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Abstract—Equations Of Motion (EOM) can effectively describe
the true physical dynamics within a set of assumptions and
constraints. However, in many dynamic systems, the true physical
system can deteriorate over time, leading to altered performance
as the system ages and is utilized. These physical changes can be
characterized as alterations in the constitutive contents and inter-
nal interactions. If these health changes are not accounted for in
the EOM, discrepancies may emerge between the physical and the
model responses. The proposed control scheme examines the case
where the true system’s plant and input matrix may experience a
form of health change. The control scheme depends on knowing
the true system’s input and output state. The Lyapunov stability
proof guarantees internal and external state error convergence to
zero asymptotically if the true system experiences health changes
within the assumptions and constraints of the proposed control
scheme.
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I. INTRODUCTION

Equations Of Motion (EOM) can describe the dynamics
of the true physical system within a set of assumptions
and constraints. However, dynamic systems may experience
degradation over time or with usage. Failing to account for any
deterioration resulting from changes in internal interactions or
constitutive constants—such as mass, stiffness, and damping
in mechanical systems—can lead to an inaccurate depiction
of the true dynamics. Additionally, the potential decline in
the system’s actuator, which influences how inputs interact
with the physical system, is often overlooked. As substantial
portion of control problems involves regulating output error
concerning a given input. Ignoring the health status changes in
system dynamics or actuation can result in catastrophic failure
if synthesized inputs do not adequately address these changes.

For traditional Luenberger or Kalman-like estimators to be
practical, there has to be minimal uncertainty about the system
[1][2]. Unlike Luenberger Estimators, Kalman-like filters are
renowned for their ability to eliminate noise and stochastic
variations resulting from sensor or process disturbances, under
the assumption that the noise follows a Gaussian distribution
centered around zero. However, neither type of estimator is
capable of accommodating changes in the health status of the
system dynamics or the input matrix.

The sensitivity of Luenberger and Kalman-like estimators
to minimal uncertainty regarding system dynamics motivates
the development of robustness techniques to address model
uncertainty [3][4]. The control technique proposed here can

manage both plant and input matrix uncertainties. More impor-
tantly, it can also accommodate significant changes in system
health, as defined in the derivation. This work builds upon our
earlier findings, which indicated that only the true-physical
plant experiences a health status change, causing changes
in dynamics and constitutive constants [5]. In 2022, Griffith
developed a closed-loop approach for input matrix estimation
[6]. This paper explores the scenario in which the plant and
the input matrix experience a change in health.

The implemented control architecture was designed for a
general system and can be applied to any system that meets
the assumptions and constraints outlined in the proof. The
proof relies on two primary stability criteria: Strict Positive
Real (SPR) and Almost Strictly Dissipative (ASD). For a more
formal definition and detailed explanation of SPR and ASD
in the context of stability, please refer to [5][7]. Moreover,
since none of the estimated states are fed back to the true
system, the estimator can operate without risking harm to the
true system. Additionally, the proposed control scheme can be
utilized offline and online.

Following the introduction, this paper is divided into two
main sections: III. Main Result and IV. Illustrative Exam-
ple. The beginning of Section III offers a summary of the
derivation process, presenting this paper’s theorem and control
diagram. Sub-Sections III-A and III-B provide the assumptions
and constraints for both the true and reference systems while
laying the foundation for updating the reference model. Sub-
Section III-C defines the error states and their dynamics. In
error dynamics, residual terms exist; therefore, error states
cannot be guaranteed to converge to zero. To address this issue,
the error dynamics are treated as energy-like terms. Then, an
energy-like balance is constructed to remove residual terms,
guaranteeing the error state to converge to zero globally as
time approaches infinity. This process is detailed in Section
III-D and III-E. Following the derivation, Section IV. Illustra-
tive Example details the implementation of the derived control
scheme. This example details a generic system where the error
states converge to zero. The interaction tuning terms {γu, γu}
were left unadjusted in the example. However, tuning these
terms can impact the time the error state converges.
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II. NOMENCLATURE

