
Towards Transforming OpenAPI Specified Web
Services into Planning Domain Definition Language

Actions for Automatic Web Service Composition
Christian Schindler, Christoph Knieke, Andreas Rausch, Eric Douglas Nyakam Chiadjeu

Technische Universität Clausthal
Institute for Software and Systems Engineering

Clausthal-Zellerfeld, Germany
Email: {christian.schindler, christoph.knieke, andreas.rausch, eric.douglas.nyakam.chiadjeu}@tu-clausthal.de

Abstract—Today, more and more highly complex Internet Of
Things (IoT) ecosystems are emerging that can no longer be
centrally designed and controlled, but must self-adapt to new
environments and user requirements. An approach to achieve
this self-adaptation are so called emergent software service
platforms that must be able to react continuously at runtime
to changes in the runtime environment, such as changes in
user requirements or the addition/removal of software services.
Therefore, all software service compositions are created only
at runtime of the platform on the basis of the automatically
detected user requirements. In a previous work, we introduced
our vision of a software architecture for such an emergent
software service platform. A core part of such a platform is
the service composition mechanism. In this paper, we present a
set of rules that can be used to transform web services specified
in OpenAPI into Planning Domain Definition Language (PDDL)
actions. This allows web service compositions to be performed
automatically with common PDDL solvers.

Index Terms—Web Service Composition, AI Planning, PDDL,
OpenAPI, Emergent Systems.

I. INTRODUCTION

IoT ecosystems are complex system conglomerates of au-
tonomous and interacting individual systems that are adaptive
as a whole because they exhibit a special capacity for adapta-
tion [1]. Analogous to their model in nature, such ecosystems
can only be vital in the long term if a balance of needs
and interests is achieved with regard to data, services and
processes. The different life cycles of the individual systems,
whose behavior and interactions change over time, are also
decisive here. These changes (e.g., in data models / domain
ontologies) cannot usually be centrally pre-planned, but result
from independent processes and decisions within and outside
the IoT ecosystem [2]. In addition, it is becoming increasingly
apparent that industry-wide standardization efforts are too slow
and inflexible when it comes to the speed of innovation in
IoT components. This poses major challenges to traditional
approaches and technologies for self-adaptive systems, as
these systems rely on automated (semantic) interpretation of
data and functions in system composition.

Many of the currently realized mechanisms for self-
adaptation are based on maximizing the interface couplings
of the participating components of an IoT ecosystem or

similar demand-independent criteria (see, e.g., [3], [4]). This
results in self-functioning systems at runtime, but in many
cases these systems are not able to address the changing
functional and non-functional needs of the users. In particular,
the same system guarantees are not useful or necessary for all
applications on a platform; rather, they are highly application-
or user-specific. For this reason, the rules governing self-
adaptation within IoT ecosystems in the future must be in-
creasingly introduced into the platform by the actual service
demanders. Intervention by the platform operator, on the other
hand, should be limited to moderating the communication and
composition of services and components.

An emergent software platform must be able to react contin-
uously at runtime to changes in the runtime environment, such
as the addition/removal of software services or changes in user
requirements [5]. Therefore, all software service compositions
emerge only at runtime of the platform on the basis of
automatically detected user requirements. In this paper, this
property is defined as “emergence” in the context of a software
platform. More formally, we define emergence as follows: A
software platform is called emergent if the platform is able to
automatically and dynamically compose the available software
services into a higher-value software service in response to
a triggering event. The emergent behavior of the platform
is not predefined at design time and cannot be predicted by
individual software services [5].

In a previous paper [5], we already proposed a vision
of an architecture as a so-called Emergent Software Service
Platform. Using the architecture, a software engineer is able to
develop a dynamic adaptive system which fulfills the emergent
properties of an IoT-based environment. The main building
blocks of the architecture are separated into run-time and
design-time. At run-time, the building blocks are capable to
determine an application for user requirements, which emerge
from the IoT environment based on available services.

