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Abstract—Most existing approaches to identity federation
are based on static relationships. This leads to problems with
scalability and deployment in real-time environment such as
mobile networks. This paper introduces an underlying network
and trust model for dynamic federation. We present a modified
Dijkstra algorithm to calculate the trust value and apply
a distributed reputation calculated based on the PageRank
algorithm from Google to each entity in order to increase the
attack resistance of the system.
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I. INTRODUCTION

Existing solutions for authentication and authorization
infrastructure (AAI) like Shibboleth [1] are generally based
on static federation. In a static federation, relationships
among identity providers (IdPs) and Service providers (SPs)
are manually pre-configured in their meta data. The question
of whether an entity can trust another depends on if they can
find each other in the meta data, thus this question can not
be answered in a dynamic manner due to the static nature
of the meta data.

The static structure of AAI leads to problems with scal-
ability and interoperability for the following reasons: every
new relationship between any two entities must be added
manually as such a static federation can not be quickly and
easily expanded to an AAI with hundreds or even thousands
of IdPs and SPs. Furthermore it is difficult to connect two or
more independent federations beyond their borders to form
a con-federation because an entity of a certain federation
does not know and hence does not trust entities from other
federations. Finally, a static AAI can not be deployed in a
real-time environment like a mobile network where users
access the services of any provider at any time.

Hence we introduce a concept of a dynamic federation,
in which the IdPs and SPs will be regarded as peers of a
trusted network that evolves over time. A trust relationship
between two entities is regarded as a network connection.
In such a dynamic federation, an SP does not need to know
an IdP beforehand. A trust relationship will be created on
demand and the trust value, namely how much an IdP can
be trusted will be determined on the fly.

We consider the following use case as illustrated in Figure
1:

Figure 1. Use case of dynamic federation

1) A User is registered with an IdP A of federation A.
2) He is browsing SP B belonging to federation B.
3) SP B detects that IdP A is the preferred IdP for the

browsing user by using a discovery service.
4) SP B gets the meta data of IdP A in order to determine

if IdP A can be trusted and to what extent.
5) With a positive result SP B requests IdP A to authen-

ticate the user.
6) IdP A authenticates the user and returns an assertion

to SP B.
7) SP B authorizes the user to access the requested

service.
In this case SP B does not need to know IdP A beforehand.
The trust relationship between SP B and IdP A is created
on the fly.

For the dynamic federation to be well defined, we give
the following definitions:

Definition 1.1 (entity): An entity is an IdP or SP in
a dynamic federation. When the dynamic federation is
regarded as a network, we call an IdP or SP a peer of the
network. Sometimes we also use the term vertex or node
from graph theory.

Definition 1.2 (IdP discovery): IdP discovery is the
process, by which an SP detects the preferred IdP of a user.
The result of this process is the endpoint of the IdP.

Definition 1.3 (Trust discovery): Trust discovery is the
process, by which an SP determines whether an unknown
IdP can be trusted and vice versa. The result of this process
is a binary decision or a trust value in the range of (0, 1).

Definition 1.4 (Trust value): The trust value is a subjec-
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tive quantification of how much an entity can trust another.
The trust value depends on the path from truster to trustee,
thus it is not a global value.

Definition 1.5 (Reputation value): The reputation value
of an entity is a quantity derived from the underlying
federation, which is globally visible to all members of the
federation. An entity has in general different reputation
values as seen by others, we call this personalized reputation.
The reputation of an entity depends on the number of
its incoming edges in the connection graph and on the
reputation value propagated from its neighbors along these
edges.

The topic IdP discovery is beyond the scope of this paper,
in which we firstly focus on the issue trust discovery. If
we treat a federation consisting of IdPs and SPs as a graph
where the IdPs and SPs are vertices and the trust relationship
are edges, we can reduce the problem of trust discovery to a
question of pathfinding. In the following, we will compare
different network models and analyze different pathfinding
strategies.