A = True Plant
Am = Model Plant
ASD = Almost Strictly Dissipative
B = Input Matrix
Bm = Input Matrix Model
∈ = Belongs
C = Output Matrix
(·)† = Conjugate Transpose
ex = Internal State Error
êy = External State Error
ˆ = Estimate
∀ = For All
L∗ = Fixed Correction Matrix
γ = Interaction Tuning Term
∆L = Variance Matrix
PR = Positive Real
SPR = Strictly Positive Real
σ = Set of Eigenvalues
∋ = Such that
Re = Real
∃ = There Exists
u = Input
x = Internal State
y = External (Output) State

III. MAIN RESULT

Pertaining to the work being presented, the derived theorem
and control laws, shown in Theorem 1 and Figure 1, are
catered to minimizing the internal state error (ex) to zero
between true-physical system and reference model. This is
achieved by accounting for discrepancies in the model plant
(Am) and input matrix (Bm), given a known input (u), output
matrix (C), and external state (y). Uncertainty or variability
in the model plant and input matrix means the convergence
of the internal state error to zero cannot be guaranteed. As
detailed in the derivation, to mitigate any variability, the
error system is treated as an energy-like term. The aim
is to dissipate all the energy of the error system, thereby
ensuring the internal state error converges to zero as time
approaches infinity, ex −−−→

t→∞
0. To ensure error energy-like

dissipation, the energy-like time rate of change for the error
system is determined. Subsequently, residual energy-like time
rate of change terms from any uncertainty are identified and
countered. The remaining energy-like time rate of change term
and the use of stability lemma, Barbalat-Lyapunov Lemma,
ensures ex −−−→

t→∞
0 asymptotically.

Theorem 1: Output Feedback on Reference Model for
Adaptive Input Matrix, Plant, and State Estimation.
Consider the following state error system:



ėx = (Am −KC)ex +Bm (∆L1u+∆L2y)

êy = Cex = C(x̂− x)

L1 = ∆L1 + L1∗

L2 = ∆L2 + L2∗

L̇1 = ∆L̇1 = −eyu
†γu

L̇2 = ∆L̇2 = −eyy
†γy

, (1)

where ex is the estimated internal state error, êy is the external
estimated state error, {L1∗, L2∗} are fixed-correction matrices,
{∆L1,∆L2} are the variability-uncertainty terms, K is a fixed
gain, and {γu, γy} > 0 are interaction tuning terms. Given:

1) The triples of (A,B,C) and (Am, Bm, C) are ASD and
SPR respectively.

2) A model plant (Am) must exist.
3) A model input matrix (Bm) must exist.
4) Output matrix (C) is known.
5) Allow B ∈ Sp{BmL1∗} ∋ B ≡ BmL1∗.
6) Allow A ∈ Sp{Am, BmL2∗C} ∋ A = Am +BmL2∗C.
7) The set of eigenvalues (σ) of the true and reference plant

are stable (i.e. Re(σ(A)) < 0 & Re(σ(Am)) < 0).

If conditions are met, then {ex, êy} −−−→
t→∞

0 asymptotically.
{∆L1,∆L2} are guaranteed to be bounded; however, no guar-
antee of {∆L1,∆L2} −−−→

t→∞
0. If {∆L1,∆L2} −−−→

t→∞
0, then

the dynamics of the true system or some energy equivalence
have been numerically captured.

True System
Known Input 

Adaptive State Estimator

Adaptive Estimator Law 

Adaptive Input Matrix Law 

Figure 1. Control diagram for adaptive plant, input matrix, and state
estimation given a known input (u), output matrix (C), and external state
(y).

A. Defining True System Dynamics

Assume the dynamics of the true-physical system is linear
time-invariant and therefore can be expressed in state-space
form such that:

True System

{
ẋ = Ax+Bu

y = Cx.
(2)
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Both the true system’s plant (A), assumed to be stable (i.e.
Re(σ{A}) < 0), and the input matrix (B) experience a health
change caused by age or use, altering the constitutive constants
and system dynamics. Output matrix (C) and external (output)
state (y) are known. The input (u) can be any bounded-
continuous waveform the user provides, possibly a known
disturbance.