A challenging task in the Emergent Software Service Plat-
form is the web service composition mechanism. A common
way to describe web services is using OpenAPI [6]. The
OpenAPI specification defines an open and vendor-neutral
description format for Application Programming Interface

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

(API) services. In particular, OpenAPI can be used to describe,
develop, test, and document REST-compliant APIs. In the
paper at hand we present an approach to transform web
services specified in OpenAPI into PDDL [7] actions. The
advantage of this approach is that web service compositions
can be performed with common PDDL solvers (e.g., ENHSP
[8]).

The paper is organized as follows: Section II gives an
overview on the related work. In Section III, we introduce
our architecture vision for emergent service composition, as
well as the PDDL language. Our approach is proposed in
Section IV. Finally, Section V concludes and gives an outlook
on future work.

II. RELATED WORK

Extensive research has been done on the topic of semantic
integration of service interfaces in the last two decades. In
particular, work in the area of semantic integration of web
services [9]–[11], as well as in the area of dynamically adap-
tive systems in the IoT and Industry 4.0 environment should
be mentioned here [12]–[14]. Unfortunately, until today, the
supply of components and platforms that allow semantics-
based networking of industrial distributed service systems falls
far short of the initially high goals and expectations or only
covers the data layer [15] [16].

As emergence offers the opportunity to take advantage of
the composability of individual software components, we will
comment on previous works in the field of service composition
dealing with the translation of web service composition prob-
lem into planning problem, or the integration of web services.

PORSCE II [17] is one of the first semantic composition
systems for web services with the particularity that it takes
advantage of semantic information to improve the planning
as well as the composition of software components. The
realization of this feature is based on an external domain
ontology coupled with OWL-S [17]. In addition, PORSCE II
also provides a mechanism to replace services that fail during
composition.

iServe [18], on the other hand, is not directly concerned with
the composition of Web Services, but describes a new and open
platform for publishing web services to better support their
discovery and use. It provides a common vocabulary that can
be used to describe different services in such a way that they
can be found automatically by machines and their functionality
is independent of the form used for the original web service
description. An immediate advantage is that through iServe
a large set of different Web Services can be discovered and
integrated for composition.

To sum up, iServe offers an open platform for publishing
Web services, but does not provide composition of Web
services. PORSCE II, on the other hand, addresses planning
and composition but requires an additional description of Web
services in OWL-S. In contrast, our approach leverages the
widely used and standardized description of Web services in
OpenAPI which can thus be used immediately with less effort.

III. FUNDAMENTALS

Dynamic adaptive software systems in an IoT-based envi-
ronment can be designed from reusable software components
[19], e.g., as proposed in the DAiSI component model [20],
which describes the structure and the behavior of the system.
Therefore, software components and interfaces are used to
describe the building blocks of the architecture. The behav-
ior is described on the basis of a contract based approach.
The contracts are used by the system to check required
and provided interfaces of software components for semantic
compatibility at run-time.

A. Architecture

Figure 1 illustrates the architecture of our emergent platform
as introduced in a previous work [5]. The architecture consists
of five major parts (see letters A-E in Figure 1) which are
either associated to the run-time or design-time part of the
platform and will be briefly explained in the following:

Run-Time: The emergent platform as a whole interacts
with users to determine formal user requirements through
interactions and monitoring (A). The Domain is a central part
of the architecture, as it is the foundational vocabulary to
express user requirements and the foundation for a semantic
description of the software components. The formal user
requirement is passed on to the composition mechanism (B) to
compose a sequence of Software Service Descriptions to fulfill
the expected system behavior demanded by the formal user
requirement. The composed sequence of components is for-
warded to the Execution Engine (C). The responsibility of this
component is to call Service Instances that “use/implement”
the given software components of the composed sequence, to
incorporate necessary user feedback into the execution, and to
return process results to the user (E).

Design-Time: The Service Descriptions are developed
and maintained by a service integrator at design-time. All
those Service Descriptions that are allowed to be used in the
composition are registered in the Service Registry (D).

B. Self-adaptive Composition Mechanism

The Self-adaptive Composition Mechanism has to compose
services provided in the IoT ecosystem to achieve a given
higher-level goal. This includes determining which services
are needed and how these services can be invoked sequentially
to achieve the goal. Computing an appropriate composition is
formulated as a planning problem where the user’s requirement
is the goal and the service descriptions of the IoT ecosystem
are possible actions that can be taken.

