
Agent-based Modeling in the Edge Continuum
using Swarm Intelligence

Melanie Schranz, Kseniia Harshina, Peter Forgacs
Lakeside Labs

Klagenfurt, Austria
{schranz, harshina, forgacs}@lakeside-labs.com

Fred Buining
HIRO MicroDataCenters
Voorburg, Netherlands

fred.buining@hiro-microdatacenters.nl

Abstract—The edge continuum presents a dynamic and evolv-
ing paradigm in the future’s world of computing, offering a
versatile and efficient solution for a wide range of applications
and industries. The edge infrastructure is more challenged in its
stability and performance because of more stringent latency and
autonomy requirements, distribution across multiple sites, their
local limited size, multi-tenancy and multi-operators, local man-
agement, with components being concurrent and asynchronous.
This paper introduces an innovative framework that combines
agent-based modeling and swarm intelligence to address complex
challenges such as resource allocation, workload scheduling,
and data management in the edge continuum. This framework,
at the core of the architecture, enhances edge autonomy, re-
duces latency, improves energy efficiency, and optimizes cloud
connectivity by applying agent-based modeling. By integrating
autopoietic characteristics like self-organization, regeneration,
and regulation, the system dynamically adapts to changing
conditions. Two candidate algorithms, the hormone algorithm
and ant algorithm, emulate decentralized decision-making pro-
cesses observed in nature. The paper reviews related work in
swarm intelligence for network optimization and emphasizes
the need for distributed, agent-based solutions. This research
paves the way for robust, adaptive, and scalable systems in the
complex edge environment, promising emergent behaviors and
enhanced efficiency. In this position paper, we propose the edge
continuum with its characteristics and limitations as a novel field
of application for swarm intelligence by conceptually proposing
agent-based modeling and simulation.

Index Terms—Swarm Intelligence, Bio-inspired Algorithm,
Edge Continuum, Agent-Based Modeling

I. INTRODUCTION

The emergence of local processing capacity at the edge
is driven by numerous advantages essential for upcoming
processing tasks. These benefits encompass heightened se-
curity and reliability, alongside reduced latency and energy
consumption. The management of the edge infrastructure,
the so-called edge continuum, presents a dynamic computing
landscape. Within the edge continuum, for which we consider
a mesh of Edge Micro Data Centers (EMDCs) in this paper
(see Figure 1), intelligence is spread across the edges forming
a distributed environment. This will make the edge more
autonomous and fine-grained in local decision making within a
regional context and make it more independent from a central
coordination point. This is especially necessary, if we talk
about real-time applications such as autonomous driving or
monitoring and control of smart grids. The edge infrastructure

is more challenged in its stability and performance because
of more stringent latency and autonomy requirements, dis-
tribution across multiple sites, its local limited size, multi-
tenancy and multi-operators, local management, with compo-
nents being concurrent and asynchronous. This challenge to
edge infrastructures is growing rapidly due to the increasing
i) number of connected devices and their data-producing
and data-consuming capabilities, ii) intelligence embedded
in edge devices, iii) atomization of monolithic applications,
iv) scale, speed, and complexity of edge device interactivity
in a zero-trust environment. Resource allocation, workload
scheduling, and data management are challenges that increase
in the complexity of the edge orchestration and edge-cloud
interaction (see Figure 1 for a schematic architecture provided
by the ACES project).

This position paper introduces a conceptual, but novel
framework that combines agent-based modeling and swarm
intelligence as an emergent orchestrating mechanism to ad-
dress these complexities. Agent-based modeling and swarm
intelligence are known for providing advantages in simu-
lating complex systems with autonomous entities including
adaptability, scalability and robustness. They utilize collective
decision-making processes as observed in nature by swarms
of insects, fish or birds [1]. Central to our approach is the
integration of these autopoietic characteristics that include
the emergent intelligence of self-organization, regeneration,
and regulation. These characteristics enable the system to
dynamically adapt and optimize in response to changing
conditions. AI-driven optimization methods (including swarm
intelligence) in cloud infrastructure are successfully being
researched (see Section VI for more details). Among recent
notable examples of utilization of swarm intelligence to opti-
mize complex systems, is the work of Schranz et al. [2], where
authors successfully utilize bottom-up job shop scheduling
applying swarm intelligence algorithms for optimizing a large
production plant. Thus, we propose the edge continuum with
its characteristics and limitations as a novel field of application
for swarm intelligence.