II. RELATED WORK

OASIS defined two mechanisms for dynamic metadata
publication and resolution [10]. However, it refers to the
topic of IdP discovery rather than trust discovery. The trust
model of the OASIS mechanisms still relies on X.509. The
same drawback is encountered in approaches to dynamic
SAML and dynamic metadata exchange [13]. To enable
SAML for dynamic federations a generic solution with a
SAML extension and a dynamic trust list was introduced [5].
However, there are no details regarding the SAML extension
and dynamic trust list described in the paper. In addition,
there was an approach to build dynamic federations in Grids
[3]. This approach is based on WS-Trust 1.1 [4] and WS-
Federation 1.0 [6] and hence, is not SAML-compatible.

III. STRATEGIES OF PATHFINDING

A. P2P networks

When we regard IdPs and SPs as peers of a network,
they essentially form a type of peer-to-peer (P2P) trust
network, because each entity provides and consumes trust
information. In recent years, P2P networks were studied
intensively. P2P networks have evolved in terms of their
architecture from unstructured networks like Gnutella and
Napster [17] to structured networks using distributed hash
tables (DHT) like Chord [20]. Structured networks are more
efficient and scalable, therefore almost all modern P2P
networks belong to this type.

However, all of these systems mentioned above focus on
the issue of how to find certain data in a P2P network within
an acceptable bound such as in O(logN) time and how to
minimize the join / leave overhead of peers. Thus, they do
not care whether the path to the targeted node is the shortest
or the optimal one. In a network of trust an entity can not

be trusted solely because of the fact that it is reachable in
the network; Rather we need to calculate the trust value for
a trust decision and / or for further authorization decisions.
This means, we need to know not only whether a node can
be found in a network but also the level of trust we associate
with this node.

B. Classic routing protocols

Routing protocols in contrast to P2P networks focus on
finding the optimal path between nodes. Distance vector
routing protocols like RIP [14] are based on Bellman-Ford
algorithms [7]. Within distance vector protocols, a route is
defined as a vector with length and direction where the
vector length is a generalization of the distance between
source and destination. The advantage of distance vector
routing protocols is their simplicity. They are easy to im-
plement, configure and maintain. However, to avoid routing
loops a maximum hop count and a hold-down-timer are
introduced, this leads to major problems with scalability
and convergence in the routing iterations (count-to-infinity
problem).

Link-State Routing Protocols like OSPF [18] are based
on the concept that routers flood information about the state
of their adjacent neighbors, called link state to all nodes in
a sub-network. Hence, each router will have a map of the
entire sub-network after a certain time. Generally, a Dijkstra
algorithm [12] is used to calculate the shortest path from
the source node to a destination in the sub-network. Link-
state routing protocols support complex topologies of large
sub-networks and scale well. The Dijkstra algorithm used in
link-state protocols can be implemented with less run time
than the Bellman-Ford algorithm used in distance vector
protocols. Because routers using the link-state protocol have
a map of the entire sub-network, routing loops are rarely
encountered. Generally, link-state protocols converge much
more quickly than distance vector protocols and have no lim-
itation on hop count. The trade-offs of link-state protocols
are the expense of implementation and maintenance and the
high requirement of CPU power and memory.

IV. THE NETWORK MODEL FOR DYNAMIC FEDERATION

Following the above analysis we can draw the conclusion
that routing protocols are better suited to forming a dynamic
federation for AAI than P2P network models. This is be-
cause both routing protocols and dynamic federation address
the same problem, i.e., how to find the best path from a given
source node to a destination node in the network.

We decided to create the network model for dynamic
federation by using a link-state model similar to OSPF,
which consists of the following components:
• Network Hierarchy

Like OSPF the network of entities shall be divided into areas
to reduce traffic overhead. For example, each federation of
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Figure 2. Example structure of dynamic federation

a con-federation can be treated as one area while the con-
federation can be treated as the entire network. Each feder-
ation has an interface to the outside, which is responsible
for inter-federation communication and only this interface is
visible from outside. We call this interface the IdP-hub.

As Figure 2 shows, there are two levels in the hierarchy:
IdP/SP and IdP-hub where the IdP-hub is considered to be
pre-configured.

• The link-state database
We borrow the notion of LSA(Link State Advertisement)
from OSPF. Each entity describes the link-state of its neigh-
bors with LSAs and sends them to other entities in the
network. Actually, an LSA is a list of IDs of all manually
linked neighbors. When entity A has B’s metadata, then A
trusts B and B is an adjacent neighbor of A.