In the overall architecture, the Self-Adaptive Composition
Mechanism has the following interfaces to other components:
it has an interface from the User Requirements Handler,
from which the target of an end user is provided. From
the Service Registry, the component can query all currently
available Service Descriptions and compute the composition
based on them. Another interface is responsible for passing
the calculated composition to the Execution Engine.

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 1. Architecture of the emergent software service platform

C. Planning Domain Definition Language

PDDL is a standard encoding language for “classical”
planning.

The components of PDDL files are:

• Requirements: Defining levels of abstraction in the lan-
guage, temporal, probabilistic effects, etc.

• Types: Sets of the things of interest in the world
• Objects: Instances of types
• Predicates: Properties representing a state or condition in

the world that can be true or false
• Predicates: Facts about objects that can be true or false
• Initial state of the world: Before starting the planning

process
• Goal: Properties of the world true in goal states and

achieved after the planning process
• Actions/Operators: Ways of changing states of the world

and going from the initial state to goal states

Predicates are used to define the initial state of a planning
problem, as well as to represent the goal state that the planner
is trying to achieve. In addition, predicates can be used to
describe properties of objects, relationships between objects,
and other conditions that are relevant to the planning problem.

A planning task in PDDL is specified in two text files: A
domain file for requirements, types, predicates and actions. A
problem file for objects, initial state and goal specification.

PDDL plans from a state S0 (initial state) to a Sz (target
state). S0 is our initial state which can be empty. Sz is the
higher order requirement that can be expressed in terms of
domain concepts. A is a set of actions available to the platform.
The planner calculates a valid path (sequence of ai ∈ A) from
S0 to Sz . The sequence of Ai can be called one after the other
to reach the state Sz .

An important point in the computed sequence of Ai is
that at the appropriate point in the execution sequence, all
the information required at that time, which is needed as
parameters, is available. These can either be given in the S0

or obtained by executing an aj ∈ A with (j < i).

IV. RULE-BASED WEB SERVICE COMPOSITION APPROACH

A. Motivating example

With a motivating example, we want to show the expressive
power that the PDDL brings to the problem of web service
composition, having the respective description of such plan-
ning tools needed to perform their planning. We want to give
an example covering the Domain, available PDDL actions
representing Service Descriptions, a user requirement needing
to be composed of multiple available Service Descriptions,
and finally the composed sequence of Service Descriptions a
planing tool (such as the one we use) can compute.

The example reflects some core interactions of components
of the architecture shown in Figure 1. Starting with the User
Requirement Handler (A) giving the formal request (Figure
4) to the Self-Adaptive Composition Mechanism (B). The
computed sequence of Service Description is shown in Figure
3. The example also shows the available Service Descriptions
contained in the Service Registry (D) in Figure 3 and the
Platforms Domain. The example does not cover the user
interaction with the platform, neither the executing part (C).
These aspects are addressed in a further paper [21] and
shown together with the implementation of the platform and
an application scenario. The example is in the application
domain of a parking lot, offering to book a parking spot,
and offering to get a car wash. The PDDL domain in this
example (Figure 2) defines the types parkingid, reservationnr
and bookedservice. The second part of the domain are the

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

(:types
parkingid
reservationnr
bookedservice

)
(:predicates

(parkplatz
?p - parkingid)

(bookedparking
?p - parkingid
?r - reservationnr)

(bookedcarwash
?p - parkingid
?g - bookedservice)

)

Fig. 2. PDDL Domain

predicates, which are defined similar to first order logic with
an identifying name followed by the typed arguments.

Figure 2 contains the available actions given in the scope
of the example, referring to types and predicates from the
domain. Parameters are objects that will be passed to actions
in the plan. The predicates given in an actions precondition
need to evaluate to true for the passed objects to be able
to be scheduled by the planning tool. The effects on the
other hand are then enforced by the planner. The assignment
of truth values to the predicates in the effects essentially
allow the planning tool to finally reach the goal state of a
planing problem. Figure 4 and 5 give a requirement and the
respective calculated composition. The syntax of those is no
plain PDDL, as this is the payload format of the platform
itself. The requirement nevertheless describes available objects
and their types and defines a goal to be reached. This goal’s
value is a PDDL conform String. An additional information
that could be provided is an initial state (of the world) so the
planner does not start from en empty state for the composition
of actions.

