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Abstract—The Recursive Least-Squares (RLS) family of adap-
tive algorithms can be an attractive choice for the identification
of unknown acoustic systems, which have hundreds, or even
thousands, of coefficients. The RLS have also been combined with
Line Search Methods (LSMs) in order to obtain versions without
numerical stability issues, and to decrease the corresponding
arithmetic complexity. Despite the superior tracking speeds
associated with the RLS-LSM methods (with respect to more
consecrated algorithms), they remain vulnerable to Double-Talk
(DT) situations, when the corresponding update process becomes
inaccurate. This paper describes a variable regularization tech-
nique for the RLS-LSM general algorithm, which is designed
to mitigate DT scenarios by adjusting the contents of the RLS
correlation matrix. Simulation results demonstrate the proposed
theoretical model in the stereophonic acoustic echo cancellation
configuration.

Index Terms—Recursive Least-Squares (RLS); Line Search
Methods (LSMs); Double-Talk (DT); Variable Regularization (VR).

I. INTRODUCTION

The identification of unknown acoustic echo paths using
adaptive algorithms implies the estimation of impulse re-
sponses equivalent to hundreds of millisenconds. Most of the
signal processing solutions rely on the Least-Mean-Square
(LMS) adaptive methods [1], which have acceptable arith-
metic complexities and poor performances when working with
highly correlated signals, such as speech.

In this context, the Recursive Least-Squares (RLS) adaptive
algorithms are possible alternatives, having superior tracking
speeds [2]. However, most RLS versions require prohibitive
amounts of resources on most modern chips and manifest
numerical stability issues. The complexity problem is even
worse when considering the Stereophonic Acoustic Echo
Cancellation (SAEC) scenarios, where user terminals employ
two microphones, respectively two loudspeakers, to create
the impression of audio directionality. The associated setup
needs to estimate four acoustic paths, corresponding to each
loudspeaker-to-microphone pair.

In [3], Liu et al. combined the exponentially weighted RLS
with Line Search Methods (LSMs) in order to approach the
corresponding set of normal equations by solving an auxiliary
system. The solution avoids the numerical stability issues, and
allows the use of less complex LSM variants, which exploit
the statistical properties of the input signal. Moreover, for the
SAEC setup, the Widely Linear (WL) model was employed
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TABLE I
WL-RLS-LSM ALGORITHM

Action

Set: g(0) = O2r.x1; r(0) = O2r,x1

R(0) = @Iy, ® > 0;0 < A< 1

For n =1,2,...,number of iterations :

Update 2L X 1 input vector x(n)
Update correlation matrix R(n) (time shift)
RGD(n) = ARG (n — 1) 4+ 2*(n)X(n)
y(n) =g"(n — Dx(n)
e(n) = d(n) —y(n)
go(n) = Ar(n — 1) + e*(n)x(n)
R(n)Ag(n) = go(n) == Ag(n), x(n)

g(n) —&(n—1) + Ag(n)

Step
Init.

—
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in [4] in order to simplify the handling and to allow easier
developments of extra features, like mechanisms employed to
mitigate the effects of Double-Talk (DT) situations.

This paper is organized as follows. Section II describes the
WL-RLS-LSM adaptive algorithm with Variable Regulariza-
tion (VR) of the associated correlation matrix. In Section III,
simulation results are discussed for the proposed algorithm in
the SAEC setup. The paper draws the main conclusions in
Section IV.

II. THE VR-WL-RLS-LSM ALGORITHM

The WL-RLS-LSM adaptive filter working in the SAEC
configuration benefits from the simplifications provided by
the WL model, and employs a single adaptive filter g(n)
with 2L complex valued coefficients in order to estimate the
four acoustic loudspeaker-to-microphone impulse responses,
each with L real valued coefficients. The input information
(corresponding to the two loudspeakers) is grouped in a single
complex valued signal z(n), respectively the outputs of the
unknown echo paths are combined into y(n). The complex
valued microphone information, represented by d(n), com-
prises the contribution of y(n) cumulated with environmental
noise. Consequently, the adaptive filter estimates the complex
echo as y(n) and sends to the interlocutor the error e(n),
from which the value y(n) is subtracted. The WL-RLS-LSM
general algorithm is presented in Table I, where Io; denotes
the identity matrix, and 7 is the Hermitian operator.
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The first two steps of the algorithm are dedicated to the
updates of the input vector and the correlation matrix, respec-
tively. The output of the filter results in step 3, while the error
signal is computed in step 4. Then, the residual component
go(n) is evaluated in step 5. In step 6 of the algorithm, the
method employs a complex valued LSM to solve an auxiliary
system of equations and generate the solution vector Ag(n),
which is used in step 7 to update the filter estimate.

