
Towards Self-Adaptive User Interfaces by Holding
Posture Recognition for Smartphones

Rene Hörschinger, Marc Kurz, Erik Sonnleitner
Department for Smart and Interconnected Living (SAIL)

University of Applied Sciences Upper Austria
4232 Hagenberg, Austria

email:{firstname.lastname}@fh-hagenberg.at

Abstract—People interact with their smartphones in many
different ways depending on the phone size, the application itself,
or simply whether the user is left or right-handed. From the
developer side of view, it can be beneficial to know how the
user operates the phone in order to adjust and adapt the user
interface accordingly. Therefore, this paper proposes a model that
can predict the holding posture of a smartphone at runtime. The
model gets the smartphone IMU data on each interaction with
the display as well as the location where the user pressed onto the
display as input and outputs the most likely holding posture. By
using each interaction individually, the model is able to predict
which hand is holding the phone at runtime with an accuracy of
89.3%.

Index Terms—posture recognition, self-adaptiveness, smart-
phone sensing

I. INTRODUCTION

People interact with their mobile devices in many different
ways. This makes designing user interfaces challenging as the
interface will only suit one type of group while others may
struggle because of the way they hold their smartphone. If the
smartphone could be aware of how the user currently interacts
with the device, user interfaces and the general handling of
the mobile device could autonomously adapt to this specific
situation enabling self-adaptiveness of the smartphone on a
real-time basis.

Steven Hoober conducted a survey in 2013 by observing
1,333 people in public places (streets, airports, bus stops,
cafes, trains, busses) and analyzing how they interact with their
smartphones [1]. People nowadays use their mobile devices in
many different scenarios for example while walking, riding
a bus, or standing still, and therefore they adapt their grasp
on the smartphone accordingly. After his observation Hoober
found out that 49% of the people hold their phone in one
hand, 36% hold it cradled (one hand holding the phone, one
hand interacting with the touchscreen either with the thumb or
the index finger), and 15% use it two-handed. These are the
numbers of people actively interacting with the mobile device,
while we see in Figure 1 the distribution of all interactions
including 22% accounting for voice calls and 18.9% listening
to music or watching videos.

Looking at the one-handed interactions, interestingly only
67% of the people use their right hand while 33% use their
left hand which does not correlate with the number of left-
handed people in the general population of about 10% [2].

Fig. 1. General distribution of active and passive smartphone interactions [1].

This observation shows that right-handed people are likely to
operate their mobile devices from time to time to free up their
dominant hand for other tasks. Taking this into consideration,
UI designs should not only be focused on right-handed people
as nearly 1/3 of the one-handed interactions are done by the
left hand.

After studying the one-handed interactions, it can also be
seen that there are two ways of holding a phone with one
hand:

• Thumb on the display, all 4 other fingers on the side
• Thumb on the display, pinkie on the bottom, the other 3

fingers on the side
Those differences result in different screen coverage, as with

the pinkie on the bottom it is harder to reach the top left corner,
while the other holding posture makes it tough to reach the
bottom right corner which we can see in Figure 2.

Looking at the two-handed interactions with both thumbs
it can be seen that people only use this method for gaming,
video consumption, and keyboard typing.

Smartphones nowadays tend to get bigger and bigger:
• iPhone 5s, 2013, 4 inch display [3]
• iPhone X, 2017, 5.8 inch display [4]
• iPhone 13 Pro Max, 2022, 6.7 inch display [5]
That makes one-handed interactions with the mobile device

harder. Apple for example offers a one-handed mode with a
swipe down from the bottom of the display to shift the whole
UI downwards. Otherwise, the classic return button on the top

22Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 2. Thumb coverage of one-handed interaction with the right thumb but
different holding postures [1].

left of the screen would be nearly impossible to reach for a
user with an average size hand on an iPhone 13 Pro Max. But
this practice needs an active interaction of the user which is
sub-optimal.

In this paper, we propose a way to detect how the user
interacts with the smartphone at runtime in the background so
the UI designer can take advantage of that information when
designing the interface. A practical example would be the
zoom operation in a maps application: To zoom in or out the
standard way is to swipe two fingers apart or together which
tends to be quite complicated with a big smartphone operated
with only one hand. The zoom in that case could be adjusted
to work with a long press on the touchscreen and then swiping
up- and downwards while still pressing on the screen to zoom
in and out. That interaction can easily be done with one hand.
Additionally, knowing how the user currently interacts with
his/her smartphone, would open possibilities in terms of self-
adapting the UI mode of the device in an automated way.