The composition in Figure 5 also contains the objects
originally received and in addition the composition. The
composition is a sequence of actions, with valid assignments of
available objects to the actions parameters, so that by following
the sequence the original goal state is reached.

Coming back to the idea of treating web services as actions
that can be executed in order, planning tools (e.g., ENHSP
[8])) offer a good foundation on finding suitable action se-
quences to reach a given goal. In addition to the calculation
of a sequence, the plan also contains objects that need to be
passed to the actions in a given step of the plan to reach
the goal state. To use such an approach for the web service
composition part of this platform we want to emphasize the
benefit of having the ability to derive a PDDL domain and
actions reflecting the web services, so a composition can be
calculated. As the manual translation can be cumbersome and
error prune, we will give a set of rules on how a domain
and actions similar to the ones in the example can be derived
from given web service descriptions available in an OpenAPI
specification.

(:action get_available-parkingspot
:parameters (?p - parkingid)
:precondition ()
:effect (parkplatz ?p)

)
(:action post_book-parking

:parameters (
?p - parkingid
?r - reservationnr)

:precondition (parkplatz ?p)
:effect (bookedparking ?p ?r)

)
(:action post_book-carwash

:parameters (
?p - parkingid
?r - reservationnr
?l - bookedservice)

:precondition (bookedparking ?p ?r)
:effect (bookedcarwash ?p ?l)

)

Fig. 3. Available Service Descriptions

{ "environment": [
{"type": "parkingid", "name": "p1"},
{"type": "reservationnr", "name": "r1"},
{"type": "bookedservice", "name": "g1"}
], "init": [],
"goal": "(and (bookedparking p1 r1) (bookedcarwash

p1 g1))"
}

Fig. 4. Requirenment

B. PDDL Actions

An action has three important sections that are required
for planning. These are Parameters, Preconditions and Effects.
Parameters are the objects that are passed to the action. These
objects are used to check preconditions and to apply effects.
The preconditions allow the planner to determine if an action
can be scheduled and the effect allows the planner to determine
if the action helps in getting towards the target state.

A web service, on the other hand, is not described in
the same way. Here, the inputs and outputs are essentially
described, along with interface details, such as Hypertext
Transfer Protocol methods, content types, and response codes,
which play a minor role for our approach.

{ "composition": [
{"name": "get_available-parkingspot",
"params": ["p1"]},
{"name": "post_book-parking",
"params": ["p1","r1"]},
{"name": "post_book-carwash",
"params": ["p1", "r1", "g1"]}
], "environment": [
{"name": "p1", "type": "parkingid"},
{"name": "r1", "type": "reservationnr"},
{"name": "g1", "type": "bookedservice"}

]}

Fig. 5. Composed Sequence of Service Descriptions

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

The task now is to find suitable assignments of the inputs
and outputs of the web services to the described sections of
the PDDL actions, so that planning can be based on them.

C. Approach

The focus of this paper is on how to allow the semantical
integration of available Web Services Descriptions into the
platform’s Service Registry to enable the platform’s internal
processing (calculation of compositions and incorporation into
the platform domain to express user requirements).

We have defined multiple rules for the transformation of
OpenAPI specifications into PDDL actions and the corre-
sponding PDDL domain, to enable planning tools to use the
actions and domain to plan according to provided problems.
Figure 7 shows the algorithm on how to transform given paths
of an OpenAPI specification into PDDL actions. We distin-
guish between primitives and more complex types (object) in
the schema defined in the OpenAPI specification. Primitives
in the sense of this approach are key-value pairs with a
simple data type (e.g., string, number or boolean). Elements
of type object are treated differently in our rules. To identify
a given data type of an object in the algorithm, we introduce
isPrimitive() and isObjectType().

Rule Creation of an action: We create an action for
each method of each path in the given specification. For each
method of each path, we create an action (lines 4, 5, and 6 in
the figure). The name of the action is a concatenation of the
path and the currently handled method (e.g., get status) for
the path status and the method GET. Line 25 collects all the
actions. To omit the risk of duplicates, it would be feasible to
also incorporate a unique identifier, which is not part of this
pseudo code, but would be attached in line 6.