B. Overview of Updating the Reference Model

Subsequent sections will derive a control scheme and laws
to minimize the error between the true and reference systems,
(2) and (3), respectively. Note that both true and model systems
match in dimension size.

Reference Model

{
ẋm = Amxm +Bmu

ym = Cxm

(3)

To update the input matrix model (Bm), assume that Bm can
be corrected via a input matrix fixed correction term (L1∗)
such that:

B ≡ BmL1∗. (4)

The true plant is assumed to be decomposed into two compo-
nents: an initial model (Am) and plant matrix correction term
(BmL2∗C) such that:

A ≡ Am +BmL2∗C. (5)

Both (4) and (5) assumed decompositions are structured
such that they can modified via an estimator. In the estima-
tor, the initial input matrix and plant are updated via their
respective correction term {L1, L2}:

L(t) = ∆L+ L∗ −−−→
t→∞

L(t) = L∗, (6)

where ∆L is the variability-uncertainty term. If both variabil-
ity term converges to zero, {∆L1,∆L2} −−−→

t→∞
0, then the

input matrix and true plant (or energy equivalent) have been
numerically captured. For the control scheme to apply, the true
and reference systems must be ASD and SPR, respectively.

C. Estimated State Error

Given that the true plant (A) and input matrix (B) experi-
ences a health change caused by age or use and the internal
state (x) is often blended into a linear combination or missing
from the external state (y), an estimator can be created using
the reference model:

Estimator

{
˙̂x = Amx̂+Bm(L1u+ L2y)

ŷ = Cx̂.
(7)

To minimize the error between the true and estimated systems,
consider the following error state equations:{

ex = x̂− x

êy = ŷ − y = Cex.
(8)

To capture the internal state of the true system, the internal
state error must converge to zero as time approaches infinity.

To investigate the internal state error dynamics, take the time
derivative of the internal state error and substitute (2) and (7):

ėx = ˙̂x− ẋ

= Amx̂+Bm(L1u+ L2y)− (Ax+Bu). (9)

From (9), consider the difference between input matrices:

Bm(∆L1 + L1∗︸ ︷︷ ︸
=L1

)u−BmL1∗︸ ︷︷ ︸
=B

u = Bm ∆L1u︸ ︷︷ ︸
=wu

= Bmwu.

(10)

Again, using (9) as a reference, consider the difference be-
tween the model and true plants, where A ≡ Am+BmL2∗C:

Amx̂+Bm(∆L2 + L2∗︸ ︷︷ ︸
=L2

)y −Ax =Amex +Bm ∆L2y︸ ︷︷ ︸
=wy

=Amex +Bmwy.

(11)

Therefore, the error system can be written as:{
ėx = Amex +Bm(wu + wy)

êy = Cex.
(12)

Additionally, the estimator can be extended to use a fixed gain
(K): {

˙̂x = Amx̂+Bm(L1u+ L2y) +K(y − ŷ)

ŷ = Cx̂.
(13)

Resulting in the following error equation:
ėx = (Am −KC︸ ︷︷ ︸

=Ac

)ex +Bm(wu + wy)

êy = Cex.

(14)

To use (14), find a fixed gain (K) ∋ Re(σ{Am −KC}) < 0.
Regardless of the estimator selected, the internal state error

(ex) can not be guaranteed to converge such that ex −−−→
t→∞

0 due to the residual terms {wu, wy} existing in the error
equation. To adequately address these residual components,
additional considerations are needed.

D. Lyapunov Stability for the Estimated State Error

Lyapunov stability analysis represents dynamic systems in
terms of energy-like functions to describe the convergence of
a particular or a set of states. For this case study, Lyapunov
stability is used to guarantee the convergence of internal state
error (ex) ∋ ex −−−→

t→∞
0.