To achieve this recognition, a machine learning (ML) model
is trained with the sensor data from the inertial measurement
unit (IMU) of a smartphone. The dataset used for the training
was recorded with different participants of different sex and
age while interacting with the smartphone.

The rest of the paper is structured as follows: Section II
gives an overview of related work. Section III describes the
methodology applied in our work. Section IV provides the
evaluation containing (i) feature engineering, and (ii) model
selection. Section V summarizes the achieved results. The
final Section VI concludes the paper with a discussion and
an outlook on future work.

II. RELATED WORK

Detecting the holding position of a mobile device is an
active field of study with many different approaches. Wimmer
et al. [6] utilize capacitive sensors in their prototype ”Hand-
Sense” to determine which hand is holding the device with an
accuracy of 80% and 6 different holding positions. Another
approach from Hinckley et al. [7] takes advantage of a self-
capacitance touchscreen to detect the grip on the smartphone
(one-handed and two-handed) as well as to recognize multiple
fingers hovering over the touchscreen.

Goel et al. [8] present the prototype ”GripSense” for de-
tecting holding patterns by combining built-in inertial sensors
as well as the vibration motor of the mobile device. After
a sequence of touchscreen interactions (tapping, swiping)
the model reaches 84.4% accuracy at detecting left-, right-
and two-handed interactions. Goel et al. utilize ”GripSense”
for their next model ”ContextType” [9] and add additional
posture-specific touch pattern information to detect the hand
posture after each tap with an accuracy of 89.7%.

Park et al. [10] not only use gyroscope and accelerome-
ter data for their Support Vector Machine (SVM) but also
touchscreen data like the coordinates of interaction and the
size. After training and testing on 6 participants, they reach
an accuracy of 87.7% and 92.4% for 5 and 4 hand postures
respectively. Löchtefeld et al. [11] have a similar approach to
Park et al. but they also include the device orientation and
focus on the detection of the holding posture during device
unlocking. With a k-nearest neighbor model and Dynamic
Time Warping (DTW), they achieve 98.51% accuracy. A
comparable model to Löchtefeld et al. comes from Avery et
al. [12]. They detect the holding position of the smartphone
prior to the first touchscreen interaction with the use of the
built-in orientation sensors and DTW with an accuracy of
83.6%.

Summing up these approaches, some of them need external
sensors like Wimmer et al., some of them only focus on
grabbing the phone and the unlocking process like Löchtefeld
et al. and Park et al., and others detect the holding posture
during actual user interaction like ”GripSense” from Park et
al. but require a certain amount of interactions in order to work
properly.

In contrast to the approaches mentioned above, the model
presented in this paper does not need any external sensors,
does not focus only on the unlocking process of a smartphone,
and furthermore detects holding posture changes during the
usage of an application at runtime.

III. APPROACH

Nowadays a lot of mobile applications do not support
landscape mode, especially social media apps, for example,
Instagram, Twitter, Snapchat, and Facebook. With that in mind
and with the information retrieved from the survey of Steven
Hoober in Section I we decided to differentiate between 4
different holding postures, seen in Figure 3: Right single-
handed, left single-handed, cradle with the left index finger,
cradle with the right index finger.

Fig. 3. Different holding postures of a smartphone [12].

23Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

The idea is to gather IMU data before and after user
interaction with the touchscreen and identify the holding
posture only by that event. IMU data is available on every new
smartphone which means the model is platform-independent
and can be used on all iOS and Android devices.

A. Data recording

The setup for the data recording was as follows: 9 partic-
ipants (7 male, 2 female) between 23 and 58 were asked to
perform multiple tap actions with different holding postures
within an iOS app on predefined locations which were: left,
middle and right each at the top, middle, and bottom of the
touchscreen, as seen in Figure 4.

Fig. 4. Position in x and y pixels where the participants tapped onto the
touchscreen during data recording.

The iOS app fetched IMU data at 100 Hz in the background
and saved a time series of 0.5 seconds before and after each
tap action. Furthermore, the orientation (yaw, pitch, roll) of
the device got also tracked at 100 Hz, as well as the location
of the tap interaction. In total, the following data got recording
after each interaction:

• 3 axis accelerometer @ 100 Hz: 300 data points
• 3 axis gyroscope @ 100 Hz: 300 data points
• 3 axis magnetometer @ 100 Hz: 300 data points
• roll, pitch, yaw @ 100 Hz: 300 data points
• x-axis and y-axis (in pixels): 2 data points
The participants pressed multiple times on each defined

location which resulted in a dataset of 723 samples with each
having 1,202 features. The number of samples per holding
posture was nearly equally distributed as seen in Figure 5.