On the con-federation level, the IdP-hub provides fed-
eration information by sending federation-LSAs to other
IdP-hubs in the con-federation to describe its federation to
the outside. The federation-LSA contains at least the Id of
its federation and the end location of the IdP-hub who is
sending this LSA.

• Trust table
The trust table contains the metadata of all entities, it
is effectively a metadata repository. In the trust table, all
entities of a federation are stored with an entity-ID, a
calculated trust value and the type of the entity, which is
an IdP or SP, as Table I depicts.

Entity-ID Value Type
A 0.5 idp
B 0.8 sp
C 0.7 idp

Table I
EXAMPLE TRUST TABLE OF AN IDP OR SP

The trust table of an IdP-hub has an additional part, which
contains entries for inter-federation relations. Here, the IdP-
hubs of all other federations are stored. Each IdP-hub has
an ID, which is its federation ID, and a calculated trust
value. This value reflects the trust values between IdP-hubs

Figure 3. Calculation of inter-federation trust value

as shown with an example in Table II, where F1 and F2 are
idp-hubs of other federations.

Entity-ID Value Type
A 0.5 idp
B 0.8 sp
C 0.7 idp
F1 0.3 idp-hub
F2 0.5 idp-hub

Table II
EXAMPLE TRUST TABLE OF AN IDP-HUB, NEEDED FOR

INTER-FEDERATION RELATIONS

The trust table of all entities except IdP-hubs can be kept
very small because the scope is limited to a single federation.
According to a survey of the identity federations listed at the
web site of Shibboleth [2] the size of the federations varies
between 6 and 992 while the average number of entities is
205. When an SP receives a request from a user, it will first
check his IdP in its own trust table. If there is no entry
found, it will ask the IdP-hub responsible for its federation.
The IdP-hub will check the Id of the destination federation
in the part of its trust table dedicated for inter-federation
relations. If there is an entry for the IdP-hub of the remote
federation it will request the trust value of the respective IdP
and compose the final trust value t as follows:

t = t1 ∗ t2 ∗ t3

where t1 is the trust value of the link between the IdP-hub
and the SP, t2 is the trust value of the link between the two
IdP-hubs and t3 is the trust value of the link between the
remote IdP-hub and the respective IdP. Finally, the IdP-hub
will send this composed trust value t back to the requesting
SP. Figure 3 illustrate the calculation of interfederation trust
value where the entity B is the SP mentioned above, the
entity D is the respective IdP and the entity H and G are
IdP-hubs of each respective federation.
• Network protocol

The SAML Assertion Query and Request Protocol [9] is
used to exchange messages between entities. In doing this,
HTTP POST Binding [8] is used to encapsulate SAML
messages into a HTTP envelope. For the synchronization of
the linkstate database and neighbor discovery an appropriate
protocol named DYNFED similar to the OSPF protocol is
under our development. Since the DYNFED protocol runs
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on top of the SAML Assertion Query and Request Protocol,
we get a 3-layer protocol structure as shown below:

Figure 4. 3-layer protocol structure

V. THE TRUST MODEL

A. Trust value calculation

We treat a federation as a directed graph G(V,E) and
define a weight function t: E → R by mapping edges to
real-valued weights called trust values. We denote this as
t(vi, vj), where vi and vj are adjacent nodes. We follow
the steps below to calculate the trust value between any two
entities v0 and vn:

1) First we start with pre-defined values for the trust
relation between any two neighboring entities vi and
vj :

t(vi, vj) =



1 if vi can verify vj’s certificate with
the certificate of a common certification
authority (CA);

0.5 if vj’s certifcate can be verified with
the certificate of a trustworthy CA;

0.1 if vj’s certificate is self-signed;
(1)

The procedure is as follows: if a certificate can be
verified by a trustworthy CA, then the authenticity of
the certificate can be generally trusted. If the certificate
can be verified by a common CA, then both entities
normally belong to the same organization, and not only
the authenticity of the certificate but also the certificate
owner has a higher trust value.