A wide range of LSMs can be used for step 6 of the
algorithm. For example, the complex valued Conjugate Gra-
dient (CG) method has a complexity proportional to 4L? real
valued multiplications and attractive tracking capabilities. A
low-complexity alternative for the CG are the Dichotomous
Coordinate Descent (DCD) iterations [5], [6], which can solve
the system in step 6 using only additions and bit-shifts. The
DCD strongly relies on the statistical properties of the input
signal as they are reflected in the correlation matrix R(n).
The WL-RLS-DCD variant is more attractive for hardware
implementations, because it can function with an overall
arithmetic workload proportional to 2L.

However, regardless of the algorithm used for the SAEC, the
WL-RLS-LSM is still susceptive to DT scenarios, when the
noise component of d(n) is much higher than the contribution
of y(n). A solution proposed in [7] is to alter the purpose of
the initialization constant ® used to avoid the singular nature
of R(n) during the initial iterations of the algorithm. We can
compute a regularization coefficient at every time index as

®(n) = 2L52(n)(1 + \/ 1 + ENR)/(ENR), (1)

where 52(n) and ENR are estimates for the variance of

the input signal, respectively the Echo-to-Noise Ratio (ENR).
Consequently, we can compare the performances of the WL-
RLS-LSM using the CG, respectively DCD, methods with
their variable regularized counterparts in DT situations. The
complexities of the namely VR-WL-RLS-LSM algorithms
remain similar to the original versions.

III. SIMULATION RESULTS

In Figures 1 and 2, the WL-RLS-CG and WL-RLS-DCD
methods were compared to the VR-WL-RLS-CG, respectively
the VR-WL-RLS-DCD, by simulating a tracking scenario [2],
followed by a DT occurence. The input signal is speech,
and the ENR was set to 25 dB for Figure 1, respectively
to 10 dB for Figure 2. We employed different number of
N, iterations for both algorithms [3], [4]. We can notice in
Figure 1 that the VR versions of the algorithms perform better
during the DT interval, with the compromise of slightly lower
tracking speeds. Moreover, when the ENR is lower (Figure
2), the VR-WL-RLS-CG, respectively the VR-WL-RLS-DCD,
clearly outperform their counterparts, including during the
steady-state portions of the simulation.

IV. CONCLUSIONS

The VR approach for the WL-RLS-LSM improves the
performance of the algorithm for smaller ENR values, re-
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Figure 1. Normalized misalignment of the WL-RLS-CG, WL-RLS-DCD, VR-
WL-RLS-CG, and VR-WL-RLS-DCD for different values of N,,. The four
unknown echo paths have the length L = 256, and the ENR is experimentally
set to 25 dB. The echo paths change at time index tp = 60 seconds, and a
DT situation occurs in the time interval [170,174] seconds.
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Figure 2. Normalized misalignment of the WL-RLS-CG, WL-RLS-DCD, VR-
WL-RLS-CG, and VR-WL-RLS-DCD for different values of N,. The four
unknown echo paths have the length L = 256, and the ENR is experimentally
set to 10 dB. The echo paths change at time index to = 60 seconds, and a
DT situation occurs in the time interval [170,174] seconds.

spectively when DT situations occur. The increase of perfor-
mances adds reasonable extra arithmetical effort, respectively
slight losses in the tracking speeds. Considering the VR-WL-
RLS-DCD has results similar to the VR-WL-RLS-CG, with
less necessary arithmetic resources by an order of degree,
the former is an attractive choice for practical applications.
These regularized algorithms could be more suitable in echo
cancellation and noise reduction scenarios, where the long
length impulse responses and highly correlated input signals
represent significant challenges for the LMS-based algorithms.
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