Given the state error equation as described in Eq.(12),
consider the following energy-like Lyapunov equation with
assumed real scalars:

Ve =
1

2
e†xPxex;P > 0, (15)

where the (·)† is the conjugate transpose operator and where
P > 0 represents a matrix P that is symmetric (Px = P †

x)
and positive-definite Re(σ{Px}) > 0.
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To determine the energy-like time rate of change of Ve,
take the time derivative of Ve and substitute (12) for the error
dynamics:

2V̇e =ė†xPxex + e†xPxėx

=(Amex +Bm(wu + wy))
†Pxe

+ e†xPx(Amex +Bm(wu + wy))

=e†x(A
†
mPx +AmPx)ex + 2 e†xPxBm(wu + wy)︸ ︷︷ ︸

=(Bm(wu+wy))†Pxex

.

(16)

Modifying SPR stability condition for the reference model:{
A†

mPx + PxAm = −Qx

PxBm = C† ;Qx > 0. (17)

From here, the SPR condition can be applied to (16), resulting
in:

2Ve = −e†xQxex + 2 e†xC
†︸ ︷︷ ︸

=ê†y

(wu + wy)

= −e†xQxex + 2ê†ywu + 2ê†ywy

= −e†xQxex + 2 (êy, wu)︸ ︷︷ ︸
=(wu,êy)

+2 (êy, wy)︸ ︷︷ ︸
=(wy,êy)

.

(18)

By removing the residual terms {(êy.wu), (êy, wy)} in (18),
results in Ve ≤ 0.

To counter the residual terms, consider the following
energy-like functions:

Vu + Vy =
1

2
tr(∆L1γ

−1
u ∆L†

1) +
1

2
tr(∆L2γ

−1
y ∆L†

2), (19)

where {γu, γy} > 0. The energy-like time rate of change for
Vu + Vy follows:

V̇u + V̇y = tr(∆L̇1γ
−1
u ∆L†

1)︸ ︷︷ ︸
=tr(∆L1γ

−1
u ∆L̇†

1)

+ tr(∆L̇2γ
−1
y ∆L†

2)︸ ︷︷ ︸
=tr(∆L2γ

−1
y ∆L̇†

2)

. (20)

A control law for the input matrix and plant variance time rate
of change {∆L̇1,∆L̇2} can be defined as the following:{

∆L̇1 = −eyu
†γu

∆L̇2 = −eyy
†γy.

(21)

Substituting (21) into (20):

V̇u + V̇y =tr(−eyu
†γu︸ ︷︷ ︸

∆L̇1

γ−1
u ∆L†

1)

+ tr(−eyy
†γy︸ ︷︷ ︸

∆L̇2

γ−1
y ∆L†

2)

=− tr(ey u†∆L†
1︸ ︷︷ ︸

=w†
u

)− tr(ey y†∆L†
2︸ ︷︷ ︸

=w†
y

)

=− tr(eyw†
u)− tr(eyw†

y)

=− tr(w†
uey)− tr(w†

yey)

=− w†
uey − w†

yey

=− (wu, ey)− (wy, ey).

(22)

For notation purposes, allow the following:{
Veuy = Ve + Vu + Vy

V̇euy = V̇e + V̇u + V̇y.
(23)

From here, the estimate state error closed-loop energy-like
function can be written as:

Veuy =
1

2
e†xPxex +

1

2
tr(∆L1γ

−1
u ∆L†

1)

+
1

2
tr(∆L2γ

−1
y ∆L†

2).
(24)

Therefore, the estimated state error closed-loop energy-like
time rate of change can be written as:

V̇euy =− 1

2
e†xQxex + (wu, êy) + (wy, êy)

− (wu, êy)− (wy, êy)

=− 1

2
e†xQxex ≤ 0.

(25)

Having V̇euy ≤ 0 means that {ex,∆L1,∆L2} are guaranteed
to be bounded. Due to V̇euy negative-semi-definite nature, no
additional information can be said about the error internal state
(ex) converging ∋ ex −−−→

t→∞
0.

E. Applying Barbalat-Lyapunov Lemma on V̇euy

To guarantee ex −−−→
t→∞

0, consider Barbalat-Lyapunov
Lemma - Given:

1) V is lower bounded.
2) V̇ is negative-semi-definite.
3) V̇ is uniformly continuous in time.