2) The trust value of a path p = (v0, v1, ..., vn) between
non-adjacent v0 and vn is the product of the trust
values of its constituent edges:

t(p) =

n∏
i=1

t(vi−1, vi) ∗ d where 0 < d ≤ 1 (2)

Here, we use a constant d to dampen the trust value.
The reason for this damping factor is as follows:
second-hand evidence can not be considered as re-
liable as first-hand evidence. Every time an entity
passes its trust value to its neighbor, i.e., the first-
hand evidence, to the next entity along the path, the
degree of this trust value shall be reduced. Obviously,
we have lim

n→∞
t(p) = 0.

3) For the effective trust value in case of multiple paths
between two entities v0 and vn we have:

t̂(p) =


max(t(p)), if there is at least one

path from v0 to vn,
0, otherwise.

(3)

Finally, based on the calculated trust value t̂(p) the
node v0 can make a binary decision with respect to
a configurable threshold if node vn can be trusted or
not.

In order to calculate max(t(p)) we modify the Dijkstra
algorithm [11] to find the path p from source v0 to any
vertex vn with the largest trust value as shown in algorithm
1:

Algorithm 1 Modified Dijkstra’s algorithm
function modified_Dijkstra (G, v0)

//G(V,E) is a directed graph and v0 is the source
vertex

for each vertex (vi, t(vi)) ∈ V //V is the vertex set
of the input graph G

t(vi) := 0; //set the trust value of vertex vi to
0

end

t(v0) := 1; //set the trust value of the source vertex
to 1

S := ∅; //S is an empty set;

while V is not empty
take vertex (vi, t(vi)) from V , whereas its trust

value t(vi) is the largest among all vertices in V ;
if t(vi) = 0

break; //all remaining vertices are inac-
cessible from v0

S := S ∪ {(vi, t(vi))}; //add vi to S
V := V \ {(vi, t(vi))}; //remove vi from V

for each vertex vj ∈ Adj(vi) //vj is neighbor
of vi

if t(vj) < t(vi) ∗ t(vi, vj) ∗ d //t(vi, vj) is
the trust value of edge e : vi → vj

t(vj) := t(vi) ∗ t(vi, vj) ∗ d;
else

do nothing;
end

end

return S;

With this algorithm we firstly assign a trust
value of zero to each vertex vn of the directed
graph G except of the source vertex v0. The algo-
rithm returns a set S, which contains all vertices,
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which can be reached from v0, together with their
corresponding trust values. After termination of
the algorithm, the trust value t(vn) is equal to the
maximum trust value t̂(p) from v0 to vn.

B. Attack resistance

An attack on a public key-based system of an identity
federation means that some arbitrary faked target is accepted
by the entire system. Two different types of attacks, namely
node attack and edge attack are defined by Levien et al.
in [16]. A node attack corresponds to stealing the secret
keys of the victim and gaining total control of it. An edge
attack corresponds to cheating the administrator of another
entity to accept the attacker’s certificate so that a trust
relationship between the attacker’s entity and the target
entity can be established. An edge attack is easier to achieve
than a node attack. If successful, the attacker can create
many “bad” entities and deceives administrators of other
IdPs or SPs into accepting his certificate and classifying it
as trustworthy. Unfortunately, no trust metrics exists that
can protect against node attacks efficiently as illustrated by
Levien et al. [16]. Furthermore, the trust metric “shortest
path” is also unable to protect against edge attacks. Thus
we need a new measure to increase the attack resistance
of our trust model. Levien discovered that the PageRank
algorithm [19] is attack-resistant and can be used to protect
against edge attacks [15]. While Google uses the PageRank
algorithm to compute ranking of web pages we can use
it to determine the reputation of entities by defining the
computed PageRank as the reputation of each entity. Both
the world wide web and an identity federation can be
treated as a directed graph, hence, the PageRank algorithm
can be applied to both systems. If the reputation of bad
entities created by the attacker is considerably lower than
the reputation of good entities, then we can easily detect
those bad entities and exclude them from the system. This
is why we use PageRank for our dynamic federation.