B. Data preprocessing

After the dataset was complete, the approach was followed
as shown in the flowchart in Figure 6. On the training set,
multiple feature extraction methods were performed:

• Statistical features: The time series of each axis were
used to extract the following features: mean, median,

Fig. 5. Samples per posture in the dataset.

Fig. 6. Flowchart from data to ML model.

maximum, minimum, standard deviation, skewness, kur-
tosis, interquartile range, mad, integrate along the given
axis using the composite trapezoidal rule, range, root
mean square, variance and the number of peaks. Further-
more, each sensor was used to extract the mean standard
deviation and the mean of variance.

• Frequency features with Fast Fourier Transform
(FFT): FFT calculation from all axis was done to cal-
culate the following features: mean of FFT magnitude,
the standard deviation of FFT magnitude, mean of FFT
angle, the standard deviation of FFT angle.

• Magnitude features: For each sample the magnitude for
each axis was calculated to derive some more statisti-
cal features: mean of magnitude, maximum magnitude,
minimum magnitude, variance of magnitude, standard

24Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

deviation of magnitude, and number of peaks.
• Wavelet features: To combine time and frequency do-

main the db3 wavelet was used to get the number of
wavelet levels and then the approximated coefficients
instead of the detailed ones were used.

IV. EVALUATION

In order to find the best model suited for this task, several
feature extraction methods were used in combination with
various machine learning models.

A. Feature Engineering

First of all, the raw time series data was used as a feature
set to find the baseline of the model and see how different
models would perform without any preprocessing and feature
engineering except for scaling and filtering. The extracted
features mentioned in Section III-B were used individually
for training and also combined together to a big feature
set that accounted for 370 different features. Furthermore,
not only each sensor but also each sensor axis was used
individually for a feature set, as some axis might perform
better and have more relevance in solving the problem than
others. For example, the wavelet feature set actually consisted
of several different feature sets: only wavelets of accelerom-
eter/gyroscope/magnetometer/motion for only x/y/z axis, all
wavelets of each sensor individually, all wavelets of the
IMU combined, all wavelets of gyroscope and accelerometer
combined, all wavelets of all sensors combined and 3 of these
feature sets where the correlation between features above 0.8
and under -0.8 has been removed. That way the wavelet feature
set actually consisted of 22 different sets. With a scoring
function (ANOVA F-value), the best 40, 80, 120, and 160
features were selected to find out if these new feature sets can
increase the accuracy further. In total, this setup accounted for
92 different feature sets:

• raw time series (scaled)
• raw time series (scaled + filtered)
• only statistical features
• only FFT features
• only magnitude features
• only wavelet features
• all features combined
• best 40/80/120/16 features with the scoring function
• all features combined but correlation above 0.8 and under

-0.8 removed (114 features)

B. Model selection with gridsearch

The models k-nearest neighbor (KNN), random forest, and
support vector machine (SVM) were used for a hyperparam-
eter grid search in Python using the models of scikit-learn.
KNN was trained with 96 different hyperparameter variations,
random forest with 576, and SVM with 56. Each model was
trained with each feature set and with 5-fold cross-validation
as well as leave-one-group-out cross-validation. Because the
number of samples per participant was not equally distributed,
the leave-one-group-out cross might introduce some bias, and

since the accuracy numbers were only slightly different at the
end, all following numbers from the training refer to 5-fold
cross-validation.

The hyperparameters of each model were chosen as follows.
1) KNN:
• neighbors: in the range of 3 to 30 excluding multiples

of 4 (because of 4 different holding postures)
• weights: uniform and distance
• metric: euclidean and manhattan
2) Random Forest:
• bootstrap: true
• max depth: 10, 20, 30, 40
• max features: 2, 3, 4, 5
• min samples leaf: 2, 4, 5, 8
• min samples split: 4, 8, 12
• n estimators: 100, 200, 300
3) SVM:
• kernel: rbf and linear
• gamma: only for rbf kernel: 3−8, 3−7, 3−6, 3−5, 3−4,

3−3, 3−2

• C: 30, 31, 32, 33, 34, 35, 36, 37, 38

V. RESULTS

Figure 7 shows different evaluation metrics for different
feature sets and models. The first two columns are the best
models with the raw time series feature set (scaled, scaled, and
filtered) to find the baseline of the model. The third column
is the best overall model where all features were tested, and
the last column is the best model which only used feature sets
with removed correlation. Overall, wavelet features performed
extremely well on their own while the magnitude features
achieved a low accuracy.

Fig. 7. Different evaluation metrics for different ML models on the test set
with 5-fold cross-validation.

While the cross-validation score of the raw time series
dataset was already at 84.6%, utilizing all features SVM
achieved 88.3% and a random forest got an even better result
with 89.3% when correlated features were removed.