This framework is at the core of the architecture, required to
manage the edge infrastructure, EMDCs capable of processing
big data and AI at the edge-to-edge environment independent
from a distant cloud. Key to our conceptual approach is the
use of swarm agents, representing demand and supply entities.

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 1. Schematic architecture demonstrating the inter-edge resource allocation in clusters (nodes, pool of resources - see Section III - and the overall
edge-cloud interaction. .

Demand swarm agents represent workload behaviors at the
pod level, ensuring pod-level optimization. On the other hand,
supply swarm agents represent node dynamics. These agents
collaborate within an EMDC environment, orchestrating pro-
cesses such as workload placement, storage management, and
caching optimization. Exemplary swarm algorithms, in this
paper the hormone and ant algorithms are utilized in order
to accomplish the desired functionality of the system. For
example, demand swarm agents deploy synthetic hormones to
communicate their requirements and priorities. Supply swarm
agents, detect these hormones to make informed allocation
decisions. The ant algorithm dynamically optimizes workload-
node-assignments by simulating the foraging behavior of ants,
depositing pheromones to guide subsequent decisions.

The paper follows the following structure: Section 1 in-
troduces the problem and outlines specific challenges of the
research process. In Section 2, we explore the edge continuum
setting. In Section 3, we discuss the agent-based model, and
address challenges specific to the infrastructure and interac-
tions in the EMDCs. In Section 4, we evaluate candidate
swarm algorithms, the hormone and ant algorithms on a
conceptual basis. We conclude the paper with Section 5 by
reviewing the related work and giving an outline on future
work in Section 6.

II. THE EDGE CONTINUUM

Industry surveys show that edge infrastructure is a driver
for new initiatives and business operations. According to
recent studies, the percentage of respondents that have or will
implement edge locations within the next three years raised
from 55% last year to 87% this year [3]. According to the EU,
a decentralized intelligently orchestrated edge infrastructure
(hardware and software) is needed to support platforms, data
spaces and applications, e.g., an Industrial Metaverse utilizing
a combination of cloud, edge and IoT to enable a wide range of
new solutions to transform processes, automate operations, and
launch new products and services. At the edge where traffic

patterns are becoming sudden and unpredictable, more traffic
will be handled in far edge or metro edge data centers, micro
edge data centers embedded in metro networks [4].

The edge is created from a mesh of EMDCs that are com-
pletely composable, customizable, heterogeneous, and there-
fore different in capacity and capabilities. An EMDC will
supply resources; nodes with servers, accelerators, storage,
and networking capabilities. While the application owners
and edge devices will demand certain resources, capabilities,
and performances, the orchestration of matching demand and
supply are made dynamically and decentralized in a bottom-
up approach. This will allow the EMDC to be configured and
sized to satisfy 1) local autonomy: the demands of the local
edge clients, and 2) regional elasticity: the demands upon
groups of EMDCs caused by fluctuating local demand and
mobile demand traveling along several EMDCs in a region.
This means that each EMDC needs to be:

• aware of its hardware configuration, hardware capabili-
ties, software services (supply) and the local and regional
requests for services (demand);

• self-intelligent and autonomous (autopoietic AI) in
matching local and regional supply and demand;

• efficient in the execution of its services and self-
intelligence.

Currently, hardware-based composability of an EMDC means
that the nodes can be of any type, such as Central Processing
Unit (CPU), Field Programmable Gate Array (FPGA), Graph-
ical Processing Unit (GPU), or Non-Volatile Memory express
(NVMe).

III. CREATING AN AGENT-BASED MODEL FOR
OPTIMIZING THE EDGE CONTINUUM

When shaping the edge continuum to an agent-based sys-
tem, we analyze a group of possible swarm agents and their
attributes. In this context, we need to determine the eligibility
of an entity to serve as a member of the EMDC swarm [5]. The
swarm can exhibit homogeneity (with all agents being of the

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

same kind, like numerous pods) or heterogeneity (comprising
agents of various types, such as pods and resources). For
an entity to qualify as a swarm member, it should possess
the capacity to effectively function within a swarm. This
entails the presence of a significant number of other swarm
members (for instance, a single instance of an FPGA, existing
in isolation, would not make a suitable swarm member).
Additionally, the entity should exhibit an appropriate degree
of abstraction to facilitate modeling, possess the capability to
sense dynamic information from the immediate environment,
respond to information originating from the local vicinity
(such as making decisions), and be logically coherent and
comprehensible, fostering trust in the proposed solution [1].