Rule Precondition collection: To schedule an action into
a plan, it is necessary to gather the preconditions required
for the action to be executed successfully. To collect the
preconditions, we process the requestBody of the OpenAPI
specification. The idea behind this is that the requestBody also
needs to be provided to the web service to be used, meaning
the information needs to be present prior to the actual call. In
the algorithm (Figure 7) this is shown in lines 8 to 15. The
objects() in the algorithm collects and returns (recursive) all
objects contained in the context of the calling element of the
OpenAPI specification. Starting in line 8 we iterate over all
objects and check if they are of type object (line 9). If this
is the case a new precondition is found and added (line 10).
In the next step all the child objects get processed, to find the
precondition’s parameters. To find them we again process all
the contained objects recursive (line 11) and check if they are
primitive (line 12) and add the parameter to the precondition
in line 14. For simplification, we do not distinguish different
contentTypes that can be offered by a requestBody (we only
handle one).

Rule Effect collection: Similar to the collection of pre-
conditions, we collect the effects, but by looking at the
response specified in the OpenAPI specification. We focus
on the good case responses (e.g., 200 or 201) which is not

mentioned specifically in the algorithm. The underlying idea is
that the response reflects what the web service has done. This
is reflected for example by retrieved objects from the backend.
The function block in the algorithm is line 17 to 23 and
following the same logic than the collection of preconditions,
with the mentioned difference of interacting over the response
instead of the request body. A limitation of this transformation
approach is if something happens while executing the web
service which is not reflected by the response, this is not
automatically covered by the actions. It is possible to extend
the actions if more knowledge about the functionality of the
web service is available (e.g., by experts) having a deeper
understanding of the service and the correlation of its input
and output.

Rule Parameter collection: The third building block
of PDDL actions are the parameters. In comparison to the
preconditions and effects, which are predicates, the parameters
are typed variables, with types from the PDDL domain. There
is a relationship between the parameters (of the action) and
the predicates used in the preconditions and effects. In the
algorithm the preconditions are simultaneously collected with
the primitive child objects of preconditions (line 13) and the
primitive child objects of effects (line 22).

Rule Creation of the PDDL Domain: The second algo-
rithm given in Figure 8 describes how to derive the PDDL do-
main from OpenAPI specification. We iterate over all objects
of the requestBody and the response, but this time we do not
distinguish where the objects originate, as this does not matter
for the domain. Primitive objects are transformed into domain
types and objects of type object with their parameters are
transformed into predicates in the domain. Iterating over the
objects is done starting in line 7. Primitive types are identified
in line 14 and added to the domain types in line 15. Objects
are identified in line 8. Predicates get created in line 9. Lines
10, 11, and 12 collect the primitive parameters belonging to
the domain predicate. This is the same logic, which is applied
to collecting the preconditions and effects (compare Figure 5,
lines 11, 12 and, 14). Lines 13 and 15 add the predicates and
types to the domain.

D. Example transformation of an OpenAPI specified service

The following section gives a concrete example of how an
OpenAPI-specified web service is transformed into a PDDL
action and the corresponding domain. Figure 2 lists the Ope-
nAPI specification (left-hand side) with the resulting PDDL
action and domain (right-hand side). The highlighted parts
visualize the corresponding parts in both formats, with the
applied rules assigned. The grey box indicates a legend on
the highlighting to the specific rules applied. We have one
path with one method (post) transformed into a single action
(orange box highlighting). The preconditions of the action are
highlighted in green. On the right side, we see the resulting
precondition parkingspot with its parameter p. On the left-
hand side, we see that this is derived from the schema of
the requestBody (and the according schema elements that are
referred to by the requestBody). The same applies to the effect

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 6. Example REST API to PDDL

1 oas : OpenAPI
2 ps : PDDL
3
4 f o r p a t h in oas . p a t h s :
5 f o r m in p a t h . methods :
6 a c t i o n <− p a t h .m + ” ” + p a t h . name . toLowecase ()
7 / / P r e c o n d i t i o n s
8 f o r o b j e c t in m. r e q u e s t B o d y . c o n t e n t . schema . o b j e c t s () :
9 i f o b j e c t . i s T y p e O b j e c t () :