If all conditions are met, then V̇ −−−→
t→∞

0 according to [8].
The first two conditions of Barbalat-Lyapunov Lemma are

satisfied with (24) and (25). The third condition, V̇euy being
uniformly continuous in time and can be satisfied by showing
that V̈euy is bounded [8].

To prove V̈euy is bounded, consider Weuy:

Weuy ≥ −V̇euy ≥ 0. (26)

Taking the time derivative of Weuy results in the following:

Ẇeuy =2e†xQxėx

=2e†xQx(Amex +Bm(wu + wy))

=2e†xQx(Amex +Bm(∆L1u+∆L2y)).

(27)

From (25), {ex,∆L1,∆L2} are bounded. Input (u) can be
any bounded-continuous waveform. Following, the true plant
is assumed stable ((i.e., Re(σ{A}) < 0); therefore, a bounded
input will result in a bounded output (y) [9]. Combining all
bounded results yields: Ẇeuy is indeed bounded. Making V̈euy

bounded.
Given that all the conditions of Barbalat-Lyapunov are

satisfied, V̇euy evolution in time can be expressed as:

V̇euy −−−→
t→∞

0. (28)

Therefore, proves ex −−−→
t→∞

0 is asymptotically guaranteed.
However, regardless of Barbalat-Lyapunov being satisfied,
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Lyapunov stability results only guarantees {∆L1,∆L2} to be
bounded. If {∆L1,∆L2} −−−→

t→∞
0 numerically, the true input

matrix and plant or an energy equivalence have been captured.
Additionally, without loss of generality, derived Lyapunov
stability proof can be modified for the error system using fixed
gain, Eq. (12).

Altogether, assuming the reference (Am, Bm, C) and true
(A,B,C) systems are SPR and ASD respectfully, such that
the decomposition of the true input matrix (B) and plant (A)
can be written as B ≡ BmL1∗ and A ≡ Am + BmL2∗C.
Then adaptive laws (Eq. (21)) and diagram (Figure 1) can be
formulated such that the internal state error is guaranteed to
converge zero asymptotically. Lyapunov stability proof only
guarantees that {∆L1,∆L2} will be bounded. However, if
{∆L1,∆L2} −−−→

t→∞
0, then the true input matrix and plant or

energy equivalent have been numerically captured.

IV. ILLUSTRATIVE EXAMPLE

The following is an illustrative example of applying Theo-
rem 1 and the control diagram (Figure 1) on a general case
study. Numerical values for (Am, Bm, C) and (A,B,C) are
derived and modified from [10].

A. State Space Representations for Reference and True Sys-
tems

Allow the reference model as defined in (3) have the
following properties:

Am =

−7 2 4
−2 −1 2
−2 2 −1

 ;

Bm =

0
.7
2

 ;C =
[
0.5 0 1

]
;x(0) = 0.

(29)

To apply the control scheme as defined in Theorem 1 and
show in Figure 1, allow the true system as defined by (2) have
the following properties:

1) B ∈ Sp{BmL1∗} ∋ B ≡ BL1∗.

2) A ∈ Sp{Am, BmL2∗C} ∋ A ≡ Am +BL2∗C.
Assume the health change for the input matrix and plant can be
described by {L1∗, L2∗} ∋ L1∗ = 2 and L2∗ = −5. Therefore,
the true system can be defined by the following:

A ≡Am +BmL2∗C =

 −7 2 4
−3.75 −1 −1.5
−7 2 −11

 ;

B ≡BmL1∗ =

 0
1.4
4

 ;C =
[
0.5 0 1

]
;x(0) = 0.

(30)

Recall that the constitutive constants of the true plant (A) and
input matrix (B) are unknown. However, an initial estimate
of the plant (Am) and input matrix (Bm) exists.