A. Modeling Agents in the Edge Continuum
Our agent-based approach introduces two distinct types

of swarm agents: demand swarm agents and supply swarm
agents. These agents collaborate within an EMDC environ-
ment, orchestrating processes such as pod placement, storage
management, and caching optimization. The model for the
problem consists of an edge continuum with resources, queues,
pods, and processes.

1) Demand Swarm Agents: An application is split into a
set of services S that are represented as a set of related pods
P s = {ps1, ps2, . . . } with s as the specific service. Each service
s is defined by a compilation of resources Rs which prescribes
the processing steps necessary to compute the individual pods.
The pod psj can choose which of the suitable nodes Nn

i to use
for each necessary process step P r.

2) Supply Swarm Agents: The EMDC E contains several
sets of nodes or nodes, consisting of different types of re-
sources Nr = {Nr

1 , N
r
2 , . . . }, where r is/are the resource

type(s). A node with different resources presents a typical
EMDC node, whereas a node with a single resource presents,
e.g., a CPU that is part of a pool of resources. In the course
of this work, we consider the following resources along with
their respective capacities: CPU, FPGA, RAM, and NVMe.
Each resource Nr

i has a queue Qr
i .

3) Agent Collaboration and Self-Organization: The interac-
tion between demand swarm agents and supply swarm agents
is orchestrated through swarm intelligence algorithms. De-
mand swarm agents autonomously seek out the most suitable
node for workload placement, while supply swarm agents
determine the optimal workload to process based on available
resources and capacity. This collaborative decision-making
process enables the system to efficiently allocate workloads to
nodes, optimizing processing, latency, and resource utilization.

Our agent-based model is designed to exhibit autopoietic
characteristics, fostering self-organization, regeneration, and
regulation within the edge continuum. As demand and supply
agents interact and adapt to changing workloads and resource
availability, the system as a whole displays emergent behaviors
that contribute to its resilience and efficiency.

IV. CHALLENGES IN MODELING AGENTS FOR THE EMDC
In the agent-based modeling of an EMDC, we face a set of

challenges that need to be considered in the modeling process.

A. Pool of Resources

Additionally to the nodes in an EMDC, we consider a
pool of resources that presents an innovation to the current
definitions of the edge continuum. This means that besides
the processing capabilities in a node (that is a constitution
of multiple resources), single resources can be requested
for pod processing. This pool of resources is part of the
EMDC and can be consulted by the edge(-cloud) management
as requested. Such a pool mainly prevents resource limits,
increased latencies, and stability of the performance of other
pods, as their assigned resources are not tapped. Currently, the
Compute Express Link (CXL) is being implemented in CPUs
(Intel, AMD), in memories and storage (Samsung) and the
PCIe switches are expected in 2025. Besides the hardware
development, the biggest challenge currently is how these
pools of resources can be orchestrated.

B. Application Types

For the different services, we can differ between the three
application types that come with diverse requirements in their
response time.

• The Long-Running Applications (LRAs) instantiate
long-standing pods to enable iterative computations in
memory or unceasing request-response. LRAs include
processing frameworks (e.g., Storm [6], Flink [7], Kafka
streams [8]), latency-sensitive database applications (e.g.,
HBase [9] and MongoDB [10]), and data-intensive in-
memory computing frameworks (e.g., TensorFlow [11]).

• Batch processing is typically used when you have a large
amount of data that needs to be processed all at once,
and when the results of that processing can be stored
and used later. Data is typically processed on a schedule
or at regular intervals. There are two types of batch
processing: Regular returning requests, and opportunistic
requests with little to no SLA (Service Level Agreement).

• Stream processing also deals with large volumes of data,
but the data needs to be processed in real-time.

Future workloads will become even more complex with LRAs,
batches, and stream processes being interconnected. Therefore,
it will be challenging to categorize an application and tune its
agents accordingly.

