimization will always lie at one of the grid points, i.the IS 1.576.
optimum frequencies always belong to a predefined set. This

would be especially useful for an on-line scheduling, where 6

the switching between a finite set of controllers could be a

simple solution. This issue will be studied in future works. 55f
3) Generic nonlinear optimizationlf a non-linear (poly-

nomial, spline, etc.) interpolation were chosen to approx- 5f
imate +;(-), the scheduling problem would be a nonlinear
optimization problem. That would also be the case if the & ast
intervals [f;”, f;] were too small for the particular appli-

cation. If the number of simultaneous loops were small, ar
a subdivision of the interpolation table in a finite humber
piecewise convex (or concave) regions would allow for 357
solving a linear programming problem for each of such
regions and computing the global minimum as the minimum 3

of the local optimizers (details omitted for brevity).

V. EXAMPLES Figure 1. Minimum?H> rejection at frequency

Considerer the simple case of controlling two identical
SISO systems whose disturbance inputs might, however, The selection of the frequencies for each controllgr (
be not identical. Under limited resources, the effort stoul and f2) will be done taking into account the resource
concentrate on the process subject to larger disturbancegonstraint (28) and the performance index (29).
which must be knowm priori and cast into the optimization

index in the off-line scheduling case. htfsK (28)
Each of the systems can be represented by the state space J = hiv3(f1) + ka3 (f2) (29)
model (24) where: are the state variableg,is the outputp
are the white noise variables andrepresents the weighted Where the chosen values have been = 4, hy = 1
controlled variables. indicating that the expected value of the disturbance mput
for procesd is double than that for proce8sThe frequency
t = Ax+ Bu+ Gv limit has been set td{ = 60.
= Oz (24) As it can be seen in Figure 1, the cost functidmvill not
: = C.o+ D be convex at low frequency values, but it will be convex for

frequencies larger or equal than 10 Hz. However, the part

where of the plot on the left of the inflection point corresponds
90 —12.5 16 to almost open-loop behaviour for very low sampling rates,
( ' ) , B= ( ) (25)  which are not relevant for the tested cases. They would only
be relevant for a setup in which one of the disturbances

G- 1 0 26 is extremely larger than the other one, almost requiring
L0 1 (26) controlling one of the processes at the maximum frequency
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and the other one in open-loop. This has not been the casmnstraints. The problem has been posed as an optimization

for the simulations in this paper's examples. one and some sensible simplifying alternatives have been
In order to solve a convex problem we approximate theproposed, based on a grid of frequency points, that allow

cost functionJ following the methodology in Section IV-A2 to solve it with Linear Programming, and hence, with a

at the convex range of as low computing cost. Some examples have illustrated the
2 . . approach. As a future work, the online scheduling of the
noo= i)+ EI?Z Ak€Lk (30) sampling rates will be studied. The idea will be to adapt the
) o . k scheduling to changes in the available resources or in the
o o= s )+I£1£Zﬁk€2,k (31)  process disturbances. The simplified Linear Programming
’ k

based optimization presented in this paper will be a key
Note that, in this casey, = [, because the systems have point in that work.
the same dynamic model. The candidate sampling frequen-
cies vectorsF; and F, are taken also identical for both
systems, uniformly distributed fror® to 60 H =z, computing
approximation points every 2 Hz (i.efy = f, = 12,
fim = ff =60, ff;, = 12 4 2k). Then the optimization
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