10 p r e c o n d i t i o n . name <− o b j e c t . name
11 f o r c h i l d O b j e c t in o b j e c t . o b j e c t s () :
12 i f c h i l d O b j e c t . i s P r i m i t i v e () :
13 a c t i o n . p a r a m e t e r s <− c h i l d O b j e c t
14 p r e c o n d i t i o n . p a r a m e t e r s <− c h i l d O b j e c t
15 a c t i o n . p r e c o n d i t i o n s <− p r e c o n d i t i o n
16 / / E f f e c t s
17 f o r o b j e c t in m. r e s p o n s e . c o n t e n t . schema . o b j e c t s () :
18 i f o b j e c t . i s T y p e O b j e c t () :
19 e f f e c t . name <− o b j e c t . name
20 f o r c h i l d O b j e c t in o b j e c t . o b j e c t s () :
21 i f c h i l d O b j e c t . i s P r i m i t i v e () :
22 a c t i o n . p a r a m e t e r s <− c h i l d O b j e c t
23 e f f e c t . p a r a m e t e r s <− c h i l d O b j e c t
24 a c t i o n . e f f e c t s <− e f f e c t
25 ps . a c t i o n s <− a c t i o n

Fig. 7. Rule Action Preconditions

highlighted in purple. In the upper part of the right-hand side,
we see the definition of the domain types (orange dashed
highlighting), the predicates (red highlighting), and their pa-
rameters (green ellipse) with their respective counterparts in
the schema to which requestBody and the response refer.

1 oas : OpenAPI
2 ps : PDDL
3
4 f o r p a t h in oas . p a t h s :
5 f o r m in p a t h . methods :
6 f o r c o n t e x t in { m. reques tBody , m. r e s p o n s e } :
7 f o r o b j e c t in c o n t e x t . c o n t e n t . schema . o b j e c t s () :
8 i f o b j e c t . i s T y p e O b j e c t () :
9 p r e d i c a t e <− o b j e c t . name . t oLowerca se ()

10 f o r c h i l d O b j e c t in o b j e c t . o b j e c t s () :
11 i f c h i l d O b j e c t . i s P r i m i t i v e () :
12 p r e d i c a t e . p a r a m e t e r s <− c h i l d O b j e c t
13 ps . domain . p r e d i c a t e s <− p r e d i c a t e
14 e l s e i f o b j e c t . i s P r i m i t i v e T y p e () :
15 ps . domain . t y p e s <− o b j e c t . name . t oLowerca se ()

Fig. 8. Rule PDDL Domain

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown how PDDL can be used to
compose web services to fulfill a more complex user request
than any of the given services are capable of satisfying in its
own way. We have given an example on how such a request
for a given domain and given actions can look like. We have
also described the differences in an OpenAPI specified web
service and an action specified in PDDL. We have defined a
set of transformation rules and described the pseudo code.

Nevertheless, the presented approach still has some lim-
itations. As the OpenAPI specification does not explicitly
describe coherence between the objects in the requestBody and

20Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

the response, the usage of given parameters in an action, and
their occurrence in preconditions and effects massively affect
the semantic meaning of an action. A possible quality gate is
that an expert can ensure the quality and the correct semantics,
editing the parameters, used parameters in preconditions and
effects, if this collected information is not correct. A second
limitation is the focus on specific response codes such as 200
or 201, as this is often the expected good case of such a web
service. Other status codes in the range of 400 or 500 are
not taken into account. This could easily be incorporated by
also iterating over all given status codes per response, creating
actions for each.

As future work, we want to investigate how the service
integrator can be supported by the rules and the transformation
(compare Figure 1, bottom right). Taking into account the
stated limitations of the current approach, it is worth noting
that a service integrator can offer supplementary knowledge
beyond what is included in the OpenAPI specification.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry of
Education and Research (Research Grant: 01IS18079, Project:
BIoTope).

REFERENCES

[1] P. Pradeep, S. Krishnamoorthy, and A. V. Vasilakos, “A holistic approach
to a context-aware IoT ecosystem with Adaptive Ubiquitous Middle-
ware,” Pervasive and Mobile Computing, vol. 72, 2021.