C. Relationships among Pods

The demand swarm agents are related pods P s split from a
specific service s. These pods can have several relations with
each other. There can be different needs, e.g., that they need
to be processed in parallel or that they depend on each other.
Additionally, if one pod is too slow, the current system creates
more pods to reach the given response times of the specific
service s. Currently, these relationships are not used in the
scheduler and orchestration optimization. For example, placing
interacting services closer together can significantly enhance
their performance, e.g., i) if there are multiple services with
microservices that frequently interact, it is advisable to locate
the microservices of one service within the same region to
improve performance, ii) for pods that are heavily dependent

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

on a database, it is best to place them near the database to
reduce latency and improve overall performance.

V. CANDIDATE ALGORITHMS

In this section, we introduce two candidate algorithms for
the edge continuum. These algorithms adopt a bottom-up
approach, by modeling real-world entities as agents, including
the attributes that enable them to interact with each other and
their environment. By applying swarm intelligence principles
to these agents, we enhance their capabilities to manage
the complexity in the edge continuum. This allows them to
make context-aware decisions by drawing from both local
and global information. This approach embraces decentralized
decision-making, promising effective resource management in
the complex edge(-cloud) continuum.

A. Hormone Algorithm

Artificial hormone systems draw inspiration from the bio-
logical endocrine system, which regulates various metabolic
processes within our bodies [12], [13]. This creates a self-
organizing system characterized by scalability, adaptability,
and robustness. In our simulation, supply swarm agents cor-
respond to nodes within the continuum, and demand swarm
agents represent pods seeking optimal node placement.

Demand swarm agents release synthetic hormones into the
environment based on their resource requirements and prefer-
ences. These hormones carry information about the demands
and priorities of the pods. Supply swarm agents, representing
nodes, detect these hormones and adjust their behavior accord-
ingly. Nodes release their own hormones indicating resource
availability and capacity.

The concentration of hormones guides demand swarm
agents toward nodes that match their requirements, fostering
autonomous and informed decision-making. The communi-
cation of synthetic hormones replaces traditional centralized
control mechanisms with decentralized coordination, allowing
the system to adapt to pod variations and resource fluctuations.

The underlying principle is inspired by the use of artificial
hormones for reorganizing agents in self-organizing systems
for technical applications [14], [15], which can be extended
to the dynamic edge environment. In our framework, we
will implement the artificial hormone system as a software
layer distributed across the processing nodes within the edge
continuum as inspired by the applications in production plants
(see Elmenreich et al. [16] for more details). The hormone
algorithm used for optimization in the edge continuum can be
dissected into six key mechanisms:

Production: Supply swarm agents, representing nodes,
produce hormones in response to the number of demand
swarm agents, pods, in the EMDC. Nodes that are currently
processing fewer pods produce more hormone. Each node as
well as a pool of resources (e.g., CPU, storage) may produce
a distinct type of hormone with

Hr =
1

|Qr
i |+ β

(1)

where Hr
i is the hormone corresponding to the the node

Nr
i , β is a smoothing factor, and |Qr

i | is the number of waiting
workloads in the EMDC for the node Nr

i .
Evaporation: The hormone levels at each node gradually

decrease over time through a process of evaporation, controlled
by a parameter α given with

Hr
i,t+1 = Hr

i,t · (1− α) (2)

where Hr
i,t+1 and Hr

i,t represent the state of hormone at the
node Nr

i before and after a discrete evaluation step.
Diffusion: Hormones diffuse from one node to another

based on the compilation of resources per pod that also
connects the resources similar to hormone propagation in
biological systems. Hormones move upstream, following the
reverse of this resource graph by calculating

∆H = Hr
i · γ (3)

Hr
i − =∆H (4)

where ∆H is the amount of hormone moving upstream from
the node Nr

i , and γ is a parameter setting the motility of
hormone.

The link strength lr,p between two nodes Nr
i and Np

j is
equivalent to the number of compilations of resources Rt

containing processes P r and P p in direct succession. Each
node connected upstream receives a proportional part of the
upstream hormone with

Hp
j + =∆H

lr,p∑
c l

r,c
(5)

where
∑

c l
r,c represents the sum of all upstream links from

P r.
Diffusion through pod movement: When pods move

between nodes within the EMDC, e.g., due to a lack or loss
of resources in a node, they carry hormones with them, influ-
encing the hormone levels at both the initial and destination
nodes.