The last model without the correlated features is ultimately
preferable, not only because of the highest cross-validation
score but also because of the lowest complexity as it requires
fewer features than the other models. Also, looking at the

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

confusion matrix in Figure 8, the ROC curve and AUC value
in Figure 9 there are no abnormalities between the different
holding postures, as all perform very similarly.

Fig. 8. Confusion matrix of the final model (Random Forest).

Fig. 9. ROC Curves and AUC value for the final model (Random Forest).

VI. CONCLUSION AND OUTLOOK

By analyzing the sensor data of the built-in IMU of smart-
phones we were able to detect the holding posture during
the usage of an app with an accuracy of 89.3% without the
need of external sensors. Therefore, the model is hardware and
platform-independent and can be shipped on Android and iOS
applications. Interestingly, the raw time series data performed
way better than initially expected, feature engineering did
increase the overall accuracy and reduced the complexity of
the model though.

With the knowledge of the holding posture of the user
at runtime, the UI designer can take this information into

consideration while designing an intuitive interface. Also, self-
adaptive capabilities in terms of the UI of a smartphone could
be imaginable with real-time recognition of holding postures.

While this model now only works for tap gestures, we are
currently working on adding swipe gestures with a Dynamic
Time Warping approach to find out if swipe gestures can
further improve the accuracy of the model. Besides, the dataset
will be enlarged with new data recordings to compare the
machine learning models with neural networks.

REFERENCES

[1] S. Hoober, “How do users really hold mobile de-
vices?” 2013, accessed: 2023-05-08. [Online]. Avail-
able: https://www.uxmatters.com/mt/archives/2013/02/how-do-users-
really-hold-mobile-devices.php

[2] C. Hardyck and L. F. Petrinovich, “Left-handedness.” Psychological
bulletin, vol. 84, no. 3, p. 385, 1977, accessed: 2023-05-08. [Online].
Available: https://psycnet.apa.org/record/1978-00208-001

[3] “iPhone 5s - Technical Specifications,”
https://support.apple.com/kb/sp685?locale=en GB, accessed: 2023-
05-08.

[4] “iPhone X - Technical Specifications,”
https://support.apple.com/kb/sp770?locale=en GB, accessed: 2023-
05-08.

[5] “iPhone 13 Pro Max - Technical Specifications,”
https://support.apple.com/kb/SP848?locale=en GB, accessed: 2023-05-
08.

[6] R. Wimmer and S. Boring, “Handsense: discriminating different
ways of grasping and holding a tangible user interface,” in
Proceedings of the 3rd International Conference on Tangible and
Embedded Interaction. New York, NY, USA: Association for
Computing Machinery, 2009, pp. 359–362. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/1517664.1517736?

[7] K. Hinckley, S. Heo, M. Pahud, C. Holz, H. Benko, A. Sellen,
R. Banks, K. O’Hara, G. Smyth, and W. Buxton, “Pre-touch sensing
for mobile interaction,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 2869–2881. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/2858036.2858095

[8] M. Goel, J. Wobbrock, and S. Patel, “Gripsense: using built-in sensors
to detect hand posture and pressure on commodity mobile phones,” in
Proceedings of the 25th annual ACM symposium on User interface
software and technology, ser. UIST ’12. New York, NY, USA:
Association for Computing Machinery, 10 2012, p. 545–554. [Online].
Available: https://doi.org/10.1145/2380116.2380184

[9] M. Goel, A. Jansen, T. Mandel, S. N. Patel, and J. O. Wobbrock,
“Contexttype: using hand posture information to improve mobile touch
screen text entry,” in Proceedings of the SIGCHI conference on human
factors in computing systems. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 2795–2798. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2470654.2481386

[10] C. Park and T. Ogawa, “A study on grasp recognition independent
of users’ situations using built-in sensors of smartphones,” in
Adjunct Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 69–70. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2815585.2815722

[11] M. Löchtefeld, P. Schardt, A. Krüger, and S. Boring, “Detecting
users handedness for ergonomic adaptation of mobile user interfaces,”
in Proceedings of the 14th international conference on mobile
and ubiquitous multimedia. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 245–249. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2836041.2836066

[12] J. Avery, D. Vogel, E. Lank, D. Masson, and H. Rateau,
“Holding patterns: detecting handedness with a moving smartphone
at pickup,” in Proceedings of the 31st Conference on l’Interaction
Homme-Machine, ser. IHM ’19. New York, NY, USA: Association
for Computing Machinery, 12 2019, p. 1–7. [Online]. Available:
https://doi.org/10.1145/3366550.3372253

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