We give a recap of the PageRank algorithm, which is
defined in [19] as follows:

R(u) = c ∗
∑
v∈Bu

R(v)

Nv
+ c ∗ E(u) (4)

where R(u) denotes the PageRank of the web page u, Bu

is the set of all web pages that point to u and Nv is the
number of all outgoing links from the web page v. The
factor c is used for normalization, so that the total rank of
all web pages is constant. Furthermore, the PageRank of a
web page can be treated as the probability that a random
surfer lands on that page after lots of clicks. Because of
the normalization it holds

∑
u

R(u) = 1. The second part

of equation (4), E is an initial vector over all web pages
and represents the distribution of the probability that the
surfer gets bored after several clicks and switches to a

random page. One of the choices of E presented in [19]
is a uniform distribution with

∑
u

E(u) = 0.15, however,

the authors noticed that a uniform distribution of E leads
to a problem: some web pages with many related links
like copyright warning, disclaimers and mailing list archives
receive an overly high ranking. Thus, they introduced the
“personalized“ PageRank by selecting a distribution that E
consists of only one single web page or several trusted
web pages. By this means, the respective web pages get
the highest PageRank value followed by their immediately
linked pages. It means that the “personalized“ PageRank
prefers the chosen web pages considerably.

Now, we replace the web pages with IdPs and SPs as well
as the personalized PageRank with the reputation value. We
can then calculate a personalized reputation value for each
IdP or SP. Like web pages, the more incoming edges an
IdP or SP has, the higher its reputation value is. However,
with a uniform distribution of E the reputation calculation
according to the PageRank algorithm is not yet attack-
resistant. An attacker can just generate many faked entities
and interlink them with each other. Because of the uniform
distribution of E, each entity regardless of whether the entity
is trustworthy or not has the same contribution to increase
the reputation of the faked entity. In contrast, by choosing the
distribution vector E consisting of only a single entity, i.e.,
our own entity, we make the reputation calculation resistant
against edge-attack for the respective entity. In this way,
the entities generated by the attacker do not contribute to
increase the reputation value because their probabilities in
E are always equal to zero and hence are useless. Now, we
can calculate the personalized reputation of arbitrary entity
u regarding entity vi (i.e., the reputation of u as seen by
vi) by defining the initial vector E(u) from equation (4) as
follows:

c ∗ E(u) =

{
1− c, if u = vi

0, otherwise
(5)

It means the vector E(u) contains only the entity vi. The
exact value of c must be determined through simulations and
experiments. In the original PageRank paper [19] c was set
to 0.85.

Therefore each IdP or SP can use equation (4) and (5)
to compute the personalized reputation for each other entity
in the network. The fewer inbound edges an entity has, the
lower its reputation is. Furthermore, the further an entity is
located away from v0, the lower its reputation is. With the
personalized reputation it makes no sense for an attacker
to create many entities pointing to his entity because its
reputation will not get increased by this. Instead, he must
create links to trusted entities, i.e., he must fake edges, the
more the better. However, because the number of faked edges
is proportional to the effort of an attacker, the introduction
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of reputation can significantly increase the system resistance
against edge attacks.

Thus, we can combine the concept of reputation with the
concept of trust values and extend equation (3) as follows:

t̂(p) =


max(t(p)) ∗Rv0(vn), if there is at least one

path from v0 to vn,
0, otherwise.

(6)
where Rv0(vn) is the reputation value of node vn as seen
by v0.

VI. CONCLUSIONS

Approaches for AAI like Shibboleth bring many benefits
for the solution of authentication and authorization and are
widely-used today. Nevertheless, Shibboleth federations are
based on static relationships, which do not scale well and can
not be deployed in dynamic situations like mobile networks.
With this issue in mind, we have developed a network
model to build identity federations and con-federations in
a dynamic manner. Similar to a routing protocol, the trust
value of the shortest path between two entities is calculated
and stored in a trust table. Furthermore, a reputation value
is also calculated for each entity for the sake of attack
resistance. Based on the trust value an entity is able to decide
in real-time if another querying entity is trustworthy without
having to know it a priori as such static meta data are not
required.

In order to realize and test our network model, we aim to
implement our design by extending SAML to bear and send
trust values as well as reputation values and define protocols
to synchronize the link-state database between entities. In the
future, the design and realization of the protocol DYNFED,
which was mentioned in Section IV will be completed. An
implementation of the network model will be based on the
framework of Shibboleth and a trust module for Shibboleth
IdPs and SPs will be developed.
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