∆H = Hr
i · δ (6)

Hr
i − = δH (7)

Hp
j + = δH (8)

where ∆H defines the amount of hormone that moves with
the pod, calculated from the amount of available hormone Hr

i

at the node Nr
i .

Attraction: Pods are attracted by the nodes whose process-
ing capabilities match the pods’ requirements from the corre-
sponding compilation of resources. The amount of attraction
decreases exponentially based on the order of the node. The
attraction force is applied to pods as soon as they enter the

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

processing queue Qr
i and it can make the pod move towards

a distinct node.

attraction =
∑
i,r

Hr
i · εn (9)

where Hr
i is the hormone amount at a node that is n edges

away, and ε is a factor < 1 defining the degradation of the
hormone attraction over edge distance in the graph G.

Each mechanism comes with a parameter indicating the
strength of each part, that is evaporation rate (α), hormone
production factor (β), upstream diffusion factor (γ), hormone
distribution factor (δ), and attraction factor (ε). A possible
configuration of these parameters is stated in [16]. Due to the
interaction between each of the mechanisms forming feedback
control loops, the algorithm can operate with a broad set of
possible parameter settings.

B. Ant Algorithm

Ant algorithms draw inspiration from the decentralized
foraging behavior of ants, a natural phenomenon where ants
can efficiently find near-optimal paths to food sources without
relying on global knowledge. They achieve this by leaving
pheromone trails to communicate with other ants. In our
simulation within the edge continuum, this concept will be
applied to optimize the allocation and processing of pods by
supply swarm agents, analogous to ants, representing nodes
within the continuum.

Here’s how the ant algorithm is adapted to the edge contin-
uum:

Trail Following: In our context, we frame the allocation
of pods as a routing problem in the edge continuum. Pods
probabilistically select the next suitable node Nn

i from the set
of potential nodes Nn based on both local pheromone values
associated with that node and a local heuristic considering the
node’s current pod, which can be assessed by metrics like
queue length or resource utilization. The probability Pi,j of
selecting node Nn

i is computed as shown in Equation 10.

Pi,j =
τi,j,d + αηi,j
1 + α(Ni − 1)

(10)

with
η = 1− qi,j∑

q
. (11)

In this equation, η represents the relative queue length of
node with Ni as the number of possible nodes. The parameter
α allows for fine-tuning the influence of pheromone τ (see
update rules below) versus the local pod heuristic. In our
adaptation, the destination d corresponds to the next step in
the pod’s compilation of resources within the EMDC, rather
than a specific destination node.

Trail Laying: Pheromone values are updated after a pod
has been processed on a node within the EMDC. However,
unlike traditional ant algorithms where backward ants are used
to update pheromone values, we utilize communication and
coordination among nodes within the continuum. Each pod
maintains a memory of the processing, effectively measuring

the time it waited for resources. When a pod moves from
one node to another, this information is used to update the
pheromone values.

For a chosen node Nn
x , the pheromone value is updated as

follows:

τx,d ← τx,d + r(1− τx,d) (12)

For all potential nodes Nn
n that were not chosen, the

pheromone values are updated according to

τn,d ← τn,d − rτn,d. (13)

The reinforcement r depends on the processing time of the
pod, which reflects the waiting time and resource utilization.
This approach ensures that nodes with shorter pod processing
times and lower resource utilization become more attractive
for incoming workloads.

Evaporation: Periodically, pheromone values are subject
to evaporation with a rate p. This process simulates the
natural fading of pheromone trails and helps remove paths
that may have become less optimal due to changes in resource
availability or demand (Equation 14).

τ(t+ 1) = τ(t)(1− p) (14)

This adaptation effectively models and optimizes the al-
location and processing of pods within the EMDC, drawing
inspiration from the decentralized behavior of ants.