[2] M. Zdravković et al., “Domain framework for implementation of open
IoT ecosystems,” International Journal of Production Research, vol. 56,
no. 7, pp. 2552–2569, 2018.

[3] R. Rouvoy et al., “Music: Middleware support for self-adaptation in
ubiquitous and service-oriented environments,” Software engineering for
self-adaptive systems, pp. 164–182, 2009.

[4] I. Corredor, J. F. Martı́nez, M. S. Familiar, and L. López, “Knowledge-
aware and service-oriented middleware for deploying pervasive ser-
vices,” Journal of Network and Computer Applications, vol. 35, no. 2,
pp. 562–576, 2012.

[5] N. Wilken et al., “Dynamic adaptive system composition driven by
emergence in an iot based environment: Architecture and challenges,”
in Proceedings of the 12th International Conference on Adaptive and
Self-Adaptive Systems and Applications. IARIA Press, 2020, pp. 25–29.

[6] D. Sferruzza, J. Rocheteau, C. Attiogbé, and A. Lanoix, “Extending ope-
napi 3.0 to build web services from their specification,” in International
Conference on Web Information Systems and Technologies, 2018.

[7] D. M. McDermott, “The 1998 AI planning systems competition,” AI
magazine, vol. 21, pp. 35–35, 2000.

[8] E. Scala, P. Haslum, S. Thiébaux, and M. Ramirez, “Interval-based
relaxation for general numeric planning,” in ECAI 2016. IOS Press,
2016, pp. 655–663.

[9] N. F. Noy, “Semantic integration: a survey of ontology-based ap-
proaches,” ACM Sigmod Record, vol. 33, no. 4, pp. 65–70, 2004.

[10] H. Nacer and D. Aissani, “Semantic web services: Standards, appli-
cations, challenges and solutions,” Journal of Network and Computer
Applications, vol. 44, pp. 134–151, 2014.

[11] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein,
“Semantic web service search: a brief survey,” KI-Künstliche Intelligenz,
vol. 30, pp. 139–147, 2016.

[12] M. D’Angelo, M. Caporuscio, and A. Napolitano, “Model-driven en-
gineering of decentralized control in cyber-physical systems,” in 2017
IEEE 2nd International Workshops on Foundations and Applications of
Self* Systems (FAS* W). IEEE, 2017, pp. 7–12.

[13] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, and
D. Hughes, “Deltaiot: A self-adaptive internet of things exemplar,” in
2017 IEEE/ACM 12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2017, pp.
76–82.

[14] I. Crnkovic, I. Malavolta, H. Muccini, and M. Sharaf, “On the use of
component-based principles and practices for architecting cyber-physical
systems,” in 2016 19th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (CBSE). IEEE, 2016, pp. 23–
32.

[15] V. Bauer and A. Vetro’, “Comparing reuse practices in two large
software-producing companies,” Journal of Systems and Software, vol.
117, pp. 545–582, 2016.

[16] P. Bonte et al., “The massif platform: a modular and semantic platform
for the development of flexible iot services,” Knowledge and Information
Systems, vol. 51, pp. 89–126, 2017.

[17] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vla-
havas, “The PORSCE II framework: Using AI planning for automated
semantic web service composition,” The Knowledge Engineering Re-
view, vol. 28, no. 2, pp. 137–156, 2013.

[18] C. Pedrinaci et al., “iserve: a linked services publishing platform,” in
CEUR workshop proceedings, vol. 596, 2010, pp. 2–13.

[19] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE communications surveys & tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[20] K. Rehfeldt, M. Schindler, B. Fischer, and A. Rausch, “A component
model for limited resource handling in adaptive systems,” in ADAPTIVE
2017: The Ninth International Conference on Adaptive and Self-Adaptive
Systems and Applications. IARIA Press, 2017, pp. 37–42.

[21] C. Knieke et al., “Emergent Software Service Platform and its Applica-
tion in a Smart Mobility Setting,” in 15th International Conference on
Adaptive and Self-Adaptive Systems and Applications, 2023, to appear.

21Copyright (c) IARIA, 2023. ISBN: 978-1-68558-047-6

ADAPTIVE 2023 : The Fifteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