When both the reference and true systems, as defined in (29)
and (30), are given a unit step input, as shown in Figure 2, the

0 2 4 6 8 10
Time, sec

0

1

2

3

S
y
st

em
R

es
p
o
n
se y

ym

u

Figure 2. True (y) and reference model (ym) output response given a unit
step input (u).

differences in rise times and output response become evident.
These differences can be further explained by examining the
eigenvalues of the reference and true plants:

σ(Am) = {−1,−3,−5}
σ(A) ≈ {−2.28,−8.36± i5.05}.

(31)

B. Defining the Known Input (u)

To implement the control scheme, a bounded and continuous
input must be used. In practice, this input can be a known
disturbance. For this example, allow the input be defined as:

u = 2 + sin(2t). (32)

C. Adaptive Estimation

In this section, the proposed control scheme detailed in
Figure 1 is implemented with two cases: with and without
the use of a fixed gain (K) term.

1) Adaptive Control Scheme without the use of Fixed Gain
(K = 0) : The control scheme detailed in Figure 1 is
implemented without using the fixed gain term (K = 0) and
{γu, γy} = I . As derived in the proof, Figure 3 demonstrates
the convergence of the internal state, where ex −−−→

t→∞
0. Given

that the internal state error converges to zero, equivalently, the
external state error convergences ∋ êy −−−→

t→∞
0. Meaning that

the estimated output (ŷ) converges to the true output (y).
Although the proof only guarantees that the adaptive vari-

ance will be bounded, numerically {∆L1,∆L2} −−−→
t→∞

0. For
this case study, the true input matrix and plant have been
numerically captured, Figure 4 and Figure 5.

2) Adaptive Control Scheme with the use of Fixed Gain
(K ̸= 0): The control scheme detailed in Figure 1 is imple-
mented using the fixed gain term (K ̸= 0) and {γu, γy} = 1.
The fixed gain term K was derived using a Linear Quadratic
Regulator where Q = I3 and R = 1. Similarly to the result of
Section IV-C1, ex −−−→

t→∞
0, shown in Figure 6. Again, since

the internal state error converges to zero, the external error will
converge to zero for the true and estimator systems. Moreover,
as {∆L1,∆L2} −−−→

t→∞
0 the true input matrix and plant are

numerically captured in Figures 7 and 8.
There can be benefit of using a fixed gain term in the

estimator, as the term can affect the time in which internal
states and adaptive terms converge, compare Figure 4 and
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Figure 3. Internal state error converging to zero without the use of the fixed
gain (K = 0).
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Figure 4. Input Matrix adaptive term L1(t) converging to L1∗ without the
use of the fixed gain (K = 0).

Figure 7. More crucially, both adaptive tuning terms {γu, γy}
can be adjusted to amply or dampen the effects of the adaptive
controller, directly impacting the convergence of the error
state. For this particular example, setting γu = 1.3 and
γy = 1.85 reduces the time in which ex −−−→

t→∞
0 and

L −−−→
t→∞

L∗ by order of magnitude faster than the depicted
figures in this text. However, there are numerical limits for
the tuning terms {γu, γy}. Making the adaptive controller too
sensitive to changes may lead to divergent artifacts.

V. CONCLUSION

A physical system can experience wear and tear with use or
age, altering performance. This paper examines the case where
the true plant and the input matrix undergo a change in health,
described as alterations in constitutive constants or internal
interactions. If these health changes are not considered in the
model, discrepancies in the true and model system dynamics
can occur. This work proposes addressing the change in the
true system’s health by updating the model of the plant and
input matrix according to their respective adaptive laws. If the
assumptions and constraints of the proof are met, the adaptive
laws will ensure that both internal and external state errors
converge to zero asymptotically.
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Figure 5. Plant correction adaptive term L2(t) converging to L2∗ without
the use of the fixed gain (K = 0).
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Figure 6. Internal state error converging to zero without the use of the fixed
gain (K ̸= 0).
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Figure 7. Input Matrix adaptive term L1(t) converging to L1∗ with the use
of the fixed gain (K ̸= 0).
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Figure 8. Plant correction adaptive term L2(t) converging to L2∗ with the
use of the fixed gain (K ̸= 0).
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