VI. RELATED WORK

Next-Generation Networks (NGN) are growing fast, and
this rapid growth is becoming more and more demanding
to optimize resource management in cloud computing, edge
computing, and edge-cloud computing. As big data analytics
is gaining size, optimization is becoming problematic, because
those optimizers, which seek an exact global optimum, can
have an exponentially growing complexity. Some examples of
optimization problems in big data analytics that can exhibit
expensive computational complexity:
Combinatorial Feature Selection: When dealing with a large
number of features (variables) in a dataset, selecting the
optimal subset of features for a machine learning model can
be computationally intensive. The number of possible feature
combinations grows exponentially with the number of features,
leading to exponential complexity [17], [18].
Clustering in High-Dimensional Spaces: In high-dimensional
spaces, clustering algorithms like k-means can become compu-
tationally expensive. As the number of dimensions increases,
the data points tend to become more distant from each other,
making it challenging for clustering algorithms to identify
meaningful clusters. This phenomenon is often referred to as
the curse of dimensionality [19], [20].
Optimizing Distributed Systems: Optimizing the allocation of
computing resources in distributed machine learning systems
for big data analytics can be computationally expensive. These
systems often involve multiple nodes and parallel processing

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

of large data sets. Ensuring efficient resource allocation to
reduce training time and resource waste is a challenging
optimization problem [21], [22].

Pham et al. [23] do an in-depth review of the implementa-
tion of swarm intelligence for NGN, and state the advantage
of swarm intelligence in guaranteed convergence, robustness,
near-optimal solution, and computationally-traceability. There
are several research works addressing the major issues in NGN
using swarm intelligence. The way they are approaching is
by creating a random set of solutions. This set of candi-
date solutions is improved iterations by iterations optimizing
the objective function, which quantifies the goodness of a
solution. The review also mentions possible swarm intelli-
gence implementations for spectrum management and resource
allocation, wireless caching and edge computing, network
security, and miscellaneous issues. The following lines of this
section present some even more recent research done in the
optimization of task offloading in edge computation than the
ones presented in the review.

In smart homes, to minimize the energy consumption of a
residential consumer-centric load-scheduling, Lin & Hu [24]
proposed a constrained Particle Swarm Optimization (PSO)
algorithm, where the possible solutions are modeled as agents.
Feng et al. [25] also describe a task offloading strategy, which
is able to reduce the energy consumption, the time latency
and the service price in mobile edge computing, however,
the strategy is to use a Grey Wolf Optimizer (GWO), Whale
Optimization Algorithm (WOA) and GWO – WOA where the
agents are the percentages of how much of a mobile device’s
task is computed locally on the mobile device (because a
task can also be partially offloaded to the edge server). This
means that whenever there is a change in the tasks or the
mobile devices, the algorithm needs to compute the optimal
solution with a new set of input. Lee et al. [26] provides a
swarm intelligence algorithm, an Artificial Bee Colony (ABC)
algorithm for the allocation of a given task set to a given edge
server set and a cloud, where the solutions from the solution
population are interacting with each other. A relatively recent
work, Mahenge & Sanga [27] presents a strategy to offload
resource-intensive tasks in mobile edge computing energy-
efficiently using a hybrid approach (PSO and GWO), where
the algorithm gathers the information about the tasks and
servers and then calculates the optimal offloading strategy.
Bacanin et al. [28] perform energy optimization in 5G-enabled
edge nodes using PSO which first has to obtain as input all
the data about the tasks and edges. Attiya et al. [29] aims to
tackle the problem of IoT application task scheduling. It uses
the Manta Ray Foraging Optimization (MRFO) combined with
Salp Swarm Algorithm (SSA) which is also initialized with
a set of N solutions. In Singh et al. [30], the authors write
all available resources into an availability list. On this list, a
swarm algorithm (Ant Colony Optimization, ACO) is executed
for searching an optimized (centralized) solution for resource
allocation and scheduling. Another approach is presented in
de Melo et al. [31]. Here, the focus is on a review of several
methodologies to parallelize swarm algorithms on parallel

hardware to increase execution performance. The aim is to
accelerate finding an optimal solution to a problem which is
then mostly applied in a centralized manner. No decentralized
agent-based approach is revealed in this work.

Although the proposed solutions in the literature apply
different swarm intelligence algorithms, they are executed
centrally. Typical problems that arise from this approach are
single point of failure, higher computational effort, and lack
of dynamicity to occurring changes in the environment or
incoming demands. Therefore we propose an optimization
from the bottom-up, using swarm intelligence literally with
interacting embodied agents that make decisions based on
local information. These are then the algorithms that are ro-
bust, adaptive, and scale due to their distributed characteristic
leading to a real emergent behavior of a complex system.

To the best of our knowledge, no one has ever tried an agent-
based approach in the edge-cloud domain where resources and
requests are regarded as agents, and scheduling along with
relevant objectives (utilization, low latency, energy efficiency,
etc.) are considered emergent properties of the agent’s local
decision making and interaction (autopoiesis). This will direct
the NGN of EMDCs on the edge to a powerful, self-organized
network, where we can generate a main contribution towards
the scheduling of a resource pool and the dynamics of pod
arrivals.

VII. CONCLUSION AND FUTURE WORK

The management of the edge continuum presents a multi-
faceted computing landscape that continues to grow in com-
plexity. Our paper introduces a novel conceptual framework
that leverages agent-based modeling and swarm intelligence
to address these complexities, focusing on enhancing edge
autonomy, reducing latency, improving energy efficiency, and
optimizing cloud connectivity.

We propose utilizing swarm agents to represent demand and
supply entities within an Edge Micro Data Center (EMDC)
environment. Demand swarm agents optimize at the pod
level, while supply swarm agents manage node dynamics. The
application of swarm algorithms, including hormone and ant
algorithms, facilitates intelligent workload placement, storage
management, and caching optimization.

As a next step, we will elaborate on the efficiency of the
proposed candidate algorithms using a simulation approach
based on an abstracted version of the edge continuum using
SwarmFabSim [32], a NetLogo implementation, as inspiration.
Additionally, real-world implementation and validation of the
framework will be essential to demonstrate its practical ef-
fectiveness in managing the dynamic edge(-cloud) landscape.
This is a step that will need some workarounds first, as the
hardware to realize resource pools on the edge is still in the
development phase.

ACKNOWLEDGEMENT

This work was performed in the course of the EU-project
ACES1 supported by European Union’s Horizon Europe re-

1https://www.aces-edge.eu/

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

search and innovation programme under the grant agreement
No. 101093126 (HORIZON-CL4-2022-DATA-01-02).

REFERENCES

[1] M. Schranz, G. A. Di Caro, T. Schmickl, W. Elmenreich, F. Arvin,
A. Şekercioğlu, and M. Sende, “Swarm intelligence and cyber-physical
systems: concepts, challenges and future trends,” Swarm and Evolution-
ary Computation, vol. 60, p. 100762, 2021.

[2] M. Schranz., M. Umlauft., and W. Elmenreich., “Bottom-up job shop
scheduling with swarm intelligence in large production plants,” in
Proceedings of the 11th International Conference on Simulation and
Modeling Methodologies, Technologies and Applications, pp. 327–334,
INSTICC, SciTePress, 2021.

[3] B. Kleyman, B. Gillooly, and K. Letourneau, “The 2021
state of the data center report,” AFCOM, p. 20, 2021.
https://datacenterworld.com/sites/default/files/AFCOM State%20of%
20the%20Data%20Center FINAL 2021 5-10-21.pdf [Online; accessed
8-March-2024].

[4] P. Fetterolf, “Next-generation metro network and edge
computing architectures,” ACG Research, p. 10, 2021. https:
//www.acgcc.com/media/reports/files/ACG Research Next-Generation
Metro Network and Edge Computing Architectures 2021 1.pdf
[Online; accessed 8-March-2024].

[5] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm robotic
behaviors and current applications,” Frontiers in Robotics and AI, vol. 7,
p. 36, 2020.

[6] A. Storm. https://storm.apache.org/. [Online; accessed 8-March-2024].
[7] A. Flink. https://flink.apache.org/. [Online; accessed 8-March-2024].
[8] A. Kafka. https://kafka.apache.org. [Online; accessed 8-March-2024].
[9] A. HBase. https://hbase.apache.org/. [Online; accessed 8-March-2024].

[10] MongoDB. https://www.mongodb.com/. [Online; accessed 8-March-
2024].

[11] TensorFlow. https://www.tensorflow.org/. [Online; accessed 8-March-
2024].

[12] A. Sobe, W. Elmenreich, T. Szkaliczki, and L. Böszörmenyi, “Seahorse:
Generalizing an artificial hormone system algorithm to a middleware for
search and delivery of information units,” Computer Networks, 2015.

[13] A. Turing, “The chemical basis of morphogenesis,” Philosophical Trans-
actions of the Royal Society of London, Series B, Biological Sciences,
vol. 237, no. 641, pp. 37–72, 1952.

[14] W. Elmenreich, R. D’Souza, C. Bettstetter, and H. de Meer, “A survey
of models and design methods for self-organizing networked systems,”
in International Workshop on Self-Organizing Systems, pp. 37–49,
Springer, 2009.

[15] W. Elmenreich and H. de Meer, “Self-organizing networked systems for
technical applications: A discussion on open issues,” in International
Workshop on Self-Organizing Systems, pp. 1–9, Springer, 2008.

[16] W. Elmenreich, A. Schnabl, and M. Schranz, “An artificial hormone-
based algorithm for production scheduling from the bottom-up.,” in
International Conference on Agents and Artificial Intelligence, pp. 296–
303, 2021.

[17] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proceedings of the 20th interna-
tional conference on machine learning, pp. 856–863, 2003.

[18] U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection
algorithm: A review,” Journal of King Saud University-Computer and
Information Sciences, vol. 34, no. 4, pp. 1060–1073, 2022.

[19] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Proceedings
of the 8th International Conference on Database Theory, pp. 420–434,
Springer, 2001.

[20] A. C. Benabdellah, A. Benghabrit, and I. Bouhaddou, “A survey of
clustering algorithms for an industrial context,” Procedia computer
science, vol. 148, pp. 291–302, 2019.

[21] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop
on Hot Topics in Cloud Computing, 2010.

[22] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Computing Surveys, vol. 53, no. 2, pp. 1–33, 2020.

[23] Q. Pham, D. Nguyen, S. Mirjalili, D. Hoang, D. Nguyen, P. Pathirana,
and W.-J. Hwang, “Swarm intelligence for next-generation networks:
Recent advances and applications,” Journal of Network and Computer
Applications, vol. 191, p. 103141, 2021.

[24] Y.-H. Lin and Y.-C. Hu, “Residential consumer-centric demand-side
management based on energy disaggregation-piloting constrained swarm
intelligence: Towards edge computing,” Sensors, vol. 18, no. 5, p. 1365,
2018.

[25] S. Feng, Y. Chen, Q. Zhai, M. Huang, and F. Shu, “Optimizing
computation offloading strategy in mobile edge computing based on
swarm intelligence algorithms,” EURASIP Journal on Advances in
Signal Processing, vol. 7, no. 36, pp. 1–24, 2021.

[26] C. Lee, Y. Huo, S. Zhang, and K. Ng, “Design of a smart manufac-
turing system with the application of multi-access edge computing and
blockchain technology,” IEEE Access, vol. 8, pp. 28659–28667, 2020.

[27] M. Mahenge, C. Li, and C. Sanga, “Energy-efficient task offloading
strategy in mobile edge computing for resource-intensive mobile appli-
cations,” Digital Communications and Networks, vol. 8, no. 6, pp. 1048–
1058, 2022.

[28] N. Bacanin, M. Antonijevic, T. Bezdan, M. Zivkovic, K. Venkatachalam,
and S. Malebary, “Energy efficient offloading mechanism using particle
swarm optimization in 5g enabled edge nodes,” Cluster Computing,
vol. 26, pp. 587–598, 2023.

[29] I. Attiya, M. Elaziz, L. Abualigah, T. Nguyen, and A. El-Latif, “An
improved hybrid swarm intelligence for scheduling iot application tasks
in the cloud,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 9, pp. 6264–6272, 2022.

[30] H. Singh, A. Bhasin, and P. R. Kaveri, “Qras: Efficient resource
allocation for task scheduling in cloud computing,” SN Applied Sciences,
vol. 3, pp. 1–7, 2021.

[31] B. A. de Melo Menezes, H. Kuchen, and F. Buarque de Lima Neto,
“Parallelization of swarm intelligence algorithms: Literature review,”
International Journal of Parallel Programming, vol. 50, pp. 1–29, 2022.

[32] M. Umlauft, M. Schranz, and W. Elmenreich, “Swarmfabsim: A sim-
ulation framework for bottom-up optimization in flexible job-shop
scheduling using netlogo,” in Proceedings of the 12th International
Conference on Simulation and Modeling Methodologies, Technologies
and Applications, pp. 271–279, 2022.

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-153-4

ADAPTIVE 2024 : The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

